// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATH_FUNCTIONS_AVX_H #define EIGEN_MATH_FUNCTIONS_AVX_H /* The sin and cos functions of this file are loosely derived from * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ */ namespace Eigen { namespace internal { template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f psin(const Packet8f& _x) { return psin_float(_x); } template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f pcos(const Packet8f& _x) { return pcos_float(_x); } template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f plog(const Packet8f& _x) { return plog_float(_x); } template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d plog(const Packet4d& _x) { return plog_double(_x); } template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f plog2(const Packet8f& _x) { return plog2_float(_x); } template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d plog2(const Packet4d& _x) { return plog2_double(_x); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f plog1p(const Packet8f& _x) { return generic_plog1p(_x); } template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f pexpm1(const Packet8f& _x) { return generic_expm1(_x); } // Exponential function. Works by writing "x = m*log(2) + r" where // "m = floor(x/log(2)+1/2)" and "r" is the remainder. The result is then // "exp(x) = 2^m*exp(r)" where exp(r) is in the range [-1,1). template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f pexp(const Packet8f& _x) { return pexp_float(_x); } // Hyperbolic Tangent function. template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f ptanh(const Packet8f& _x) { return internal::generic_fast_tanh_float(_x); } // Exponential function for doubles. template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d pexp(const Packet4d& _x) { return pexp_double(_x); } // Functions for sqrt. // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step // of Newton's method, at a cost of 1-2 bits of precision as opposed to the // exact solution. It does not handle +inf, or denormalized numbers correctly. // The main advantage of this approach is not just speed, but also the fact that // it can be inlined and pipelined with other computations, further reducing its // effective latency. This is similar to Quake3's fast inverse square root. // For detail see here: http://www.beyond3d.com/content/articles/8/ #if EIGEN_FAST_MATH template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f psqrt(const Packet8f& _x) { Packet8f minus_half_x = pmul(_x, pset1(-0.5f)); Packet8f denormal_mask = pandnot( pcmp_lt(_x, pset1((std::numeric_limits::min)())), pcmp_lt(_x, pzero(_x))); // Compute approximate reciprocal sqrt. Packet8f x = _mm256_rsqrt_ps(_x); // Do a single step of Newton's iteration. x = pmul(x, pmadd(minus_half_x, pmul(x,x), pset1(1.5f))); // Flush results for denormals to zero. return pandnot(pmul(_x,x), denormal_mask); } #else template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f psqrt(const Packet8f& _x) { return _mm256_sqrt_ps(_x); } #endif template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d psqrt(const Packet4d& _x) { return _mm256_sqrt_pd(_x); } #if EIGEN_FAST_MATH template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f prsqrt(const Packet8f& _x) { _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(inf, 0x7f800000); _EIGEN_DECLARE_CONST_Packet8f(one_point_five, 1.5f); _EIGEN_DECLARE_CONST_Packet8f(minus_half, -0.5f); _EIGEN_DECLARE_CONST_Packet8f_FROM_INT(flt_min, 0x00800000); Packet8f neg_half = pmul(_x, p8f_minus_half); // select only the inverse sqrt of positive normal inputs (denormals are // flushed to zero and cause infs as well). Packet8f lt_min_mask = _mm256_cmp_ps(_x, p8f_flt_min, _CMP_LT_OQ); Packet8f inf_mask = _mm256_cmp_ps(_x, p8f_inf, _CMP_EQ_OQ); Packet8f not_normal_finite_mask = _mm256_or_ps(lt_min_mask, inf_mask); // Compute an approximate result using the rsqrt intrinsic. Packet8f y_approx = _mm256_rsqrt_ps(_x); // Do a single step of Newton-Raphson iteration to improve the approximation. // This uses the formula y_{n+1} = y_n * (1.5 - y_n * (0.5 * x) * y_n). // It is essential to evaluate the inner term like this because forming // y_n^2 may over- or underflow. Packet8f y_newton = pmul(y_approx, pmadd(y_approx, pmul(neg_half, y_approx), p8f_one_point_five)); // Select the result of the Newton-Raphson step for positive normal arguments. // For other arguments, choose the output of the intrinsic. This will // return rsqrt(+inf) = 0, rsqrt(x) = NaN if x < 0, and rsqrt(x) = +inf if // x is zero or a positive denormalized float (equivalent to flushing positive // denormalized inputs to zero). return pselect(not_normal_finite_mask, y_approx, y_newton); } #else template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet8f prsqrt(const Packet8f& _x) { _EIGEN_DECLARE_CONST_Packet8f(one, 1.0f); return _mm256_div_ps(p8f_one, _mm256_sqrt_ps(_x)); } #endif template <> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4d prsqrt(const Packet4d& _x) { _EIGEN_DECLARE_CONST_Packet4d(one, 1.0); return _mm256_div_pd(p4d_one, _mm256_sqrt_pd(_x)); } F16_PACKET_FUNCTION(Packet8f, Packet8h, psin) F16_PACKET_FUNCTION(Packet8f, Packet8h, pcos) F16_PACKET_FUNCTION(Packet8f, Packet8h, plog) F16_PACKET_FUNCTION(Packet8f, Packet8h, plog2) F16_PACKET_FUNCTION(Packet8f, Packet8h, plog1p) F16_PACKET_FUNCTION(Packet8f, Packet8h, pexpm1) F16_PACKET_FUNCTION(Packet8f, Packet8h, pexp) F16_PACKET_FUNCTION(Packet8f, Packet8h, ptanh) F16_PACKET_FUNCTION(Packet8f, Packet8h, psqrt) F16_PACKET_FUNCTION(Packet8f, Packet8h, prsqrt) template <> EIGEN_STRONG_INLINE Packet8h pfrexp(const Packet8h& a, Packet8h& exponent) { Packet8f fexponent; const Packet8h out = float2half(pfrexp(half2float(a), fexponent)); exponent = float2half(fexponent); return out; } template <> EIGEN_STRONG_INLINE Packet8h pldexp(const Packet8h& a, const Packet8h& exponent) { return float2half(pldexp(half2float(a), half2float(exponent))); } BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psin) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pcos) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog2) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, plog1p) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexpm1) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, pexp) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, ptanh) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, psqrt) BF16_PACKET_FUNCTION(Packet8f, Packet8bf, prsqrt) template <> EIGEN_STRONG_INLINE Packet8bf pfrexp(const Packet8bf& a, Packet8bf& exponent) { Packet8f fexponent; const Packet8bf out = F32ToBf16(pfrexp(Bf16ToF32(a), fexponent)); exponent = F32ToBf16(fexponent); return out; } template <> EIGEN_STRONG_INLINE Packet8bf pldexp(const Packet8bf& a, const Packet8bf& exponent) { return F32ToBf16(pldexp(Bf16ToF32(a), Bf16ToF32(exponent))); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_MATH_FUNCTIONS_AVX_H