// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_MATRIXBASE_H #define EIGEN_MATRIXBASE_H /** \class MatrixBase * * \brief Base class for all matrices, vectors, and expressions * * This class is the base that is inherited by all matrix, vector, and expression * types. Most of the Eigen API is contained in this class. * * \param Derived is the derived type, e.g. a matrix type, or an expression, etc. * * When writing a function taking Eigen objects as argument, if you want your function * to take as argument any matrix, vector, or expression, just let it take a * MatrixBase argument. As an example, here is a function printFirstRow which, given * a matrix, vector, or expression \a x, prints the first row of \a x. * * \code template void printFirstRow(const Eigen::MatrixBase& x) { cout << x.row(0) << endl; } * \endcode * * \nosubgrouping */ template class MatrixBase { struct CommaInitializer; public: /// \name Compile-time traits //@{ typedef typename ei_traits::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; enum { RowsAtCompileTime = ei_traits::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = ei_traits::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = ei_traits::RowsAtCompileTime == Dynamic || ei_traits::ColsAtCompileTime == Dynamic ? Dynamic : ei_traits::RowsAtCompileTime * ei_traits::ColsAtCompileTime, /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = ei_traits::MaxRowsAtCompileTime, /**< This value is equal to the maximum possible number of rows that this expression * might have. If this expression might have an arbitrarily high number of rows, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime */ MaxColsAtCompileTime = ei_traits::MaxColsAtCompileTime, /**< This value is equal to the maximum possible number of columns that this expression * might have. If this expression might have an arbitrarily high number of columns, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime */ MaxSizeAtCompileTime = ei_traits::MaxRowsAtCompileTime == Dynamic || ei_traits::MaxColsAtCompileTime == Dynamic ? Dynamic : ei_traits::MaxRowsAtCompileTime * ei_traits::MaxColsAtCompileTime, /**< This value is equal to the maximum possible number of coefficients that this expression * might have. If this expression might have an arbitrarily high number of coefficients, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime */ IsVectorAtCompileTime = ei_traits::RowsAtCompileTime == 1 || ei_traits::ColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = ei_traits::Flags, /**< This stores expression metadata which typically is inherited by new expressions * constructed from this one. The available flags are: * \li \c RowMajorBit: if this bit is set, the preferred storage order for an evaluation * of this expression is row-major. Otherwise, it is column-major. * \li \c LazyBit: if this bit is set, the next evaluation of this expression will be canceled. * This can be used, with care, to achieve lazy evaluation. * \li \c LargeBit: if this bit is set, optimization will be tuned for large matrices (typically, * at least 32x32). */ CoeffReadCost = ei_traits::CoeffReadCost }; /** This is the "real scalar" type; if the \a Scalar type is already real numbers * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If * \a Scalar is \a std::complex then RealScalar is \a T. * * In fact, \a RealScalar is defined as follows: * \code typedef typename NumTraits::Real RealScalar; \endcode * * \sa class NumTraits */ typedef typename NumTraits::Real RealScalar; //@} /// \name Run-time traits //@{ /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ int rows() const { return derived()._rows(); } /** \returns the number of columns. \sa row(), ColsAtCompileTime*/ int cols() const { return derived()._cols(); } /** \returns the number of coefficients, which is \a rows()*cols(). * \sa rows(), cols(), SizeAtCompileTime. */ int size() const { return rows() * cols(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ bool isVector() const { return rows()==1 || cols()==1; } //@} /// \name Copying and initialization //@{ /** Copies \a other into *this. \returns a reference to *this. */ template Derived& operator=(const MatrixBase& other); /** Copies \a other into *this without evaluating other. \returns a reference to *this. */ template Derived& lazyAssign(const MatrixBase& other); /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ Derived& operator=(const MatrixBase& other) { return this->operator=(other); } /** Overloaded for optimal product evaluation */ template Derived& lazyAssign(const Product& product); CommaInitializer operator<< (const Scalar& s); template CommaInitializer operator<< (const MatrixBase& other); //@} /// \name Coefficient accessors //@{ const Scalar coeff(int row, int col) const; const Scalar operator()(int row, int col) const; Scalar& coeffRef(int row, int col); Scalar& operator()(int row, int col); const Scalar coeff(int index) const; const Scalar operator[](int index) const; Scalar& coeffRef(int index); Scalar& operator[](int index); PacketScalar packetCoeff(int row, int col) const { return derived()._packetCoeff(row,col); } void writePacketCoeff(int row, int col, const PacketScalar& x) { return derived()._writePacketCoeff(row,col,x); } const Scalar x() const; const Scalar y() const; const Scalar z() const; const Scalar w() const; Scalar& x(); Scalar& y(); Scalar& z(); Scalar& w(); //@} /** \name Linear structure * sum, scalar multiple, ... */ //@{ const CwiseUnaryOp::Scalar>,Derived> operator-() const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> operator+(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> operator-(const MatrixBase &other) const; template Derived& operator+=(const MatrixBase& other); template Derived& operator-=(const MatrixBase& other); Derived& operator*=(const Scalar& other); Derived& operator/=(const Scalar& other); const CwiseUnaryOp::Scalar>, Derived> operator*(const Scalar& scalar) const; const CwiseUnaryOp::Scalar>, Derived> operator/(const Scalar& scalar) const; friend const CwiseUnaryOp::Scalar>, Derived> operator*(const Scalar& scalar, const MatrixBase& matrix) { return matrix*scalar; } //@} /** \name Matrix product * and, as a special case, matrix-vector product */ //@{ template const Product operator*(const MatrixBase &other) const; template Derived& operator*=(const MatrixBase& other); //@} /** \name Dot product and related notions * including vector norm, adjoint, transpose ... */ //@{ template Scalar dot(const MatrixBase& other) const; RealScalar norm2() const; RealScalar norm() const; const CwiseUnaryOp::Scalar>, Derived> normalized() const; Transpose transpose(); const Transpose transpose() const; const Transpose::Scalar>, Derived> > > adjoint() const; //@} /// \name Sub-matrices //@{ Block::ColsAtCompileTime> row(int i); const Block::ColsAtCompileTime> row(int i) const; Block::RowsAtCompileTime, 1> col(int i); const Block::RowsAtCompileTime, 1> col(int i) const; Minor minor(int row, int col); const Minor minor(int row, int col) const; Block block(int startRow, int startCol, int blockRows, int blockCols); const Block block(int startRow, int startCol, int blockRows, int blockCols) const; Block block(int start, int size); const Block block(int start, int size) const; Block start(int size); const Block start(int size) const; Block end(int size); const Block end(int size) const; Block corner(CornerType type, int cRows, int cCols); const Block corner(CornerType type, int cRows, int cCols) const; template Block block(int startRow, int startCol); template const Block block(int startRow, int startCol) const; template Block corner(CornerType type); template const Block corner(CornerType type) const; template Block::RowsAtCompileTime == 1 ? 1 : Size, ei_traits::ColsAtCompileTime == 1 ? 1 : Size> start(); template const Block::RowsAtCompileTime == 1 ? 1 : Size, ei_traits::ColsAtCompileTime == 1 ? 1 : Size> start() const; template Block::RowsAtCompileTime == 1 ? 1 : Size, ei_traits::ColsAtCompileTime == 1 ? 1 : Size> end(); template const Block::RowsAtCompileTime == 1 ? 1 : Size, ei_traits::ColsAtCompileTime == 1 ? 1 : Size> end() const; DiagonalCoeffs diagonal(); const DiagonalCoeffs diagonal() const; //@} /// \name Generating special matrices //@{ static const Random random(int rows, int cols); static const Random random(int size); static const Random random(); static const Zero zero(int rows, int cols); static const Zero zero(int size); static const Zero zero(); static const Ones ones(int rows, int cols); static const Ones ones(int size); static const Ones ones(); static const Identity identity(); static const Identity identity(int rows, int cols); const DiagonalMatrix asDiagonal() const; Derived& setZero(); Derived& setOnes(); Derived& setRandom(); Derived& setIdentity(); //@} /// \name Comparison and diagnostic //@{ template bool isApprox(const MatrixBase& other, RealScalar prec = precision()) const; bool isMuchSmallerThan(const RealScalar& other, RealScalar prec = precision()) const; template bool isMuchSmallerThan(const MatrixBase& other, RealScalar prec = precision()) const; bool isZero(RealScalar prec = precision()) const; bool isOnes(RealScalar prec = precision()) const; bool isIdentity(RealScalar prec = precision()) const; bool isDiagonal(RealScalar prec = precision()) const; template bool isOrtho(const MatrixBase& other, RealScalar prec = precision()) const; bool isOrtho(RealScalar prec = precision()) const; template bool operator==(const MatrixBase& other) const { return derived().cwiseEqualTo(other.derived()).all(); } template bool operator!=(const MatrixBase& other) const { return derived().cwiseNotEqualTo(other.derived()).all(); } //@} /// \name Special functions //@{ template const CwiseUnaryOp::Scalar, NewType>, Derived> cast() const; const typename ei_eval::type eval() const EIGEN_ALWAYS_INLINE { return typename ei_eval::type(derived()); } template void swap(const MatrixBase& other); const Lazy lazy() const; const Temporary temporary() const; //@} /// \name Coefficient-wise operations //@{ const CwiseUnaryOp::Scalar>, Derived> conjugate() const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseProduct(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseQuotient(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseMin(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseMax(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseLessThan(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseLessEqual(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseGreaterThan(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseGreaterEqual(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseEqualTo(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> cwiseNotEqualTo(const MatrixBase &other) const; const CwiseUnaryOp::Scalar>, Derived> cwiseAbs() const; const CwiseUnaryOp::Scalar>, Derived> cwiseAbs2() const; const CwiseUnaryOp::Scalar>, Derived> cwiseSqrt() const; const CwiseUnaryOp::Scalar>, Derived> cwiseExp() const; const CwiseUnaryOp::Scalar>, Derived> cwiseLog() const; const CwiseUnaryOp::Scalar>, Derived> cwiseCos() const; const CwiseUnaryOp::Scalar>, Derived> cwiseSin() const; const CwiseUnaryOp::Scalar>, Derived> cwisePow(const Scalar& exponent) const; template const CwiseUnaryOp cwise(const CustomUnaryOp& func = CustomUnaryOp()) const; template const CwiseBinaryOp cwise(const MatrixBase &other, const CustomBinaryOp& func = CustomBinaryOp()) const; //@} /// \name Redux and visitor //@{ Scalar sum() const; Scalar trace() const; typename ei_traits::Scalar minCoeff() const; typename ei_traits::Scalar maxCoeff() const; typename ei_traits::Scalar minCoeff(int* row, int* col = 0) const; typename ei_traits::Scalar maxCoeff(int* row, int* col = 0) const; bool all(void) const; bool any(void) const; template const PartialRedux verticalRedux(const BinaryOp& func) const; template const PartialRedux horizontalRedux(const BinaryOp& func) const; template typename ei_result_of::Scalar)>::type redux(const BinaryOp& func) const; template void visit(Visitor& func) const; //@} /// \name Casting to the derived type //@{ const Derived& derived() const { return *static_cast(this); } Derived& derived() { return *static_cast(this); } Derived& const_cast_derived() const { return *static_cast(const_cast(this)); } //@} /** \name LU module * * \code #include \endcode */ //@{ const Inverse::type, true> inverse() const; const Inverse::type, false> quickInverse() const; Scalar determinant() const; //@} private: PacketScalar _packetCoeff(int , int) const { ei_internal_assert(false && "_packetCoeff not defined"); } void _writePacketCoeff(int , int, const PacketScalar&) { ei_internal_assert(false && "_packetCoeff not defined"); } }; #endif // EIGEN_MATRIXBASE_H