// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_NUMTRAITS_H #define EIGEN_NUMTRAITS_H /** \class NumTraits * * \brief Holds some data about the various numeric (i.e. scalar) types allowed by Eigen. * * \param T the numeric type about which this class provides data. Recall that Eigen allows * only the following types for \a T: \c int, \c float, \c double, * \c std::complex, \c std::complex, and \c long \c double (especially * useful to enforce x87 arithmetics when SSE is the default). * * The provided data consists of everything that is supported by std::numeric_limits, plus: * \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real, * then \a Real is just a typedef to \a T. If \a T is \c std::complex then \a Real * is a typedef to \a U. * \li A typedef \a FloatingPoint, giving the "floating-point type" of \a T. If \a T is * \c int, then \a FloatingPoint is a typedef to \c double. Otherwise, \a FloatingPoint * is a typedef to \a T. * \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex * type, and to 0 otherwise. * \li An enum \a HasFloatingPoint. It is equal to \c 0 if \a T is \c int, * and to \c 1 otherwise. * \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T. * \li A dummy_precision() function returning a weak epsilon value. It is mainly used by the fuzzy comparison operators. * \li Two highest() and lowest() functions returning the highest and lowest possible values respectively. */ template struct NumTraits; template struct ei_default_float_numtraits : std::numeric_limits { inline static T highest() { return std::numeric_limits::max(); } inline static T lowest() { return -std::numeric_limits::max(); } }; template struct ei_default_integral_numtraits : std::numeric_limits { inline static T dummy_precision() { return T(0); } inline static T highest() { return std::numeric_limits::max(); } inline static T lowest() { return std::numeric_limits::min(); } }; template<> struct NumTraits : ei_default_integral_numtraits { typedef int Real; typedef double FloatingPoint; typedef int Nested; enum { IsComplex = 0, HasFloatingPoint = 0, ReadCost = 1, AddCost = 1, MulCost = 1 }; }; template<> struct NumTraits : ei_default_float_numtraits { typedef float Real; typedef float FloatingPoint; typedef float Nested; enum { IsComplex = 0, HasFloatingPoint = 1, ReadCost = 1, AddCost = 1, MulCost = 1 }; inline static float dummy_precision() { return 1e-5f; } }; template<> struct NumTraits : ei_default_float_numtraits { typedef double Real; typedef double FloatingPoint; typedef double Nested; enum { IsComplex = 0, HasFloatingPoint = 1, ReadCost = 1, AddCost = 1, MulCost = 1 }; inline static double dummy_precision() { return 1e-12; } }; template struct NumTraits > : ei_default_float_numtraits > { typedef _Real Real; typedef std::complex<_Real> FloatingPoint; typedef std::complex<_Real> Nested; enum { IsComplex = 1, HasFloatingPoint = NumTraits::HasFloatingPoint, ReadCost = 2, AddCost = 2 * NumTraits::AddCost, MulCost = 4 * NumTraits::MulCost + 2 * NumTraits::AddCost }; inline static Real epsilon() { return std::numeric_limits::epsilon(); } inline static Real dummy_precision() { return NumTraits::dummy_precision(); } }; template<> struct NumTraits : ei_default_integral_numtraits { typedef long long int Real; typedef long double FloatingPoint; typedef long long int Nested; enum { IsComplex = 0, HasFloatingPoint = 0, ReadCost = 1, AddCost = 1, MulCost = 1 }; }; template<> struct NumTraits : ei_default_float_numtraits { typedef long double Real; typedef long double FloatingPoint; typedef long double Nested; enum { IsComplex = 0, HasFloatingPoint = 1, ReadCost = 1, AddCost = 1, MulCost = 1 }; static inline long double dummy_precision() { return NumTraits::dummy_precision(); } }; template<> struct NumTraits : ei_default_integral_numtraits { typedef bool Real; typedef float FloatingPoint; typedef bool Nested; enum { IsComplex = 0, HasFloatingPoint = 0, ReadCost = 1, AddCost = 1, MulCost = 1 }; }; #endif // EIGEN_NUMTRAITS_H