// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Konstantinos Margaritis // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_PACKET_MATH_ALTIVEC_H #define EIGEN_PACKET_MATH_ALTIVEC_H #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4 #endif typedef __vector float v4f; typedef __vector int v4i; typedef __vector unsigned int v4ui; typedef __vector __bool int v4bi; // We don't want to write the same code all the time, but we need to reuse the constants // and it doesn't really work to declare them global, so we define macros instead #define USE_CONST_v0i const v4i v0i = vec_splat_s32(0) #define USE_CONST_v1i const v4i v1i = vec_splat_s32(1) #define USE_CONST_v16i_ const v4i v16i_ = vec_splat_s32(-16) #define USE_CONST_v0f USE_CONST_v0i; const v4f v0f = (v4f) v0i #define USE_CONST_v1f USE_CONST_v1i; const v4f v1f = vec_ctf(v1i, 0) #define USE_CONST_v1i_ const v4ui v1i_ = vec_splat_u32(-1) #define USE_CONST_v0f_ USE_CONST_v1i_; const v4f v0f_ = (v4f) vec_sl(v1i_, v1i_) template<> struct ei_packet_traits { typedef v4f type; enum {size=4}; }; template<> struct ei_packet_traits { typedef v4i type; enum {size=4}; }; template<> struct ei_unpacket_traits { typedef float type; enum {size=4}; }; template<> struct ei_unpacket_traits { typedef int type; enum {size=4}; }; inline std::ostream & operator <<(std::ostream & s, const v4f & v) { union { v4f v; float n[4]; } vt; vt.v = v; s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; return s; } inline std::ostream & operator <<(std::ostream & s, const v4i & v) { union { v4i v; int n[4]; } vt; vt.v = v; s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; return s; } inline std::ostream & operator <<(std::ostream & s, const v4ui & v) { union { v4ui v; unsigned int n[4]; } vt; vt.v = v; s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; return s; } inline std::ostream & operator <<(std::ostream & s, const v4bi & v) { union { __vector __bool int v; unsigned int n[4]; } vt; vt.v = v; s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3]; return s; } template<> inline v4f ei_padd(const v4f& a, const v4f& b) { return vec_add(a,b); } template<> inline v4i ei_padd(const v4i& a, const v4i& b) { return vec_add(a,b); } template<> inline v4f ei_psub(const v4f& a, const v4f& b) { return vec_sub(a,b); } template<> inline v4i ei_psub(const v4i& a, const v4i& b) { return vec_sub(a,b); } template<> inline v4f ei_pmul(const v4f& a, const v4f& b) { USE_CONST_v0f; return vec_madd(a,b, v0f); } template<> inline v4i ei_pmul(const v4i& a, const v4i& b) { // Detailed in: http://freevec.org/content/32bit_signed_integer_multiplication_altivec //Set up constants, variables v4i a1, b1, bswap, low_prod, high_prod, prod, prod_, v1sel; USE_CONST_v0i; USE_CONST_v1i; USE_CONST_v16i_; // Get the absolute values a1 = vec_abs(a); b1 = vec_abs(b); // Get the signs using xor v4bi sgn = (v4bi) vec_cmplt(vec_xor(a, b), v0i); // Do the multiplication for the asbolute values. bswap = (v4i) vec_rl((v4ui) b1, (v4ui) v16i_ ); low_prod = vec_mulo((__vector short)a1, (__vector short)b1); high_prod = vec_msum((__vector short)a1, (__vector short)bswap, v0i); high_prod = (v4i) vec_sl((v4ui) high_prod, (v4ui) v16i_); prod = vec_add( low_prod, high_prod ); // NOR the product and select only the negative elements according to the sign mask prod_ = vec_nor(prod, prod); prod_ = vec_sel(v0i, prod_, sgn); // Add 1 to the result to get the negative numbers v1sel = vec_sel(v0i, v1i, sgn); prod_ = vec_add(prod_, v1sel); // Merge the results back to the final vector. prod = vec_sel(prod, prod_, sgn); return prod; } template<> inline v4f ei_pdiv(const v4f& a, const v4f& b) { v4f t, y_0, y_1, res; USE_CONST_v0f; USE_CONST_v1f; // Altivec does not offer a divide instruction, we have to do a reciprocal approximation y_0 = vec_re(b); // Do one Newton-Raphson iteration to get the needed accuracy t = vec_nmsub(y_0, b, v1f); y_1 = vec_madd(y_0, t, y_0); res = vec_madd(a, y_1, v0f); return res; } template<> inline v4f ei_pmadd(const v4f& a, const v4f& b, const v4f& c) { return vec_madd(a, b, c); } template<> inline v4f ei_pmin(const v4f& a, const v4f& b) { return vec_min(a,b); } template<> inline v4i ei_pmin(const v4i& a, const v4i& b) { return vec_min(a,b); } template<> inline v4f ei_pmax(const v4f& a, const v4f& b) { return vec_max(a,b); } template<> inline v4i ei_pmax(const v4i& a, const v4i& b) { return vec_max(a,b); } template<> inline v4f ei_pload(const float* from) { return vec_ld(0, from); } template<> inline v4i ei_pload(const int* from) { return vec_ld(0, from); } template<> inline v4f ei_ploadu(const float* from) { // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html __vector unsigned char MSQ, LSQ; __vector unsigned char mask; MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword mask = vec_lvsl(0, from); // create the permute mask return (v4f) vec_perm(MSQ, LSQ, mask); // align the data } template<> inline v4i ei_ploadu(const int* from) { // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html __vector unsigned char MSQ, LSQ; __vector unsigned char mask; MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword LSQ = vec_ld(15, (unsigned char *)from); // least significant quadword mask = vec_lvsl(0, from); // create the permute mask return (v4i) vec_perm(MSQ, LSQ, mask); // align the data } template<> inline v4f ei_pset1(const float& from) { // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html float __attribute__(aligned(16)) af[4]; af[0] = from; v4f vc = vec_ld(0, af); vc = vec_splat(vc, 0); return vc; } template<> inline v4i ei_pset1(const int& from) { int __attribute__(aligned(16)) ai[4]; ai[0] = from; v4i vc = vec_ld(0, ai); vc = vec_splat(vc, 0); return vc; } template<> inline void ei_pstore(float* to, const v4f& from) { vec_st(from, 0, to); } template<> inline void ei_pstore(int* to, const v4i& from) { vec_st(from, 0, to); } template<> inline void ei_pstoreu(float* to, const v4f& from) { // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html // Warning: not thread safe! __vector unsigned char MSQ, LSQ, edges; __vector unsigned char edgeAlign, align; MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword edgeAlign = vec_lvsl(0, to); // permute map to extract edges edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges align = vec_lvsr( 0, to ); // permute map to misalign data MSQ = vec_perm(edges,(__vector unsigned char)from,align); // misalign the data (MSQ) LSQ = vec_perm((__vector unsigned char)from,edges,align); // misalign the data (LSQ) vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part } template<> inline void ei_pstoreu(int* to , const v4i& from ) { // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html // Warning: not thread safe! __vector unsigned char MSQ, LSQ, edges; __vector unsigned char edgeAlign, align; MSQ = vec_ld(0, (unsigned char *)to); // most significant quadword LSQ = vec_ld(15, (unsigned char *)to); // least significant quadword edgeAlign = vec_lvsl(0, to); // permute map to extract edges edges=vec_perm(LSQ,MSQ,edgeAlign); // extract the edges align = vec_lvsr( 0, to ); // permute map to misalign data MSQ = vec_perm(edges,(__vector unsigned char)from,align); // misalign the data (MSQ) LSQ = vec_perm((__vector unsigned char)from,edges,align); // misalign the data (LSQ) vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part } template<> inline float ei_pfirst(const v4f& a) { float __attribute__(aligned(16)) af[4]; vec_st(a, 0, af); return af[0]; } template<> inline int ei_pfirst(const v4i& a) { int __attribute__(aligned(16)) ai[4]; vec_st(a, 0, ai); return ai[0]; } inline v4f ei_preduxp(const v4f* vecs) { v4f v[4], sum[4]; // It's easier and faster to transpose then add as columns // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation // Do the transpose, first set of moves v[0] = vec_mergeh(vecs[0], vecs[2]); v[1] = vec_mergel(vecs[0], vecs[2]); v[2] = vec_mergeh(vecs[1], vecs[3]); v[3] = vec_mergel(vecs[1], vecs[3]); // Get the resulting vectors sum[0] = vec_mergeh(v[0], v[2]); sum[1] = vec_mergel(v[0], v[2]); sum[2] = vec_mergeh(v[1], v[3]); sum[3] = vec_mergel(v[1], v[3]); // Now do the summation: // Lines 0+1 sum[0] = vec_add(sum[0], sum[1]); // Lines 2+3 sum[1] = vec_add(sum[2], sum[3]); // Add the results sum[0] = vec_add(sum[0], sum[1]); return sum[0]; } inline float ei_predux(const v4f& a) { v4f b, sum; b = (v4f)vec_sld(a, a, 8); sum = vec_add(a, b); b = (v4f)vec_sld(sum, sum, 4); sum = vec_add(sum, b); return ei_pfirst(sum); } inline v4i ei_preduxp(const v4i* vecs) { v4i v[4], sum[4]; // It's easier and faster to transpose then add as columns // Check: http://www.freevec.org/function/matrix_4x4_transpose_floats for explanation // Do the transpose, first set of moves v[0] = vec_mergeh(vecs[0], vecs[2]); v[1] = vec_mergel(vecs[0], vecs[2]); v[2] = vec_mergeh(vecs[1], vecs[3]); v[3] = vec_mergel(vecs[1], vecs[3]); // Get the resulting vectors sum[0] = vec_mergeh(v[0], v[2]); sum[1] = vec_mergel(v[0], v[2]); sum[2] = vec_mergeh(v[1], v[3]); sum[3] = vec_mergel(v[1], v[3]); // Now do the summation: // Lines 0+1 sum[0] = vec_add(sum[0], sum[1]); // Lines 2+3 sum[1] = vec_add(sum[2], sum[3]); // Add the results sum[0] = vec_add(sum[0], sum[1]); return sum[0]; } inline int ei_predux(const v4i& a) { USE_CONST_v0i; v4i sum; sum = vec_sums(a, v0i); sum = vec_sld(sum, v0i, 12); return ei_pfirst(sum); } template struct ei_palign_impl { inline static void run(v4f& first, const v4f& second) { first = vec_sld(first, second, Offset*4); } }; template struct ei_palign_impl { inline static void run(v4i& first, const v4i& second) { first = vec_sld(first, second, Offset*4); } }; #endif // EIGEN_PACKET_MATH_ALTIVEC_H