// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_MATRIXBASE_H #define EIGEN_MATRIXBASE_H /** \class MatrixBase * * \brief Base class for all matrices, vectors, and expressions * * This class is the base that is inherited by all matrix, vector, and expression * types. Most of the Eigen API is contained in this class. Other important classes for * the Eigen API are Matrix, Cwise, and PartialRedux. * * Note that some methods are defined in the \ref Array module. * * \param Derived is the derived type, e.g. a matrix type, or an expression, etc. * * When writing a function taking Eigen objects as argument, if you want your function * to take as argument any matrix, vector, or expression, just let it take a * MatrixBase argument. As an example, here is a function printFirstRow which, given * a matrix, vector, or expression \a x, prints the first row of \a x. * * \code template void printFirstRow(const Eigen::MatrixBase& x) { cout << x.row(0) << endl; } * \endcode * */ template class MatrixBase { public: class InnerIterator; typedef typename ei_traits::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; enum { RowsAtCompileTime = ei_traits::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = ei_traits::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (ei_size_at_compile_time::RowsAtCompileTime, ei_traits::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = ei_traits::MaxRowsAtCompileTime, /**< This value is equal to the maximum possible number of rows that this expression * might have. If this expression might have an arbitrarily high number of rows, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime */ MaxColsAtCompileTime = ei_traits::MaxColsAtCompileTime, /**< This value is equal to the maximum possible number of columns that this expression * might have. If this expression might have an arbitrarily high number of columns, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime */ MaxSizeAtCompileTime = (ei_size_at_compile_time::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime>::ret), /**< This value is equal to the maximum possible number of coefficients that this expression * might have. If this expression might have an arbitrarily high number of coefficients, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime */ IsVectorAtCompileTime = ei_traits::RowsAtCompileTime == 1 || ei_traits::ColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = ei_traits::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ CoeffReadCost = ei_traits::CoeffReadCost /**< This is a rough measure of how expensive it is to read one coefficient from * this expression. */ }; /** Default constructor. Just checks at compile-time for self-consistency of the flags. */ MatrixBase() { ei_assert(ei_are_flags_consistent::ret); } /** This is the "real scalar" type; if the \a Scalar type is already real numbers * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If * \a Scalar is \a std::complex then RealScalar is \a T. * * \sa class NumTraits */ typedef typename NumTraits::Real RealScalar; /** type of the equivalent square matrix */ typedef Matrix SquareMatrixType; /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ inline int rows() const { return derived().rows(); } /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/ inline int cols() const { return derived().cols(); } /** \returns the number of coefficients, which is \a rows()*cols(). * \sa rows(), cols(), SizeAtCompileTime. */ inline int size() const { return rows() * cols(); } /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ inline int nonZeros() const { return derived.nonZeros(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ inline bool isVector() const { return rows()==1 || cols()==1; } /** \returns the size of the storage major dimension, * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ int outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } /** \returns the size of the inner dimension according to the storage order, * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } /** \internal the type to which the expression gets evaluated (needed by MSVC) */ typedef typename ei_eval::type EvalType; /** \internal Represents a constant matrix */ typedef CwiseNullaryOp,Derived> ConstantReturnType; /** \internal Represents a scalar multiple of a matrix */ typedef CwiseUnaryOp, Derived> ScalarMultipleReturnType; /** \internal Represents a quotient of a matrix by a scalar*/ typedef CwiseUnaryOp, Derived> ScalarQuotient1ReturnType; /** \internal the return type of MatrixBase::conjugate() */ typedef typename ei_meta_if::IsComplex, const CwiseUnaryOp, Derived>, const Derived& >::ret ConjugateReturnType; /** \internal the return type of MatrixBase::real() */ typedef CwiseUnaryOp, Derived> RealReturnType; /** \internal the return type of MatrixBase::adjoint() */ typedef Transpose::type> > AdjointReturnType; /** \internal the return type of MatrixBase::eigenvalues() */ typedef Matrix::Scalar>::Real, ei_traits::ColsAtCompileTime, 1> EigenvaluesReturnType; /** \internal expression tyepe of a column */ typedef Block::RowsAtCompileTime, 1> ColXpr; /** \internal expression tyepe of a column */ typedef Block::ColsAtCompileTime> RowXpr; /** \internal the return type of identity */ typedef CwiseNullaryOp,Derived> IdentityReturnType; /** \internal the return type of unit vectors */ typedef Block, SquareMatrixType>, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime> BasisReturnType; /** Copies \a other into *this. \returns a reference to *this. */ template Derived& operator=(const MatrixBase& other); /** Copies \a other into *this without evaluating other. \returns a reference to *this. */ template Derived& lazyAssign(const MatrixBase& other); /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ inline Derived& operator=(const MatrixBase& other) { return this->operator=(other); } /** Overloaded for cache friendly product evaluation */ template Derived& lazyAssign(const Product& product); /** Overloaded for cache friendly product evaluation */ template Derived& lazyAssign(const Flagged& other) { return lazyAssign(other._expression()); } /** Overloaded for sparse product evaluation */ template Derived& lazyAssign(const Product& product); CommaInitializer operator<< (const Scalar& s); template CommaInitializer operator<< (const MatrixBase& other); const Scalar coeff(int row, int col) const; const Scalar operator()(int row, int col) const; Scalar& coeffRef(int row, int col); Scalar& operator()(int row, int col); const Scalar coeff(int index) const; const Scalar operator[](int index) const; const Scalar operator()(int index) const; Scalar& coeffRef(int index); Scalar& operator[](int index); Scalar& operator()(int index); template void copyCoeff(int row, int col, const MatrixBase& other); template void copyCoeff(int index, const MatrixBase& other); template void copyPacket(int row, int col, const MatrixBase& other); template void copyPacket(int index, const MatrixBase& other); template PacketScalar packet(int row, int col) const; template void writePacket(int row, int col, const PacketScalar& x); template PacketScalar packet(int index) const; template void writePacket(int index, const PacketScalar& x); const Scalar x() const; const Scalar y() const; const Scalar z() const; const Scalar w() const; Scalar& x(); Scalar& y(); Scalar& z(); Scalar& w(); const CwiseUnaryOp::Scalar>,Derived> operator-() const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> operator+(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> operator-(const MatrixBase &other) const; template Derived& operator+=(const MatrixBase& other); template Derived& operator-=(const MatrixBase& other); template Derived& operator+=(const Flagged, 0, EvalBeforeNestingBit | EvalBeforeAssigningBit>& other); Derived& operator*=(const Scalar& other); Derived& operator/=(const Scalar& other); const ScalarMultipleReturnType operator*(const Scalar& scalar) const; const CwiseUnaryOp::Scalar>, Derived> operator/(const Scalar& scalar) const; inline friend const CwiseUnaryOp::Scalar>, Derived> operator*(const Scalar& scalar, const MatrixBase& matrix) { return matrix*scalar; } template const typename ProductReturnType::Type operator*(const MatrixBase &other) const; template Derived& operator*=(const MatrixBase& other); template typename OtherDerived::Eval solveTriangular(const MatrixBase& other) const; template void solveTriangularInPlace(MatrixBase& other) const; template Scalar dot(const MatrixBase& other) const; RealScalar norm2() const; RealScalar norm() const; const EvalType normalized() const; void normalize(); Transpose transpose(); const Transpose transpose() const; const AdjointReturnType adjoint() const; RowXpr row(int i); const RowXpr row(int i) const; ColXpr col(int i); const ColXpr col(int i) const; Minor minor(int row, int col); const Minor minor(int row, int col) const; typename BlockReturnType::Type block(int startRow, int startCol, int blockRows, int blockCols); const typename BlockReturnType::Type block(int startRow, int startCol, int blockRows, int blockCols) const; typename BlockReturnType::SubVectorType segment(int start, int size); const typename BlockReturnType::SubVectorType segment(int start, int size) const; typename BlockReturnType::SubVectorType start(int size); const typename BlockReturnType::SubVectorType start(int size) const; typename BlockReturnType::SubVectorType end(int size); const typename BlockReturnType::SubVectorType end(int size) const; typename BlockReturnType::Type corner(CornerType type, int cRows, int cCols); const typename BlockReturnType::Type corner(CornerType type, int cRows, int cCols) const; template typename BlockReturnType::Type block(int startRow, int startCol); template const typename BlockReturnType::Type block(int startRow, int startCol) const; template typename BlockReturnType::Type corner(CornerType type); template const typename BlockReturnType::Type corner(CornerType type) const; template typename BlockReturnType::SubVectorType start(void); template const typename BlockReturnType::SubVectorType start() const; template typename BlockReturnType::SubVectorType end(); template const typename BlockReturnType::SubVectorType end() const; template typename BlockReturnType::SubVectorType segment(int start); template const typename BlockReturnType::SubVectorType segment(int start) const; DiagonalCoeffs diagonal(); const DiagonalCoeffs diagonal() const; template Part part(); template const Part part() const; static const ConstantReturnType Constant(int rows, int cols, const Scalar& value); static const ConstantReturnType Constant(int size, const Scalar& value); static const ConstantReturnType Constant(const Scalar& value); template static const CwiseNullaryOp NullaryExpr(int rows, int cols, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(int size, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(const CustomNullaryOp& func); static const ConstantReturnType Zero(int rows, int cols); static const ConstantReturnType Zero(int size); static const ConstantReturnType Zero(); static const ConstantReturnType Ones(int rows, int cols); static const ConstantReturnType Ones(int size); static const ConstantReturnType Ones(); static const IdentityReturnType Identity(); static const IdentityReturnType Identity(int rows, int cols); static const BasisReturnType Unit(int size, int i); static const BasisReturnType Unit(int i); static const BasisReturnType UnitX(); static const BasisReturnType UnitY(); static const BasisReturnType UnitZ(); static const BasisReturnType UnitW(); const DiagonalMatrix asDiagonal() const; Derived& setConstant(const Scalar& value); Derived& setZero(); Derived& setOnes(); Derived& setRandom(); Derived& setIdentity(); template bool isApprox(const MatrixBase& other, RealScalar prec = precision()) const; bool isMuchSmallerThan(const RealScalar& other, RealScalar prec = precision()) const; template bool isMuchSmallerThan(const MatrixBase& other, RealScalar prec = precision()) const; bool isApproxToConstant(const Scalar& value, RealScalar prec = precision()) const; bool isZero(RealScalar prec = precision()) const; bool isOnes(RealScalar prec = precision()) const; bool isIdentity(RealScalar prec = precision()) const; bool isDiagonal(RealScalar prec = precision()) const; bool isUpper(RealScalar prec = precision()) const; bool isLower(RealScalar prec = precision()) const; template bool isOrthogonal(const MatrixBase& other, RealScalar prec = precision()) const; bool isUnitary(RealScalar prec = precision()) const; template inline bool operator==(const MatrixBase& other) const { return (cwise() == other).all(); } template inline bool operator!=(const MatrixBase& other) const { return (cwise() != other).any(); } template const CwiseUnaryOp::Scalar, NewType>, Derived> cast() const; /** \returns the matrix or vector obtained by evaluating this expression. * */ EIGEN_ALWAYS_INLINE const typename ei_eval::type eval() const { return typename ei_eval::type(derived()); } template void swap(const MatrixBase& other); template const Flagged marked() const; const Flagged lazy() const; /** \returns number of elements to skip to pass from one row (resp. column) to another * for a row-major (resp. column-major) matrix. * Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data * of the underlying matrix. */ inline int stride(void) const { return derived().stride(); } inline const NestByValue nestByValue() const; ConjugateReturnType conjugate() const; const RealReturnType real() const; template const CwiseUnaryOp unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const; template const CwiseBinaryOp binaryExpr(const MatrixBase &other, const CustomBinaryOp& func = CustomBinaryOp()) const; Scalar sum() const; Scalar trace() const; typename ei_traits::Scalar minCoeff() const; typename ei_traits::Scalar maxCoeff() const; typename ei_traits::Scalar minCoeff(int* row, int* col = 0) const; typename ei_traits::Scalar maxCoeff(int* row, int* col = 0) const; template typename ei_result_of::Scalar)>::type redux(const BinaryOp& func) const; template void visit(Visitor& func) const; inline const Derived& derived() const { return *static_cast(this); } inline Derived& derived() { return *static_cast(this); } inline Derived& const_cast_derived() const { return *static_cast(const_cast(this)); } const Cwise cwise() const; Cwise cwise(); inline const WithFormat format(const IOFormat& fmt) const; /////////// Array module /////////// bool all(void) const; bool any(void) const; const PartialRedux rowwise() const; const PartialRedux colwise() const; static const CwiseNullaryOp,Derived> Random(int rows, int cols); static const CwiseNullaryOp,Derived> Random(int size); static const CwiseNullaryOp,Derived> Random(); template const Select select(const MatrixBase& thenMatrix, const MatrixBase& elseMatrix) const; template inline const Select > select(const MatrixBase& thenMatrix, typename ThenDerived::Scalar elseScalar) const; template inline const Select, ElseDerived > select(typename ElseDerived::Scalar thenScalar, const MatrixBase& elseMatrix) const; /////////// LU module /////////// const LU lu() const; const EvalType inverse() const; void computeInverse(EvalType *result) const; Scalar determinant() const; /////////// Cholesky module /////////// const Cholesky cholesky() const; const CholeskyWithoutSquareRoot choleskyNoSqrt() const; /////////// QR module /////////// const QR qr() const; EigenvaluesReturnType eigenvalues() const; RealScalar operatorNorm() const; /////////// SVD module /////////// SVD svd() const; /////////// Geometry module /////////// template EvalType cross(const MatrixBase& other) const; EvalType unitOrthogonal(void) const; #ifdef EIGEN_MATRIXBASE_PLUGIN #include EIGEN_MATRIXBASE_PLUGIN #endif }; #endif // EIGEN_MATRIXBASE_H