// Standard 16-bit float type, mostly useful for GPUs. Defines a new // class Eigen::half (inheriting from CUDA's __half struct) with // operator overloads such that it behaves basically as an arithmetic // type. It will be quite slow on CPUs (so it is recommended to stay // in fp32 for CPUs, except for simple parameter conversions, I/O // to disk and the likes), but fast on GPUs. // // // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // // The conversion routines are Copyright (c) Fabian Giesen, 2016. // The original license follows: // // Copyright (c) Fabian Giesen, 2016 // All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef EIGEN_HALF_CUDA_H #define EIGEN_HALF_CUDA_H #if __cplusplus > 199711L #define EIGEN_EXPLICIT_CAST(tgt_type) explicit operator tgt_type() #else #define EIGEN_EXPLICIT_CAST(tgt_type) operator tgt_type() #endif #if !defined(EIGEN_HAS_CUDA_FP16) // Make our own __half definition that is similar to CUDA's. struct __half { unsigned short x; }; #endif namespace Eigen { namespace internal { static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x); static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff); static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h); } // end namespace internal // Class definition. struct half : public __half { EIGEN_DEVICE_FUNC half() {} EIGEN_DEVICE_FUNC half(const __half& h) : __half(h) {} EIGEN_DEVICE_FUNC half(const half& h) : __half(h) {} explicit EIGEN_DEVICE_FUNC half(bool b) : __half(internal::raw_uint16_to_half(b ? 0x3c00 : 0)) {} explicit EIGEN_DEVICE_FUNC half(unsigned int ui) : __half(internal::float_to_half_rtne(static_cast(ui))) {} explicit EIGEN_DEVICE_FUNC half(int i) : __half(internal::float_to_half_rtne(static_cast(i))) {} explicit EIGEN_DEVICE_FUNC half(unsigned long ul) : __half(internal::float_to_half_rtne(static_cast(ul))) {} explicit EIGEN_DEVICE_FUNC half(long l) : __half(internal::float_to_half_rtne(static_cast(l))) {} explicit EIGEN_DEVICE_FUNC half(long long ll) : __half(internal::float_to_half_rtne(static_cast(ll))) {} explicit EIGEN_DEVICE_FUNC half(unsigned long long ull) : __half(internal::float_to_half_rtne(static_cast(ull))) {} explicit EIGEN_DEVICE_FUNC half(float f) : __half(internal::float_to_half_rtne(f)) {} explicit EIGEN_DEVICE_FUNC half(double d) : __half(internal::float_to_half_rtne(static_cast(d))) {} EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(bool) const { // +0.0 and -0.0 become false, everything else becomes true. return (x & 0x7fff) != 0; } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(signed char) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned char) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(short) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned short) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(int) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned int) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(long long) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(unsigned long long) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const { return internal::half_to_float(*this); } EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(double) const { return static_cast(internal::half_to_float(*this)); } EIGEN_DEVICE_FUNC half& operator=(const half& other) { x = other.x; return *this; } }; #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 // Intrinsics for native fp16 support. Note that on current hardware, // these are no faster than fp32 arithmetic (you need to use the half2 // versions to get the ALU speed increased), but you do save the // conversion steps back and forth. __device__ half operator + (const half& a, const half& b) { return __hadd(a, b); } __device__ half operator * (const half& a, const half& b) { return __hmul(a, b); } __device__ half operator - (const half& a, const half& b) { return __hsub(a, b); } __device__ half operator / (const half& a, const half& b) { float num = __half2float(a); float denom = __half2float(b); return __float2half(num / denom); } __device__ half operator - (const half& a) { return __hneg(a); } __device__ half& operator += (half& a, const half& b) { a = a + b; return a; } __device__ half& operator *= (half& a, const half& b) { a = a * b; return a; } __device__ half& operator -= (half& a, const half& b) { a = a - b; return a; } __device__ half& operator /= (half& a, const half& b) { a = a / b; return a; } __device__ bool operator == (const half& a, const half& b) { return __heq(a, b); } __device__ bool operator != (const half& a, const half& b) { return __hne(a, b); } __device__ bool operator < (const half& a, const half& b) { return __hlt(a, b); } __device__ bool operator <= (const half& a, const half& b) { return __hle(a, b); } __device__ bool operator > (const half& a, const half& b) { return __hgt(a, b); } __device__ bool operator >= (const half& a, const half& b) { return __hge(a, b); } #else // Emulate support for half floats // Definitions for CPUs and older CUDA, mostly working through conversion // to/from fp32. static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { return half(float(a) + float(b)); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { return half(float(a) * float(b)); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { return half(float(a) - float(b)); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { return half(float(a) / float(b)); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { half result; result.x = a.x ^ 0x8000; return result; } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { a = half(float(a) + float(b)); return a; } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { a = half(float(a) * float(b)); return a; } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { a = half(float(a) - float(b)); return a; } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { a = half(float(a) / float(b)); return a; } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { return float(a) == float(b); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { return float(a) != float(b); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { return float(a) < float(b); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { return float(a) <= float(b); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { return float(a) > float(b); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { return float(a) >= float(b); } #endif // Emulate support for half floats // Division by an index. Do it in full float precision to avoid accuracy // issues in converting the denominator to half. static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) { return Eigen::half(static_cast(a) / static_cast(b)); } // Conversion routines, including fallbacks for the host or older CUDA. // Note that newer Intel CPUs (Haswell or newer) have vectorized versions of // these in hardware. If we need more performance on older/other CPUs, they are // also possible to vectorize directly. namespace internal { static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half raw_uint16_to_half(unsigned short x) { __half h; h.x = x; return h; } union FP32 { unsigned int u; float f; }; static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half float_to_half_rtne(float ff) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 return __float2half(ff); #elif defined(EIGEN_HAS_FP16_C) __half h; h.x = _cvtss_sh(ff, 0); return h; #else FP32 f; f.f = ff; const FP32 f32infty = { 255 << 23 }; const FP32 f16max = { (127 + 16) << 23 }; const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; unsigned int sign_mask = 0x80000000u; __half o = { 0 }; unsigned int sign = f.u & sign_mask; f.u ^= sign; // NOTE all the integer compares in this function can be safely // compiled into signed compares since all operands are below // 0x80000000. Important if you want fast straight SSE2 code // (since there's no unsigned PCMPGTD). if (f.u >= f16max.u) { // result is Inf or NaN (all exponent bits set) o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf } else { // (De)normalized number or zero if (f.u < (113 << 23)) { // resulting FP16 is subnormal or zero // use a magic value to align our 10 mantissa bits at the bottom of // the float. as long as FP addition is round-to-nearest-even this // just works. f.f += denorm_magic.f; // and one integer subtract of the bias later, we have our final float! o.x = static_cast(f.u - denorm_magic.u); } else { unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd // update exponent, rounding bias part 1 f.u += ((unsigned int)(15 - 127) << 23) + 0xfff; // rounding bias part 2 f.u += mant_odd; // take the bits! o.x = static_cast(f.u >> 13); } } o.x |= static_cast(sign >> 16); return o; #endif } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half h) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 return __half2float(h); #elif defined(EIGEN_HAS_FP16_C) return _cvtsh_ss(h.x); #else const FP32 magic = { 113 << 23 }; const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift FP32 o; o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits unsigned int exp = shifted_exp & o.u; // just the exponent o.u += (127 - 15) << 23; // exponent adjust // handle exponent special cases if (exp == shifted_exp) { // Inf/NaN? o.u += (128 - 16) << 23; // extra exp adjust } else if (exp == 0) { // Zero/Denormal? o.u += 1 << 23; // extra exp adjust o.f -= magic.f; // renormalize } o.u |= (h.x & 0x8000) << 16; // sign bit return o.f; #endif } } // end namespace internal // Traits. namespace internal { template<> struct is_arithmetic { enum { value = true }; }; } // end namespace internal template<> struct NumTraits : GenericNumTraits { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half epsilon() { return internal::raw_uint16_to_half(0x0800); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { return half(1e-3f); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half highest() { return internal::raw_uint16_to_half(0x7bff); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half lowest() { return internal::raw_uint16_to_half(0xfbff); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half infinity() { return internal::raw_uint16_to_half(0x7c00); } EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { return internal::raw_uint16_to_half(0x7c01); } }; // Infinity/NaN checks. namespace numext { static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const Eigen::half& a) { return (a.x & 0x7fff) == 0x7c00; } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const Eigen::half& a) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 return __hisnan(a); #else return (a.x & 0x7fff) > 0x7c00; #endif } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const Eigen::half& a) { return !(Eigen::numext::isinf)(a) && !(Eigen::numext::isnan)(a); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half abs(const Eigen::half& a) { Eigen::half result; result.x = a.x & 0x7FFF; return result; } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exp(const Eigen::half& a) { return Eigen::half(::expf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half log(const Eigen::half& a) { return Eigen::half(::logf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrt(const Eigen::half& a) { return Eigen::half(::sqrtf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half pow(const Eigen::half& a, const Eigen::half& b) { return Eigen::half(::powf(float(a), float(b))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sin(const Eigen::half& a) { return Eigen::half(::sinf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half cos(const Eigen::half& a) { return Eigen::half(::cosf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half tan(const Eigen::half& a) { return Eigen::half(::tanf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half tanh(const Eigen::half& a) { return Eigen::half(::tanhf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floor(const Eigen::half& a) { return Eigen::half(::floorf(float(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceil(const Eigen::half& a) { return Eigen::half(::ceilf(float(a))); } template <> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half mini(const Eigen::half& a, const Eigen::half& b) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 return __hlt(b, a) ? b : a; #else const float f1 = static_cast(a); const float f2 = static_cast(b); return f2 < f1 ? b : a; #endif } template <> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half maxi(const Eigen::half& a, const Eigen::half& b) { #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 return __hlt(a, b) ? b : a; #else const float f1 = static_cast(a); const float f2 = static_cast(b); return f1 < f2 ? b : a; #endif } #ifdef EIGEN_HAS_C99_MATH template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half lgamma(const Eigen::half& a) { return Eigen::half(Eigen::numext::lgamma(static_cast(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half digamma(const Eigen::half& a) { return Eigen::half(Eigen::numext::digamma(static_cast(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half zeta(const Eigen::half& x, const Eigen::half& q) { return Eigen::half(Eigen::numext::zeta(static_cast(x), static_cast(q))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half polygamma(const Eigen::half& n, const Eigen::half& x) { return Eigen::half(Eigen::numext::polygamma(static_cast(n), static_cast(x))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erf(const Eigen::half& a) { return Eigen::half(Eigen::numext::erf(static_cast(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half erfc(const Eigen::half& a) { return Eigen::half(Eigen::numext::erfc(static_cast(a))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igamma(const Eigen::half& a, const Eigen::half& x) { return Eigen::half(Eigen::numext::igamma(static_cast(a), static_cast(x))); } template<> EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half igammac(const Eigen::half& a, const Eigen::half& x) { return Eigen::half(Eigen::numext::igammac(static_cast(a), static_cast(x))); } #endif } // end namespace numext } // end namespace Eigen // Standard mathematical functions and trancendentals. static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half fabsh(const Eigen::half& a) { Eigen::half result; result.x = a.x & 0x7FFF; return result; } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half exph(const Eigen::half& a) { return Eigen::half(::expf(float(a))); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half logh(const Eigen::half& a) { return Eigen::half(::logf(float(a))); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half sqrth(const Eigen::half& a) { return Eigen::half(::sqrtf(float(a))); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half powh(const Eigen::half& a, const Eigen::half& b) { return Eigen::half(::powf(float(a), float(b))); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half floorh(const Eigen::half& a) { return Eigen::half(::floorf(float(a))); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half ceilh(const Eigen::half& a) { return Eigen::half(::ceilf(float(a))); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isnan)(const Eigen::half& a) { return (Eigen::numext::isnan)(a); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isinf)(const Eigen::half& a) { return (Eigen::numext::isinf)(a); } static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int (isfinite)(const Eigen::half& a) { return !(Eigen::numext::isinf)(a) && !(Eigen::numext::isnan)(a); } namespace std { EIGEN_ALWAYS_INLINE ostream& operator << (ostream& os, const Eigen::half& v) { os << static_cast(v); return os; } #if __cplusplus > 199711L template <> struct hash { EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { return static_cast(a.x); } }; #endif } // end namespace std // Add the missing shfl_xor intrinsic #if defined(EIGEN_HAS_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) { return static_cast(__shfl_xor(static_cast(var), laneMask, width)); } #endif // ldg() has an overload for __half, but we also need one for Eigen::half. #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 320 static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half __ldg(const Eigen::half* ptr) { return Eigen::internal::raw_uint16_to_half( __ldg(reinterpret_cast(ptr))); } #endif #endif // EIGEN_HALF_CUDA_H