// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // Copyright (C) 2008-2009 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_TRIANGULARMATRIX_H #define EIGEN_TRIANGULARMATRIX_H namespace Eigen { namespace internal { template struct triangular_solve_retval; } /** \internal * * \class TriangularBase * \ingroup Core_Module * * \brief Base class for triangular part in a matrix */ template class TriangularBase : public EigenBase { public: enum { Mode = internal::traits::Mode, RowsAtCompileTime = internal::traits::RowsAtCompileTime, ColsAtCompileTime = internal::traits::ColsAtCompileTime, MaxRowsAtCompileTime = internal::traits::MaxRowsAtCompileTime, MaxColsAtCompileTime = internal::traits::MaxColsAtCompileTime, SizeAtCompileTime = (internal::size_at_compile_time::RowsAtCompileTime, internal::traits::ColsAtCompileTime>::ret) /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ }; typedef typename internal::traits::Scalar Scalar; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; typedef typename internal::traits::FullMatrixType DenseMatrixType; typedef DenseMatrixType DenseType; typedef Derived const& Nested; EIGEN_DEVICE_FUNC inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); } EIGEN_DEVICE_FUNC inline Index rows() const { return derived().rows(); } EIGEN_DEVICE_FUNC inline Index cols() const { return derived().cols(); } EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().outerStride(); } EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().innerStride(); } // dummy resize function void resize(Index nbRows, Index nbCols) { EIGEN_UNUSED_VARIABLE(nbRows); EIGEN_UNUSED_VARIABLE(nbCols); eigen_assert(nbRows==rows() && nbCols==nbCols); } EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); } EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { return derived().coeffRef(row,col); } /** \see MatrixBase::copyCoeff(row,col) */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, Other& other) { derived().coeffRef(row, col) = other.coeff(row, col); } EIGEN_DEVICE_FUNC inline Scalar operator()(Index row, Index col) const { check_coordinates(row, col); return coeff(row,col); } EIGEN_DEVICE_FUNC inline Scalar& operator()(Index row, Index col) { check_coordinates(row, col); return coeffRef(row,col); } #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast(this); } EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast(this); } #endif // not EIGEN_PARSED_BY_DOXYGEN template EIGEN_DEVICE_FUNC void evalTo(MatrixBase &other) const; template EIGEN_DEVICE_FUNC void evalToLazy(MatrixBase &other) const; EIGEN_DEVICE_FUNC DenseMatrixType toDenseMatrix() const { DenseMatrixType res(rows(), cols()); evalToLazy(res); return res; } protected: void check_coordinates(Index row, Index col) const { EIGEN_ONLY_USED_FOR_DEBUG(row); EIGEN_ONLY_USED_FOR_DEBUG(col); eigen_assert(col>=0 && col=0 && row=row) || (mode==Lower && col<=row) || ((mode==StrictlyUpper || mode==UnitUpper) && col>row) || ((mode==StrictlyLower || mode==UnitLower) && col struct traits > : traits { typedef typename nested::type MatrixTypeNested; typedef typename remove_reference::type MatrixTypeNestedNonRef; typedef typename remove_all::type MatrixTypeNestedCleaned; typedef typename MatrixType::PlainObject FullMatrixType; typedef MatrixType ExpressionType; enum { Mode = _Mode, Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | LvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) }; }; } template class TriangularViewImpl; template class TriangularView : public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > { public: typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base; typedef typename internal::traits::Scalar Scalar; typedef _MatrixType MatrixType; protected: typedef typename internal::traits::MatrixTypeNested MatrixTypeNested; typedef typename internal::traits::MatrixTypeNestedNonRef MatrixTypeNestedNonRef; typedef typename internal::remove_all::type MatrixConjugateReturnType; public: typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; typedef typename internal::traits::MatrixTypeNestedCleaned NestedExpression; enum { Mode = _Mode, Flags = internal::traits::Flags, TransposeMode = (Mode & Upper ? Lower : 0) | (Mode & Lower ? Upper : 0) | (Mode & (UnitDiag)) | (Mode & (ZeroDiag)) }; EIGEN_DEVICE_FUNC inline TriangularView(const MatrixType& matrix) : m_matrix(matrix) {} using Base::operator=; TriangularView& operator=(const TriangularView &other) { return Base::operator=(other); } EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); } EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); } EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } EIGEN_DEVICE_FUNC NestedExpression& nestedExpression() { return *const_cast(&m_matrix); } /** \sa MatrixBase::conjugate() */ EIGEN_DEVICE_FUNC inline TriangularView conjugate() { return m_matrix.conjugate(); } /** \sa MatrixBase::conjugate() const */ EIGEN_DEVICE_FUNC inline const TriangularView conjugate() const { return m_matrix.conjugate(); } /** \sa MatrixBase::adjoint() const */ EIGEN_DEVICE_FUNC inline const TriangularView adjoint() const { return m_matrix.adjoint(); } /** \sa MatrixBase::transpose() */ EIGEN_DEVICE_FUNC inline TriangularView,TransposeMode> transpose() { EIGEN_STATIC_ASSERT_LVALUE(MatrixType) return m_matrix.const_cast_derived().transpose(); } /** \sa MatrixBase::transpose() const */ EIGEN_DEVICE_FUNC inline const TriangularView,TransposeMode> transpose() const { return m_matrix.transpose(); } template EIGEN_DEVICE_FUNC inline const Solve solve(const MatrixBase& other) const { return Solve(*this, other.derived()); } // workaround MSVC ICE #ifdef _MSC_VER template EIGEN_DEVICE_FUNC inline const internal::triangular_solve_retval solve(const MatrixBase& other) const { return Base::template solve(other); } #else using Base::solve; #endif EIGEN_DEVICE_FUNC const SelfAdjointView selfadjointView() const { EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR); return SelfAdjointView(m_matrix); } EIGEN_DEVICE_FUNC SelfAdjointView selfadjointView() { EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR); return SelfAdjointView(m_matrix); } EIGEN_DEVICE_FUNC Scalar determinant() const { if (Mode & UnitDiag) return 1; else if (Mode & ZeroDiag) return 0; else return m_matrix.diagonal().prod(); } protected: MatrixTypeNested m_matrix; }; template class TriangularViewImpl<_MatrixType,_Mode,Dense> : public TriangularBase > { public: typedef TriangularView<_MatrixType, _Mode> TriangularViewType; typedef TriangularBase Base; typedef typename internal::traits::Scalar Scalar; typedef _MatrixType MatrixType; typedef typename MatrixType::PlainObject DenseMatrixType; typedef DenseMatrixType PlainObject; public: using Base::evalToLazy; using Base::derived; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Index Index; enum { Mode = _Mode, Flags = internal::traits::Flags }; EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().nestedExpression().outerStride(); } EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().nestedExpression().innerStride(); } /** \sa MatrixBase::operator+=() */ template EIGEN_DEVICE_FUNC TriangularViewType& operator+=(const DenseBase& other) { internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op()); return derived(); } /** \sa MatrixBase::operator-=() */ template EIGEN_DEVICE_FUNC TriangularViewType& operator-=(const DenseBase& other) { internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op()); return derived(); } /** \sa MatrixBase::operator*=() */ EIGEN_DEVICE_FUNC TriangularViewType& operator*=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() * other; } /** \sa MatrixBase::operator/=() */ EIGEN_DEVICE_FUNC TriangularViewType& operator/=(const typename internal::traits::Scalar& other) { return *this = derived().nestedExpression() / other; } /** \sa MatrixBase::fill() */ EIGEN_DEVICE_FUNC void fill(const Scalar& value) { setConstant(value); } /** \sa MatrixBase::setConstant() */ EIGEN_DEVICE_FUNC TriangularViewType& setConstant(const Scalar& value) { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); } /** \sa MatrixBase::setZero() */ EIGEN_DEVICE_FUNC TriangularViewType& setZero() { return setConstant(Scalar(0)); } /** \sa MatrixBase::setOnes() */ EIGEN_DEVICE_FUNC TriangularViewType& setOnes() { return setConstant(Scalar(1)); } /** \sa MatrixBase::coeff() * \warning the coordinates must fit into the referenced triangular part */ EIGEN_DEVICE_FUNC inline Scalar coeff(Index row, Index col) const { Base::check_coordinates_internal(row, col); return derived().nestedExpression().coeff(row, col); } /** \sa MatrixBase::coeffRef() * \warning the coordinates must fit into the referenced triangular part */ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col) { Base::check_coordinates_internal(row, col); return derived().nestedExpression().const_cast_derived().coeffRef(row, col); } /** Assigns a triangular matrix to a triangular part of a dense matrix */ template EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularBase& other); template EIGEN_DEVICE_FUNC TriangularViewType& operator=(const MatrixBase& other); EIGEN_DEVICE_FUNC TriangularViewType& operator=(const TriangularViewImpl& other) { return *this = other.derived().nestedExpression(); } template EIGEN_DEVICE_FUNC void lazyAssign(const TriangularBase& other); template EIGEN_DEVICE_FUNC void lazyAssign(const MatrixBase& other); /** Efficient triangular matrix times vector/matrix product */ template EIGEN_DEVICE_FUNC const Product operator*(const MatrixBase& rhs) const { return Product(derived(), rhs.derived()); } /** Efficient vector/matrix times triangular matrix product */ template friend EIGEN_DEVICE_FUNC const Product operator*(const MatrixBase& lhs, const TriangularViewImpl& rhs) { return Product(lhs.derived(),rhs.derived()); } template EIGEN_DEVICE_FUNC inline const internal::triangular_solve_retval solve(const MatrixBase& other) const; template EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase& other) const; template EIGEN_DEVICE_FUNC void solveInPlace(const MatrixBase& other) const { return solveInPlace(other); } template EIGEN_DEVICE_FUNC void swap(TriangularBase const & other) { call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); } // TODO: this overload is ambiguous and it should be deprecated (Gael) template EIGEN_DEVICE_FUNC void swap(MatrixBase const & other) { call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op()); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const { if(!(internal::is_same::value && internal::extract_data(dst) == internal::extract_data(rhs))) dst = rhs; this->solveInPlace(dst); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha); }; /*************************************************************************** * Implementation of triangular evaluation/assignment ***************************************************************************/ // FIXME should we keep that possibility template template inline TriangularView& TriangularViewImpl::operator=(const MatrixBase& other) { internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op()); return derived(); } // FIXME should we keep that possibility template template void TriangularViewImpl::lazyAssign(const MatrixBase& other) { internal::call_assignment(derived().noalias(), other.template triangularView()); } template template inline TriangularView& TriangularViewImpl::operator=(const TriangularBase& other) { eigen_assert(Mode == int(OtherDerived::Mode)); internal::call_assignment(derived(), other.derived()); return derived(); } template template void TriangularViewImpl::lazyAssign(const TriangularBase& other) { eigen_assert(Mode == int(OtherDerived::Mode)); internal::call_assignment(derived().noalias(), other.derived()); } /*************************************************************************** * Implementation of TriangularBase methods ***************************************************************************/ /** Assigns a triangular or selfadjoint matrix to a dense matrix. * If the matrix is triangular, the opposite part is set to zero. */ template template void TriangularBase::evalTo(MatrixBase &other) const { if(internal::traits::Flags & EvalBeforeAssigningBit) { typename internal::plain_matrix_type::type other_evaluated(rows(), cols()); evalToLazy(other_evaluated); other.derived().swap(other_evaluated); } else evalToLazy(other.derived()); } /*************************************************************************** * Implementation of TriangularView methods ***************************************************************************/ /*************************************************************************** * Implementation of MatrixBase methods ***************************************************************************/ /** * \returns an expression of a triangular view extracted from the current matrix * * The parameter \a Mode can have the following values: \c #Upper, \c #StrictlyUpper, \c #UnitUpper, * \c #Lower, \c #StrictlyLower, \c #UnitLower. * * Example: \include MatrixBase_extract.cpp * Output: \verbinclude MatrixBase_extract.out * * \sa class TriangularView */ template template typename MatrixBase::template TriangularViewReturnType::Type MatrixBase::triangularView() { return derived(); } /** This is the const version of MatrixBase::triangularView() */ template template typename MatrixBase::template ConstTriangularViewReturnType::Type MatrixBase::triangularView() const { return derived(); } /** \returns true if *this is approximately equal to an upper triangular matrix, * within the precision given by \a prec. * * \sa isLowerTriangular() */ template bool MatrixBase::isUpperTriangular(const RealScalar& prec) const { using std::abs; RealScalar maxAbsOnUpperPart = static_cast(-1); for(Index j = 0; j < cols(); ++j) { Index maxi = (std::min)(j, rows()-1); for(Index i = 0; i <= maxi; ++i) { RealScalar absValue = abs(coeff(i,j)); if(absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue; } } RealScalar threshold = maxAbsOnUpperPart * prec; for(Index j = 0; j < cols(); ++j) for(Index i = j+1; i < rows(); ++i) if(abs(coeff(i, j)) > threshold) return false; return true; } /** \returns true if *this is approximately equal to a lower triangular matrix, * within the precision given by \a prec. * * \sa isUpperTriangular() */ template bool MatrixBase::isLowerTriangular(const RealScalar& prec) const { using std::abs; RealScalar maxAbsOnLowerPart = static_cast(-1); for(Index j = 0; j < cols(); ++j) for(Index i = j; i < rows(); ++i) { RealScalar absValue = abs(coeff(i,j)); if(absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue; } RealScalar threshold = maxAbsOnLowerPart * prec; for(Index j = 1; j < cols(); ++j) { Index maxi = (std::min)(j, rows()-1); for(Index i = 0; i < maxi; ++i) if(abs(coeff(i, j)) > threshold) return false; } return true; } /*************************************************************************** **************************************************************************** * Evaluators and Assignment of triangular expressions *************************************************************************** ***************************************************************************/ namespace internal { // TODO currently a triangular expression has the form TriangularView<.,.> // in the future triangular-ness should be defined by the expression traits // such that Transpose > is valid. (currently TriangularBase::transpose() is overloaded to make it work) template struct evaluator_traits > { typedef typename storage_kind_to_evaluator_kind::Kind Kind; typedef typename glue_shapes::Shape, TriangularShape>::type Shape; // 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a // temporary; 0 if not. static const int AssumeAliasing = 0; }; template struct unary_evaluator, IndexBased> : evaluator::type> { typedef TriangularView XprType; typedef evaluator::type> Base; typedef evaluator type; unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {} }; // Additional assignment kinds: struct Triangular2Triangular {}; struct Triangular2Dense {}; struct Dense2Triangular {}; template struct triangular_assignment_loop; /** \internal Specialization of the dense assignment kernel for triangular matrices. * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions. * \tparam UpLo must be either Lower or Upper * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint */ template class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel { protected: typedef generic_dense_assignment_kernel Base; typedef typename Base::DstXprType DstXprType; typedef typename Base::SrcXprType SrcXprType; using Base::m_dst; using Base::m_src; using Base::m_functor; public: typedef typename Base::DstEvaluatorType DstEvaluatorType; typedef typename Base::SrcEvaluatorType SrcEvaluatorType; typedef typename Base::Scalar Scalar; typedef typename Base::Index Index; typedef typename Base::AssignmentTraits AssignmentTraits; triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr) : Base(dst, src, func, dstExpr) {} #ifdef EIGEN_INTERNAL_DEBUGGING void assignCoeff(Index row, Index col) { eigen_internal_assert(row!=col); Base::assignCoeff(row,col); } #else using Base::assignCoeff; #endif void assignDiagonalCoeff(Index id) { if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1)); else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0)); else if(Mode==0) Base::assignCoeff(id,id); } void assignOppositeCoeff(Index row, Index col) { eigen_internal_assert(row!=col); if(SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0)); } }; template void call_triangular_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func) { eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); typedef typename evaluator::type DstEvaluatorType; typedef typename evaluator::type SrcEvaluatorType; DstEvaluatorType dstEvaluator(dst); SrcEvaluatorType srcEvaluator(src); typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite, DstEvaluatorType,SrcEvaluatorType,Functor> Kernel; Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived()); enum { unroll = DstXprType::SizeAtCompileTime != Dynamic && SrcEvaluatorType::CoeffReadCost != Dynamic && DstXprType::SizeAtCompileTime * SrcEvaluatorType::CoeffReadCost / 2 <= EIGEN_UNROLLING_LIMIT }; triangular_assignment_loop::run(kernel); } template void call_triangular_assignment_loop(const DstXprType& dst, const SrcXprType& src) { call_triangular_assignment_loop(dst, src, internal::assign_op()); } template<> struct AssignmentKind { typedef Triangular2Triangular Kind; }; template<> struct AssignmentKind { typedef Triangular2Dense Kind; }; template<> struct AssignmentKind { typedef Dense2Triangular Kind; }; template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar> struct Assignment { static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode)); call_triangular_assignment_loop(dst, src, func); } }; template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar> struct Assignment { static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { call_triangular_assignment_loop(dst, src, func); } }; template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar> struct Assignment { static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { call_triangular_assignment_loop(dst, src, func); } }; template struct triangular_assignment_loop { // FIXME: this is not very clean, perhaps this information should be provided by the kernel? typedef typename Kernel::DstEvaluatorType DstEvaluatorType; typedef typename DstEvaluatorType::XprType DstXprType; enum { col = (UnrollCount-1) / DstXprType::RowsAtCompileTime, row = (UnrollCount-1) % DstXprType::RowsAtCompileTime }; typedef typename Kernel::Scalar Scalar; EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel) { triangular_assignment_loop::run(kernel); if(row==col) kernel.assignDiagonalCoeff(row); else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row struct triangular_assignment_loop { EIGEN_DEVICE_FUNC static inline void run(Kernel &) {} }; // TODO: experiment with a recursive assignment procedure splitting the current // triangular part into one rectangular and two triangular parts. template struct triangular_assignment_loop { typedef typename Kernel::Index Index; typedef typename Kernel::Scalar Scalar; EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel) { for(Index j = 0; j < kernel.cols(); ++j) { Index maxi = (std::min)(j, kernel.rows()); Index i = 0; if (((Mode&Lower) && SetOpposite) || (Mode&Upper)) { for(; i < maxi; ++i) if(Mode&Upper) kernel.assignCoeff(i, j); else kernel.assignOppositeCoeff(i, j); } else i = maxi; if(i template void TriangularBase::evalToLazy(MatrixBase &other) const { other.derived().resize(this->rows(), this->cols()); internal::call_triangular_assignment_loop(other.derived(), derived().nestedExpression()); } namespace internal { // Triangular = Product template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> struct Assignment, internal::assign_op, Dense2Triangular, Scalar> { typedef Product SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) { dst.setZero(); dst._assignProduct(src, 1); } }; // Triangular += Product template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> struct Assignment, internal::add_assign_op, Dense2Triangular, Scalar> { typedef Product SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &) { dst._assignProduct(src, 1); } }; // Triangular -= Product template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar> struct Assignment, internal::sub_assign_op, Dense2Triangular, Scalar> { typedef Product SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &) { dst._assignProduct(src, -1); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_TRIANGULARMATRIX_H