// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_REDUX_H #define EIGEN_REDUX_H // TODO // * implement other kind of vectorization // * factorize code /*************************************************************************** * Part 1 : the logic deciding a strategy for vectorization and unrolling ***************************************************************************/ template struct ei_redux_traits { private: enum { PacketSize = ei_packet_traits::size, InnerMaxSize = int(Derived::Flags)&RowMajorBit ? Derived::MaxColsAtCompileTime : Derived::MaxRowsAtCompileTime }; enum { MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) && (ei_functor_traits::PacketAccess), MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize }; public: enum { Vectorization = int(MayLinearVectorize) ? int(LinearVectorization) : int(MaySliceVectorize) ? int(SliceVectorization) : int(NoVectorization) }; private: enum { Cost = Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * NumTraits::AddCost, UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize)) }; public: enum { Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling }; }; /*************************************************************************** * Part 2 : unrollers ***************************************************************************/ /*** no vectorization ***/ template struct ei_redux_novec_unroller { enum { HalfLength = Length/2 }; typedef typename Derived::Scalar Scalar; EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func& func) { return func(ei_redux_novec_unroller::run(mat,func), ei_redux_novec_unroller::run(mat,func)); } }; template struct ei_redux_novec_unroller { enum { col = Start / Derived::RowsAtCompileTime, row = Start % Derived::RowsAtCompileTime }; typedef typename Derived::Scalar Scalar; EIGEN_STRONG_INLINE static Scalar run(const Derived &mat, const Func&) { return mat.coeff(row, col); } }; /*** vectorization ***/ template struct ei_redux_vec_unroller { enum { PacketSize = ei_packet_traits::size, HalfLength = Length/2 }; typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func& func) { return func.packetOp( ei_redux_vec_unroller::run(mat,func), ei_redux_vec_unroller::run(mat,func) ); } }; template struct ei_redux_vec_unroller { enum { index = Start * ei_packet_traits::size, row = int(Derived::Flags)&RowMajorBit ? index / int(Derived::ColsAtCompileTime) : index % Derived::RowsAtCompileTime, col = int(Derived::Flags)&RowMajorBit ? index % int(Derived::ColsAtCompileTime) : index / Derived::RowsAtCompileTime, alignment = (Derived::Flags & AlignedBit) ? Aligned : Unaligned }; typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; EIGEN_STRONG_INLINE static PacketScalar run(const Derived &mat, const Func&) { return mat.template packet(row, col); } }; /*************************************************************************** * Part 3 : implementation of all cases ***************************************************************************/ template::Vectorization, int Unrolling = ei_redux_traits::Unrolling > struct ei_redux_impl; template struct ei_redux_impl { typedef typename Derived::Scalar Scalar; static Scalar run(const Derived& mat, const Func& func) { ei_assert(mat.rows()>0 && mat.cols()>0 && "you are using a non initialized matrix"); Scalar res; res = mat.coeff(0, 0); for(int i = 1; i < mat.rows(); ++i) res = func(res, mat.coeff(i, 0)); for(int j = 1; j < mat.cols(); ++j) for(int i = 0; i < mat.rows(); ++i) res = func(res, mat.coeff(i, j)); return res; } }; template struct ei_redux_impl : public ei_redux_novec_unroller {}; template struct ei_redux_impl { typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; static Scalar run(const Derived& mat, const Func& func) { const int size = mat.size(); const int packetSize = ei_packet_traits::size; const int alignedStart = (Derived::Flags & AlignedBit) || !(Derived::Flags & DirectAccessBit) ? 0 : ei_alignmentOffset(&mat.const_cast_derived().coeffRef(0), size); enum { alignment = (Derived::Flags & DirectAccessBit) || (Derived::Flags & AlignedBit) ? Aligned : Unaligned }; const int alignedSize = ((size-alignedStart)/packetSize)*packetSize; const int alignedEnd = alignedStart + alignedSize; Scalar res; if(alignedSize) { PacketScalar packet_res = mat.template packet(alignedStart); for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize) packet_res = func.packetOp(packet_res, mat.template packet(index)); res = func.predux(packet_res); for(int index = 0; index < alignedStart; ++index) res = func(res,mat.coeff(index)); for(int index = alignedEnd; index < size; ++index) res = func(res,mat.coeff(index)); } else // too small to vectorize anything. // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. { res = mat.coeff(0); for(int index = 1; index < size; ++index) res = func(res,mat.coeff(index)); } return res; } }; template struct ei_redux_impl { typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; static Scalar run(const Derived& mat, const Func& func) { const int innerSize = mat.innerSize(); const int outerSize = mat.outerSize(); enum { packetSize = ei_packet_traits::size, isRowMajor = Derived::Flags&RowMajorBit?1:0 }; const int packetedInnerSize = ((innerSize)/packetSize)*packetSize; Scalar res; if(packetedInnerSize) { PacketScalar packet_res = mat.template packet(0,0); for(int j=0; j (isRowMajor?j:i, isRowMajor?i:j)); res = func.predux(packet_res); for(int j=0; j::run(mat, func); } return res; } }; template struct ei_redux_impl { typedef typename Derived::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; enum { PacketSize = ei_packet_traits::size, Size = Derived::SizeAtCompileTime, VectorizationSize = (Size / PacketSize) * PacketSize }; EIGEN_STRONG_INLINE static Scalar run(const Derived& mat, const Func& func) { Scalar res = func.predux(ei_redux_vec_unroller::run(mat,func)); if (VectorizationSize != Size) res = func(res,ei_redux_novec_unroller::run(mat,func)); return res; } }; /** \returns the result of a full redux operation on the whole matrix or vector using \a func * * The template parameter \a BinaryOp is the type of the functor \a func which must be * an assiociative operator. Both current STL and TR1 functor styles are handled. * * \sa MatrixBase::sum(), MatrixBase::minCoeff(), MatrixBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() */ template template inline typename ei_result_of::Scalar)>::type MatrixBase::redux(const Func& func) const { typename Derived::Nested nested(derived()); typedef typename ei_cleantype::type ThisNested; return ei_redux_impl ::run(nested, func); } /** \returns the minimum of all coefficients of *this */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar MatrixBase::minCoeff() const { return this->redux(Eigen::ei_scalar_min_op()); } /** \returns the maximum of all coefficients of *this */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar MatrixBase::maxCoeff() const { return this->redux(Eigen::ei_scalar_max_op()); } /** \returns the sum of all coefficients of *this * * \sa trace(), prod() */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar MatrixBase::sum() const { return this->redux(Eigen::ei_scalar_sum_op()); } /** \returns the product of all coefficients of *this * * Example: \include MatrixBase_prod.cpp * Output: \verbinclude MatrixBase_prod.out * * \sa sum() */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar MatrixBase::prod() const { return this->redux(Eigen::ei_scalar_product_op()); } /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. * * \c *this can be any matrix, not necessarily square. * * \sa diagonal(), sum() */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar MatrixBase::trace() const { return diagonal().sum(); } #endif // EIGEN_REDUX_H