// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_SUM_H #define EIGEN_SUM_H /*************************************************************************** * Part 1 : the logic deciding a strategy for vectorization and unrolling ***************************************************************************/ template struct ei_sum_traits { private: enum { PacketSize = ei_packet_traits::size }; public: enum { Vectorization = (int(Derived::Flags)&ActualPacketAccessBit) && (int(Derived::Flags)&LinearAccessBit) && (int(Derived::SizeAtCompileTime)>2*PacketSize) ? LinearVectorization : NoVectorization }; private: enum { Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * NumTraits::AddCost, UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize)) }; public: enum { Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling }; }; /*************************************************************************** * Part 2 : unrollers ***************************************************************************/ /*** no vectorization ***/ template struct ei_sum_novec_unroller { enum { HalfLength = Length/2 }; typedef typename Derived::Scalar Scalar; inline static Scalar run(const Derived &mat) { return ei_sum_novec_unroller::run(mat) + ei_sum_novec_unroller::run(mat); } }; template struct ei_sum_novec_unroller { enum { col = Start / Derived::RowsAtCompileTime, row = Start % Derived::RowsAtCompileTime }; typedef typename Derived::Scalar Scalar; inline static Scalar run(const Derived &mat) { return mat.coeff(row, col); } }; /*** vectorization ***/ template::size)> struct ei_sum_vec_unroller { enum { row = int(Derived::Flags)&RowMajorBit ? Index / int(Derived::ColsAtCompileTime) : Index % Derived::RowsAtCompileTime, col = int(Derived::Flags)&RowMajorBit ? Index % int(Derived::ColsAtCompileTime) : Index / Derived::RowsAtCompileTime }; typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; inline static PacketScalar run(const Derived &mat) { return ei_padd( mat.template packet(row, col), ei_sum_vec_unroller::size, Stop>::run(mat) ); } }; template struct ei_sum_vec_unroller { enum { row = int(Derived::Flags)&RowMajorBit ? Index / int(Derived::ColsAtCompileTime) : Index % Derived::RowsAtCompileTime, col = int(Derived::Flags)&RowMajorBit ? Index % int(Derived::ColsAtCompileTime) : Index / Derived::RowsAtCompileTime, alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned }; typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; inline static PacketScalar run(const Derived &mat) { return mat.template packet(row, col); } }; /*************************************************************************** * Part 3 : implementation of all cases ***************************************************************************/ template::Vectorization, int Unrolling = ei_sum_traits::Unrolling > struct ei_sum_impl; template struct ei_sum_impl { typedef typename Derived::Scalar Scalar; static Scalar run(const Derived& mat) { ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix"); Scalar res; res = mat.coeff(0, 0); for(int i = 1; i < mat.rows(); i++) res += mat.coeff(i, 0); for(int j = 1; j < mat.cols(); j++) for(int i = 0; i < mat.rows(); i++) res += mat.coeff(i, j); return res; } }; template struct ei_sum_impl : public ei_sum_novec_unroller {}; template struct ei_sum_impl { typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; static Scalar run(const Derived& mat) { const int size = mat.size(); const int packetSize = ei_packet_traits::size; const int alignedStart = (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit) ? 0 : ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size); enum { alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit) ? Aligned : Unaligned }; const int alignedSize = ((size-alignedStart)/packetSize)*packetSize; const int alignedEnd = alignedStart + alignedSize; Scalar res; if(alignedSize) { PacketScalar packet_res = mat.template packet(alignedStart); for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize) packet_res = ei_padd(packet_res, mat.template packet(index)); res = ei_predux(packet_res); } else // too small to vectorize anything. // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. { res = Scalar(0); } for(int index = 0; index < alignedStart; index++) res += mat.coeff(index); for(int index = alignedEnd; index < size; index++) res += mat.coeff(index); return res; } }; template struct ei_sum_impl { typedef typename Derived::Scalar Scalar; static Scalar run(const Derived& mat) { return ei_predux( ei_sum_vec_unroller::run(mat) ); } }; /*************************************************************************** * Part 4 : implementation of MatrixBase methods ***************************************************************************/ /** \returns the sum of all coefficients of *this * * \sa trace() */ template inline typename ei_traits::Scalar MatrixBase::sum() const { return ei_sum_impl::run(derived()); } /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. * * \c *this can be any matrix, not necessarily square. * * \sa diagonal(), sum() */ template inline typename ei_traits::Scalar MatrixBase::trace() const { return diagonal().sum(); } #endif // EIGEN_SUM_H