// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_TRANSPOSE_H #define EIGEN_TRANSPOSE_H /** \class Transpose * * \brief Expression of the transpose of a matrix * * \param MatrixType the type of the object of which we are taking the transpose * * This class represents an expression of the transpose of a matrix. * It is the return type of MatrixBase::transpose() and MatrixBase::adjoint() * and most of the time this is the only way it is used. * * \sa MatrixBase::transpose(), MatrixBase::adjoint() */ template struct ei_traits > { typedef typename MatrixType::Scalar Scalar; typedef typename ei_nested::type MatrixTypeNested; typedef typename ei_unref::type _MatrixTypeNested; enum { RowsAtCompileTime = MatrixType::ColsAtCompileTime, ColsAtCompileTime = MatrixType::RowsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxRowsAtCompileTime, Flags = ((int(_MatrixTypeNested::Flags) ^ RowMajorBit) & ~(LowerTriangularBit | UpperTriangularBit)) | (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0) | (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0), CoeffReadCost = _MatrixTypeNested::CoeffReadCost }; }; template class Transpose : public MatrixBase > { public: EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose) inline Transpose(const MatrixType& matrix) : m_matrix(matrix) {} EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose) inline int rows() const { return m_matrix.cols(); } inline int cols() const { return m_matrix.rows(); } inline int nonZeros() const { return m_matrix.nonZeros(); } inline int stride() const { return m_matrix.stride(); } inline Scalar* data() { return m_matrix.data(); } inline const Scalar* data() const { return m_matrix.data(); } inline Scalar& coeffRef(int row, int col) { return m_matrix.const_cast_derived().coeffRef(col, row); } inline Scalar& coeffRef(int index) { return m_matrix.const_cast_derived().coeffRef(index); } inline const CoeffReturnType coeff(int row, int col) const { return m_matrix.coeff(col, row); } inline const CoeffReturnType coeff(int index) const { return m_matrix.coeff(index); } template inline const PacketScalar packet(int row, int col) const { return m_matrix.template packet(col, row); } template inline void writePacket(int row, int col, const PacketScalar& x) { m_matrix.const_cast_derived().template writePacket(col, row, x); } template inline const PacketScalar packet(int index) const { return m_matrix.template packet(index); } template inline void writePacket(int index, const PacketScalar& x) { m_matrix.const_cast_derived().template writePacket(index, x); } /** \internal used for introspection */ const typename ei_cleantype::type& _expression() const { return m_matrix; } protected: const typename MatrixType::Nested m_matrix; }; /** \returns an expression of the transpose of *this. * * Example: \include MatrixBase_transpose.cpp * Output: \verbinclude MatrixBase_transpose.out * * \warning If you want to replace a matrix by its own transpose, do \b NOT do this: * \code * m = m.transpose(); // bug!!! caused by aliasing effect * \endcode * Instead, use the transposeInPlace() method: * \code * m.transposeInPlace(); * \endcode * which gives Eigen good opportunities for optimization, or alternatively you can also do: * \code * m = m.transpose().eval(); * \endcode * * \sa transposeInPlace(), adjoint() */ template inline Transpose MatrixBase::transpose() { return derived(); } /** This is the const version of transpose(). * * Make sure you read the warning for transpose() ! * * \sa transposeInPlace(), adjoint() */ template inline const Transpose MatrixBase::transpose() const { return derived(); } /** \returns an expression of the adjoint (i.e. conjugate transpose) of *this. * * Example: \include MatrixBase_adjoint.cpp * Output: \verbinclude MatrixBase_adjoint.out * * \warning If you want to replace a matrix by its own adjoint, do \b NOT do this: * \code * m = m.adjoint(); // bug!!! caused by aliasing effect * \endcode * Instead, use the adjointInPlace() method: * \code * m.adjointInPlace(); * \endcode * which gives Eigen good opportunities for optimization, or alternatively you can also do: * \code * m = m.adjoint().eval(); * \endcode * * \sa adjointInPlace(), transpose(), conjugate(), class Transpose, class ei_scalar_conjugate_op */ template inline const typename MatrixBase::AdjointReturnType MatrixBase::adjoint() const { return transpose().nestByValue(); } /*************************************************************************** * "in place" transpose implementation ***************************************************************************/ template struct ei_inplace_transpose_selector; template struct ei_inplace_transpose_selector { // square matrix static void run(MatrixType& m) { m.template triangularView().swap(m.transpose()); } }; template struct ei_inplace_transpose_selector { // non square matrix static void run(MatrixType& m) { if (m.rows()==m.cols()) m.template triangularView().swap(m.transpose()); else m = m.transpose().eval(); } }; /** This is the "in place" version of transpose(): it replaces \c *this by its own transpose. * Thus, doing * \code * m.transposeInPlace(); * \endcode * has the same effect on m as doing * \code * m = m.transpose().eval(); * \endcode * and is faster and also safer because in the latter line of code, forgetting the eval() results * in a bug caused by aliasing. * * Notice however that this method is only useful if you want to replace a matrix by its own transpose. * If you just need the transpose of a matrix, use transpose(). * * \note if the matrix is not square, then \c *this must be a resizable matrix. * * \sa transpose(), adjoint(), adjointInPlace() */ template inline void MatrixBase::transposeInPlace() { ei_inplace_transpose_selector::run(derived()); } /*************************************************************************** * "in place" adjoint implementation ***************************************************************************/ /** This is the "in place" version of adjoint(): it replaces \c *this by its own transpose. * Thus, doing * \code * m.adjointInPlace(); * \endcode * has the same effect on m as doing * \code * m = m.adjoint().eval(); * \endcode * and is faster and also safer because in the latter line of code, forgetting the eval() results * in a bug caused by aliasing. * * Notice however that this method is only useful if you want to replace a matrix by its own adjoint. * If you just need the adjoint of a matrix, use adjoint(). * * \note if the matrix is not square, then \c *this must be a resizable matrix. * * \sa transpose(), adjoint(), transposeInPlace() */ template inline void MatrixBase::adjointInPlace() { derived() = adjoint().eval(); } #endif // EIGEN_TRANSPOSE_H