// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_REF_H #define EIGEN_REF_H namespace Eigen { namespace internal { template struct traits > : public traits > { typedef _PlainObjectType PlainObjectType; typedef _StrideType StrideType; enum { Options = _Options, Flags = traits >::Flags | NestByRefBit, Alignment = traits >::Alignment }; template struct match { enum { IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime, HasDirectAccess = internal::has_direct_access::ret, StorageOrderMatch = IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)), InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic) || int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime) || (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1), OuterStrideMatch = IsVectorAtCompileTime || int(StrideType::OuterStrideAtCompileTime)==int(Dynamic) || int(StrideType::OuterStrideAtCompileTime)==int(Derived::OuterStrideAtCompileTime), // NOTE, this indirection of evaluator::Alignment is needed // to workaround a very strange bug in MSVC related to the instantiation // of has_*ary_operator in evaluator. // This line is surprisingly very sensitive. For instance, simply adding parenthesis // as "DerivedAlignment = (int(evaluator::Alignment))," will make MSVC fail... DerivedAlignment = int(evaluator::Alignment), AlignmentMatch = (int(traits::Alignment)==int(Unaligned)) || (DerivedAlignment >= int(Alignment)), // FIXME the first condition is not very clear, it should be replaced by the required alignment ScalarTypeMatch = internal::is_same::value, MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && AlignmentMatch && ScalarTypeMatch }; typedef typename internal::conditional::type type; }; }; template struct traits > : public traits {}; } template class RefBase : public MapBase { typedef typename internal::traits::PlainObjectType PlainObjectType; typedef typename internal::traits::StrideType StrideType; public: typedef MapBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(RefBase) EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const { return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; } EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const { return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() : IsVectorAtCompileTime ? this->size() : int(Flags)&RowMajorBit ? this->cols() : this->rows(); } EIGEN_DEVICE_FUNC RefBase() : Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime), // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values: m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime, StrideType::InnerStrideAtCompileTime==Dynamic?0:StrideType::InnerStrideAtCompileTime) {} EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase) protected: typedef Stride StrideBase; // Resolves inner stride if default 0. static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveInnerStride(Index inner) { return inner == 0 ? 1 : inner; } // Resolves outer stride if default 0. static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveOuterStride(Index inner, Index outer, Index rows, Index cols, bool isVectorAtCompileTime, bool isRowMajor) { return outer == 0 ? isVectorAtCompileTime ? inner * rows * cols : isRowMajor ? inner * cols : inner * rows : outer; } // Returns true if construction is valid, false if there is a stride mismatch, // and fails if there is a size mismatch. template EIGEN_DEVICE_FUNC bool construct(Expression& expr) { // Check matrix sizes. If this is a compile-time vector, we do allow // implicitly transposing. EIGEN_STATIC_ASSERT( EIGEN_PREDICATE_SAME_MATRIX_SIZE(PlainObjectType, Expression) // If it is a vector, the transpose sizes might match. || ( PlainObjectType::IsVectorAtCompileTime && ((int(PlainObjectType::RowsAtCompileTime)==Eigen::Dynamic || int(Expression::ColsAtCompileTime)==Eigen::Dynamic || int(PlainObjectType::RowsAtCompileTime)==int(Expression::ColsAtCompileTime)) && (int(PlainObjectType::ColsAtCompileTime)==Eigen::Dynamic || int(Expression::RowsAtCompileTime)==Eigen::Dynamic || int(PlainObjectType::ColsAtCompileTime)==int(Expression::RowsAtCompileTime)))), YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES ) // Determine runtime rows and columns. Index rows = expr.rows(); Index cols = expr.cols(); if(PlainObjectType::RowsAtCompileTime==1) { eigen_assert(expr.rows()==1 || expr.cols()==1); rows = 1; cols = expr.size(); } else if(PlainObjectType::ColsAtCompileTime==1) { eigen_assert(expr.rows()==1 || expr.cols()==1); rows = expr.size(); cols = 1; } // Verify that the sizes are valid. eigen_assert( (PlainObjectType::RowsAtCompileTime == Dynamic) || (PlainObjectType::RowsAtCompileTime == rows)); eigen_assert( (PlainObjectType::ColsAtCompileTime == Dynamic) || (PlainObjectType::ColsAtCompileTime == cols)); // If this is a vector, we might be transposing, which means that stride should swap. const bool transpose = PlainObjectType::IsVectorAtCompileTime && (rows != expr.rows()); // If the storage format differs, we also need to swap the stride. const bool row_major = ((PlainObjectType::Flags)&RowMajorBit) != 0; const bool expr_row_major = (Expression::Flags&RowMajorBit) != 0; const bool storage_differs = (row_major != expr_row_major); const bool swap_stride = (transpose != storage_differs); // Determine expr's actual strides, resolving any defaults if zero. const Index expr_inner_actual = resolveInnerStride(expr.innerStride()); const Index expr_outer_actual = resolveOuterStride(expr_inner_actual, expr.outerStride(), expr.rows(), expr.cols(), Expression::IsVectorAtCompileTime != 0, expr_row_major); // If this is a column-major row vector or row-major column vector, the inner-stride // is arbitrary, so set it to either the compile-time inner stride or 1. const bool row_vector = (rows == 1); const bool col_vector = (cols == 1); const Index inner_stride = ( (!row_major && row_vector) || (row_major && col_vector) ) ? ( StrideType::InnerStrideAtCompileTime > 0 ? Index(StrideType::InnerStrideAtCompileTime) : 1) : swap_stride ? expr_outer_actual : expr_inner_actual; // If this is a column-major column vector or row-major row vector, the outer-stride // is arbitrary, so set it to either the compile-time outer stride or vector size. const Index outer_stride = ( (!row_major && col_vector) || (row_major && row_vector) ) ? ( StrideType::OuterStrideAtCompileTime > 0 ? Index(StrideType::OuterStrideAtCompileTime) : rows * cols * inner_stride) : swap_stride ? expr_inner_actual : expr_outer_actual; // Check if given inner/outer strides are compatible with compile-time strides. const bool inner_valid = (StrideType::InnerStrideAtCompileTime == Dynamic) || (resolveInnerStride(Index(StrideType::InnerStrideAtCompileTime)) == inner_stride); if (!inner_valid) { return false; } const bool outer_valid = (StrideType::OuterStrideAtCompileTime == Dynamic) || (resolveOuterStride( inner_stride, Index(StrideType::OuterStrideAtCompileTime), rows, cols, PlainObjectType::IsVectorAtCompileTime != 0, row_major) == outer_stride); if (!outer_valid) { return false; } ::new (static_cast(this)) Base(expr.data(), rows, cols); ::new (&m_stride) StrideBase( (StrideType::OuterStrideAtCompileTime == 0) ? 0 : outer_stride, (StrideType::InnerStrideAtCompileTime == 0) ? 0 : inner_stride ); return true; } StrideBase m_stride; }; /** \class Ref * \ingroup Core_Module * * \brief A matrix or vector expression mapping an existing expression * * \tparam PlainObjectType the equivalent matrix type of the mapped data * \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned. * The default is \c #Unaligned. * \tparam StrideType optionally specifies strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), * but accepts a variable outer stride (leading dimension). * This can be overridden by specifying strides. * The type passed here must be a specialization of the Stride template, see examples below. * * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the number of copies. * A Ref<> object can represent either a const expression or a l-value: * \code * // in-out argument: * void foo1(Ref x); * * // read-only const argument: * void foo2(const Ref& x); * \endcode * * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation issue will be triggered. * By default, a Ref can reference any dense vector expression of float having a contiguous memory layout. * Likewise, a Ref can reference any column-major dense matrix expression of float whose column's elements are contiguously stored with * the possibility to have a constant space in-between each column, i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) * can be greater than the number of rows. * * In the const case, if the input expression does not match the above requirement, then it is evaluated into a temporary before being passed to the function. * Here are some examples: * \code * MatrixXf A; * VectorXf a; * foo1(a.head()); // OK * foo1(A.col()); // OK * foo1(A.row()); // Compilation error because here innerstride!=1 * foo2(A.row()); // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object * foo2(A.row().transpose()); // The row is copied into a contiguous temporary * foo2(2*a); // The expression is evaluated into a temporary * foo2(A.col().segment(2,4)); // No temporary * \endcode * * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters. * Here is an example accepting an innerstride!=1: * \code * // in-out argument: * void foo3(Ref > x); * foo3(A.row()); // OK * \endcode * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to exploit vectorization, and will involve more * expensive address computations even if the input is contiguously stored in memory. To overcome this issue, one might propose to overload internally calling a * template function, e.g.: * \code * // in the .h: * void foo(const Ref& A); * void foo(const Ref >& A); * * // in the .cpp: * template void foo_impl(const TypeOfA& A) { * ... // crazy code goes here * } * void foo(const Ref& A) { foo_impl(A); } * void foo(const Ref >& A) { foo_impl(A); } * \endcode * * See also the following stackoverflow questions for further references: * - Correct usage of the Eigen::Ref<> class * * \sa PlainObjectBase::Map(), \ref TopicStorageOrders */ template class Ref : public RefBase > { private: typedef internal::traits Traits; template EIGEN_DEVICE_FUNC inline Ref(const PlainObjectBase& expr, typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0); public: typedef RefBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(Ref) #ifndef EIGEN_PARSED_BY_DOXYGEN template EIGEN_DEVICE_FUNC inline Ref(PlainObjectBase& expr, typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) { EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); // Construction must pass since we will not create temprary storage in the non-const case. const bool success = Base::construct(expr.derived()); EIGEN_UNUSED_VARIABLE(success) eigen_assert(success); } template EIGEN_DEVICE_FUNC inline Ref(const DenseBase& expr, typename internal::enable_if::MatchAtCompileTime),Derived>::type* = 0) #else /** Implicit constructor from any dense expression */ template inline Ref(DenseBase& expr) #endif { EIGEN_STATIC_ASSERT(bool(internal::is_lvalue::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); EIGEN_STATIC_ASSERT(bool(Traits::template match::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); // Construction must pass since we will not create temporary storage in the non-const case. const bool success = Base::construct(expr.const_cast_derived()); EIGEN_UNUSED_VARIABLE(success) eigen_assert(success); } EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref) }; // this is the const ref version template class Ref : public RefBase > { typedef internal::traits Traits; public: typedef RefBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(Ref) template EIGEN_DEVICE_FUNC inline Ref(const DenseBase& expr, typename internal::enable_if::ScalarTypeMatch),Derived>::type* = 0) { // std::cout << match_helper::HasDirectAccess << "," << match_helper::OuterStrideMatch << "," << match_helper::InnerStrideMatch << "\n"; // std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; // std::cout << int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n"; construct(expr.derived(), typename Traits::template match::type()); } EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) { // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy } template EIGEN_DEVICE_FUNC inline Ref(const RefBase& other) { construct(other.derived(), typename Traits::template match::type()); } protected: template EIGEN_DEVICE_FUNC void construct(const Expression& expr,internal::true_type) { // Check if we can use the underlying expr's storage directly, otherwise call the copy version. if (!Base::construct(expr)) { construct(expr, internal::false_type()); } } template EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) { internal::call_assignment_no_alias(m_object,expr,internal::assign_op()); Base::construct(m_object); } protected: TPlainObjectType m_object; }; } // end namespace Eigen #endif // EIGEN_REF_H