// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2009 Benoit Jacob // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_MATRIXBASE_H #define EIGEN_MATRIXBASE_H /** \class MatrixBase * * \brief Base class for all matrices, vectors, and expressions * * This class is the base that is inherited by all matrix, vector, and expression * types. Most of the Eigen API is contained in this class. Other important classes for * the Eigen API are Matrix, Cwise, and VectorwiseOp. * * Note that some methods are defined in the \ref Array_Module array module. * * \param Derived is the derived type, e.g. a matrix type, or an expression, etc. * * When writing a function taking Eigen objects as argument, if you want your function * to take as argument any matrix, vector, or expression, just let it take a * MatrixBase argument. As an example, here is a function printFirstRow which, given * a matrix, vector, or expression \a x, prints the first row of \a x. * * \code template void printFirstRow(const Eigen::MatrixBase& x) { cout << x.row(0) << endl; } * \endcode */ template class MatrixBase #ifndef EIGEN_PARSED_BY_DOXYGEN : public ei_special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real> #endif // not EIGEN_PARSED_BY_DOXYGEN { public: #ifndef EIGEN_PARSED_BY_DOXYGEN using ei_special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real>::operator*; class InnerIterator; typedef typename ei_traits::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; #endif // not EIGEN_PARSED_BY_DOXYGEN enum { RowsAtCompileTime = ei_traits::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = ei_traits::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (ei_size_at_compile_time::RowsAtCompileTime, ei_traits::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = ei_traits::MaxRowsAtCompileTime, /**< This value is equal to the maximum possible number of rows that this expression * might have. If this expression might have an arbitrarily high number of rows, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime */ MaxColsAtCompileTime = ei_traits::MaxColsAtCompileTime, /**< This value is equal to the maximum possible number of columns that this expression * might have. If this expression might have an arbitrarily high number of columns, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime */ MaxSizeAtCompileTime = (ei_size_at_compile_time::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime>::ret), /**< This value is equal to the maximum possible number of coefficients that this expression * might have. If this expression might have an arbitrarily high number of coefficients, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime */ IsVectorAtCompileTime = ei_traits::RowsAtCompileTime == 1 || ei_traits::ColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = ei_traits::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ CoeffReadCost = ei_traits::CoeffReadCost, /**< This is a rough measure of how expensive it is to read one coefficient from * this expression. */ #ifndef EIGEN_PARSED_BY_DOXYGEN _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC #endif }; #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is the "real scalar" type; if the \a Scalar type is already real numbers * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If * \a Scalar is \a std::complex then RealScalar is \a T. * * \sa class NumTraits */ typedef typename NumTraits::Real RealScalar; /** type of the equivalent square matrix */ typedef Matrix SquareMatrixType; #endif // not EIGEN_PARSED_BY_DOXYGEN /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ inline int rows() const { return derived().rows(); } /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/ inline int cols() const { return derived().cols(); } /** \returns the number of coefficients, which is rows()*cols(). * \sa rows(), cols(), SizeAtCompileTime. */ inline int size() const { return rows() * cols(); } /** \returns the size of the main diagonal, which is min(rows(),cols()). * \sa rows(), cols(), SizeAtCompileTime. */ inline int diagonalSize() const { return std::min(rows(),cols()); } /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ inline int nonZeros() const { return size(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ inline bool isVector() const { return rows()==1 || cols()==1; } /** \returns the size of the storage major dimension, * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ int outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } /** \returns the size of the inner dimension according to the storage order, * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } /** Only plain matrices, not expressions may be resized; therefore the only useful resize method is * Matrix::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(int size) { ei_assert(size == this->size() && "MatrixBase::resize() does not actually allow to resize."); } /** Only plain matrices, not expressions may be resized; therefore the only useful resize method is * Matrix::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(int rows, int cols) { ei_assert(rows == this->rows() && cols == this->cols() && "MatrixBase::resize() does not actually allow to resize."); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal the plain matrix type corresponding to this expression. Note that is not necessarily * exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const * reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either * PlainMatrixType or const PlainMatrixType&. */ typedef typename ei_plain_matrix_type::type PlainMatrixType; /** \internal the column-major plain matrix type corresponding to this expression. Note that is not necessarily * exactly the return type of eval(): in the case of plain matrices, the return type of eval() is a const * reference to a matrix, not a matrix! * The only difference from PlainMatrixType is that PlainMatrixType_ColMajor is guaranteed to be column-major. */ typedef typename ei_plain_matrix_type::type PlainMatrixType_ColMajor; /** \internal the return type of coeff() */ typedef typename ei_meta_if<_HasDirectAccess, const Scalar&, Scalar>::ret CoeffReturnType; /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp,Derived> ConstantReturnType; /** \internal Represents a scalar multiple of a matrix */ typedef CwiseUnaryOp, Derived> ScalarMultipleReturnType; /** \internal Represents a quotient of a matrix by a scalar*/ typedef CwiseUnaryOp, Derived> ScalarQuotient1ReturnType; /** \internal the return type of MatrixBase::conjugate() */ typedef typename ei_meta_if::IsComplex, const CwiseUnaryOp, Derived>, const Derived& >::ret ConjugateReturnType; /** \internal the return type of MatrixBase::real() const */ typedef typename ei_meta_if::IsComplex, const CwiseUnaryOp, Derived>, const Derived& >::ret RealReturnType; /** \internal the return type of MatrixBase::real() */ typedef typename ei_meta_if::IsComplex, CwiseUnaryView, Derived>, Derived& >::ret NonConstRealReturnType; /** \internal the return type of MatrixBase::imag() const */ typedef CwiseUnaryOp, Derived> ImagReturnType; /** \internal the return type of MatrixBase::imag() */ typedef CwiseUnaryView, Derived> NonConstImagReturnType; /** \internal the return type of MatrixBase::adjoint() */ typedef typename ei_meta_if::IsComplex, CwiseUnaryOp, NestByValue > >, Transpose >::ret AdjointReturnType; /** \internal the return type of MatrixBase::eigenvalues() */ typedef Matrix::Scalar>::Real, ei_traits::ColsAtCompileTime, 1> EigenvaluesReturnType; /** \internal expression tyepe of a column */ typedef Block::RowsAtCompileTime, 1> ColXpr; /** \internal expression tyepe of a column */ typedef Block::ColsAtCompileTime> RowXpr; /** \internal the return type of identity */ typedef CwiseNullaryOp,Derived> IdentityReturnType; /** \internal the return type of unit vectors */ typedef Block, SquareMatrixType>, ei_traits::RowsAtCompileTime, ei_traits::ColsAtCompileTime> BasisReturnType; #endif // not EIGEN_PARSED_BY_DOXYGEN /** Copies \a other into *this. \returns a reference to *this. */ template Derived& operator=(const MatrixBase& other); /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ Derived& operator=(const MatrixBase& other); template Derived& operator=(const AnyMatrixBase &other); template Derived& operator+=(const AnyMatrixBase &other); template Derived& operator-=(const AnyMatrixBase &other); template Derived& operator=(const ReturnByValue& func); #ifndef EIGEN_PARSED_BY_DOXYGEN /** Copies \a other into *this without evaluating other. \returns a reference to *this. */ template Derived& lazyAssign(const MatrixBase& other); /** \deprecated because .lazy() is deprecated * Overloaded for cache friendly product evaluation */ template Derived& lazyAssign(const Flagged& other) { return lazyAssign(other._expression()); } template Derived& lazyAssign(const ProductBase& other); template Derived& operator+=(const Flagged, 0, EvalBeforeAssigningBit>& other); template Derived& operator-=(const Flagged, 0, EvalBeforeAssigningBit>& other); #endif // not EIGEN_PARSED_BY_DOXYGEN CommaInitializer operator<< (const Scalar& s); template CommaInitializer operator<< (const MatrixBase& other); const CoeffReturnType coeff(int row, int col) const; const CoeffReturnType operator()(int row, int col) const; Scalar& coeffRef(int row, int col); Scalar& operator()(int row, int col); const CoeffReturnType coeff(int index) const; const CoeffReturnType operator[](int index) const; const CoeffReturnType operator()(int index) const; Scalar& coeffRef(int index); Scalar& operator[](int index); Scalar& operator()(int index); #ifndef EIGEN_PARSED_BY_DOXYGEN template void copyCoeff(int row, int col, const MatrixBase& other); template void copyCoeff(int index, const MatrixBase& other); template void copyPacket(int row, int col, const MatrixBase& other); template void copyPacket(int index, const MatrixBase& other); #endif // not EIGEN_PARSED_BY_DOXYGEN template PacketScalar packet(int row, int col) const; template void writePacket(int row, int col, const PacketScalar& x); template PacketScalar packet(int index) const; template void writePacket(int index, const PacketScalar& x); const CoeffReturnType x() const; const CoeffReturnType y() const; const CoeffReturnType z() const; const CoeffReturnType w() const; Scalar& x(); Scalar& y(); Scalar& z(); Scalar& w(); const CwiseUnaryOp::Scalar>,Derived> operator-() const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> operator+(const MatrixBase &other) const; template const CwiseBinaryOp::Scalar>, Derived, OtherDerived> operator-(const MatrixBase &other) const; template Derived& operator+=(const MatrixBase& other); template Derived& operator-=(const MatrixBase& other); Derived& operator*=(const Scalar& other); Derived& operator/=(const Scalar& other); const ScalarMultipleReturnType operator*(const Scalar& scalar) const; #ifdef EIGEN_PARSED_BY_DOXYGEN const ScalarMultipleReturnType operator*(const RealScalar& scalar) const; #endif const CwiseUnaryOp::Scalar>, Derived> operator/(const Scalar& scalar) const; const CwiseUnaryOp >, Derived> operator*(const std::complex& scalar) const; inline friend const ScalarMultipleReturnType operator*(const Scalar& scalar, const MatrixBase& matrix) { return matrix*scalar; } inline friend const CwiseUnaryOp >, Derived> operator*(const std::complex& scalar, const MatrixBase& matrix) { return matrix*scalar; } template const typename ProductReturnType::Type operator*(const MatrixBase &other) const; template Derived& operator*=(const AnyMatrixBase& other); template void applyOnTheLeft(const AnyMatrixBase& other); template void applyOnTheRight(const AnyMatrixBase& other); template const DiagonalProduct operator*(const DiagonalBase &diagonal) const; template typename ei_plain_matrix_type_column_major::type solveTriangular(const MatrixBase& other) const; template void solveTriangularInPlace(const MatrixBase& other) const; template Scalar dot(const MatrixBase& other) const; RealScalar squaredNorm() const; RealScalar norm() const; RealScalar stableNorm() const; RealScalar blueNorm() const; RealScalar hypotNorm() const; const PlainMatrixType normalized() const; void normalize(); Eigen::Transpose transpose(); const Eigen::Transpose transpose() const; void transposeInPlace(); const AdjointReturnType adjoint() const; void adjointInPlace(); #ifndef EIGEN_NO_DEBUG template Derived& lazyAssign(const Transpose& other); template Derived& lazyAssign(const CwiseBinaryOp,Transpose,DerivedB>& other); template Derived& lazyAssign(const CwiseBinaryOp,DerivedA,Transpose >& other); template Derived& lazyAssign(const CwiseUnaryOp, NestByValue > >& other); template Derived& lazyAssign(const CwiseBinaryOp,CwiseUnaryOp, NestByValue > >,DerivedB>& other); template Derived& lazyAssign(const CwiseBinaryOp,DerivedA,CwiseUnaryOp, NestByValue > > >& other); #endif RowXpr row(int i); const RowXpr row(int i) const; ColXpr col(int i); const ColXpr col(int i) const; Minor minor(int row, int col); const Minor minor(int row, int col) const; typename BlockReturnType::Type block(int startRow, int startCol, int blockRows, int blockCols); const typename BlockReturnType::Type block(int startRow, int startCol, int blockRows, int blockCols) const; VectorBlock segment(int start, int size); const VectorBlock segment(int start, int size) const; VectorBlock start(int size); const VectorBlock start(int size) const; VectorBlock end(int size); const VectorBlock end(int size) const; typename BlockReturnType::Type corner(CornerType type, int cRows, int cCols); const typename BlockReturnType::Type corner(CornerType type, int cRows, int cCols) const; template typename BlockReturnType::Type block(int startRow, int startCol); template const typename BlockReturnType::Type block(int startRow, int startCol) const; template typename BlockReturnType::Type corner(CornerType type); template const typename BlockReturnType::Type corner(CornerType type) const; template VectorBlock start(void); template const VectorBlock start() const; template VectorBlock end(); template const VectorBlock end() const; template VectorBlock segment(int start); template const VectorBlock segment(int start) const; Diagonal diagonal(); const Diagonal diagonal() const; template Diagonal diagonal(); template const Diagonal diagonal() const; Diagonal diagonal(int index); const Diagonal diagonal(int index) const; template TriangularView part(); template const TriangularView part() const; template TriangularView triangularView(); template const TriangularView triangularView() const; template SelfAdjointView selfadjointView(); template const SelfAdjointView selfadjointView() const; static const ConstantReturnType Constant(int rows, int cols, const Scalar& value); static const ConstantReturnType Constant(int size, const Scalar& value); static const ConstantReturnType Constant(const Scalar& value); template static const CwiseNullaryOp NullaryExpr(int rows, int cols, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(int size, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(const CustomNullaryOp& func); static const ConstantReturnType Zero(int rows, int cols); static const ConstantReturnType Zero(int size); static const ConstantReturnType Zero(); static const ConstantReturnType Ones(int rows, int cols); static const ConstantReturnType Ones(int size); static const ConstantReturnType Ones(); static const IdentityReturnType Identity(); static const IdentityReturnType Identity(int rows, int cols); static const BasisReturnType Unit(int size, int i); static const BasisReturnType Unit(int i); static const BasisReturnType UnitX(); static const BasisReturnType UnitY(); static const BasisReturnType UnitZ(); static const BasisReturnType UnitW(); const DiagonalWrapper asDiagonal() const; void fill(const Scalar& value); Derived& setConstant(const Scalar& value); Derived& setZero(); Derived& setOnes(); Derived& setRandom(); Derived& setIdentity(); template bool isApprox(const MatrixBase& other, RealScalar prec = dummy_precision()) const; bool isMuchSmallerThan(const RealScalar& other, RealScalar prec = dummy_precision()) const; template bool isMuchSmallerThan(const MatrixBase& other, RealScalar prec = dummy_precision()) const; bool isApproxToConstant(const Scalar& value, RealScalar prec = dummy_precision()) const; bool isConstant(const Scalar& value, RealScalar prec = dummy_precision()) const; bool isZero(RealScalar prec = dummy_precision()) const; bool isOnes(RealScalar prec = dummy_precision()) const; bool isIdentity(RealScalar prec = dummy_precision()) const; bool isDiagonal(RealScalar prec = dummy_precision()) const; bool isUpperTriangular(RealScalar prec = dummy_precision()) const; bool isLowerTriangular(RealScalar prec = dummy_precision()) const; template bool isOrthogonal(const MatrixBase& other, RealScalar prec = dummy_precision()) const; bool isUnitary(RealScalar prec = dummy_precision()) const; template inline bool operator==(const MatrixBase& other) const { return (cwise() == other).all(); } template inline bool operator!=(const MatrixBase& other) const { return (cwise() != other).any(); } template typename ei_cast_return_type< Derived, const CwiseUnaryOp::Scalar, NewType>, Derived> >::type cast() const; /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. */ EIGEN_STRONG_INLINE const typename ei_eval::type eval() const { return typename ei_eval::type(derived()); } template void swap(MatrixBase EIGEN_REF_TO_TEMPORARY other); template const Flagged marked() const; const Flagged lazy() const; NoAlias noalias(); /** \returns number of elements to skip to pass from one row (resp. column) to another * for a row-major (resp. column-major) matrix. * Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data * of the underlying matrix. */ inline int stride(void) const { return derived().stride(); } inline const NestByValue nestByValue() const; ConjugateReturnType conjugate() const; RealReturnType real() const; NonConstRealReturnType real(); const ImagReturnType imag() const; NonConstImagReturnType imag(); template const CwiseUnaryOp unaryExpr(const CustomUnaryOp& func = CustomUnaryOp()) const; template const CwiseUnaryView unaryViewExpr(const CustomViewOp& func = CustomViewOp()) const; template const CwiseBinaryOp binaryExpr(const MatrixBase &other, const CustomBinaryOp& func = CustomBinaryOp()) const; Scalar sum() const; Scalar mean() const; Scalar trace() const; Scalar prod() const; typename ei_traits::Scalar minCoeff() const; typename ei_traits::Scalar maxCoeff() const; typename ei_traits::Scalar minCoeff(int* row, int* col) const; typename ei_traits::Scalar maxCoeff(int* row, int* col) const; typename ei_traits::Scalar minCoeff(int* index) const; typename ei_traits::Scalar maxCoeff(int* index) const; template typename ei_result_of::Scalar)>::type redux(const BinaryOp& func) const; template void visit(Visitor& func) const; #ifndef EIGEN_PARSED_BY_DOXYGEN using AnyMatrixBase::derived; inline Derived& const_cast_derived() const { return *static_cast(const_cast(this)); } #endif // not EIGEN_PARSED_BY_DOXYGEN const Cwise cwise() const; Cwise cwise(); inline const WithFormat format(const IOFormat& fmt) const; /////////// Array module /////////// bool all(void) const; bool any(void) const; int count() const; const VectorwiseOp rowwise() const; VectorwiseOp rowwise(); const VectorwiseOp colwise() const; VectorwiseOp colwise(); static const CwiseNullaryOp,Derived> Random(int rows, int cols); static const CwiseNullaryOp,Derived> Random(int size); static const CwiseNullaryOp,Derived> Random(); template const Select select(const MatrixBase& thenMatrix, const MatrixBase& elseMatrix) const; template inline const Select select(const MatrixBase& thenMatrix, typename ThenDerived::Scalar elseScalar) const; template inline const Select select(typename ElseDerived::Scalar thenScalar, const MatrixBase& elseMatrix) const; template RealScalar lpNorm() const; template const Replicate replicate() const; const Replicate replicate(int rowFacor,int colFactor) const; Eigen::Reverse reverse(); const Eigen::Reverse reverse() const; void reverseInPlace(); /////////// LU module /////////// const FullPivLU fullPivLu() const; const PartialPivLU partialPivLu() const; const PartialPivLU lu() const; const ei_inverse_impl inverse() const; template void computeInverseAndDetWithCheck( ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible, const RealScalar& absDeterminantThreshold = dummy_precision() ) const; template void computeInverseWithCheck( ResultType& inverse, bool& invertible, const RealScalar& absDeterminantThreshold = dummy_precision() ) const; Scalar determinant() const; /////////// Cholesky module /////////// const LLT llt() const; const LDLT ldlt() const; /////////// QR module /////////// const HouseholderQR householderQr() const; const ColPivHouseholderQR colPivHouseholderQr() const; const FullPivHouseholderQR fullPivHouseholderQr() const; EigenvaluesReturnType eigenvalues() const; RealScalar operatorNorm() const; /////////// SVD module /////////// SVD svd() const; /////////// Geometry module /////////// template PlainMatrixType cross(const MatrixBase& other) const; template PlainMatrixType cross3(const MatrixBase& other) const; PlainMatrixType unitOrthogonal(void) const; Matrix eulerAngles(int a0, int a1, int a2) const; const ScalarMultipleReturnType operator*(const UniformScaling& s) const; enum { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }; typedef Block::ColsAtCompileTime==1 ? SizeMinusOne : 1, ei_traits::ColsAtCompileTime==1 ? 1 : SizeMinusOne> StartMinusOne; typedef CwiseUnaryOp::Scalar>, NestByValue > HNormalizedReturnType; const HNormalizedReturnType hnormalized() const; typedef Homogeneous::ColsAtCompileTime==1?Vertical:Horizontal> HomogeneousReturnType; const HomogeneousReturnType homogeneous() const; /////////// Sparse module /////////// // dense = sparse * dense template Derived& lazyAssign(const SparseProduct& product); // dense = dense * sparse template Derived& lazyAssign(const SparseProduct& product); ////////// Householder module /////////// void makeHouseholderInPlace(Scalar& tau, RealScalar& beta); template void makeHouseholder(EssentialPart& essential, Scalar& tau, RealScalar& beta) const; template void applyHouseholderOnTheLeft(const EssentialPart& essential, const Scalar& tau, Scalar* workspace); template void applyHouseholderOnTheRight(const EssentialPart& essential, const Scalar& tau, Scalar* workspace); ///////// Jacobi module ///////// template void applyOnTheLeft(int p, int q, const PlanarRotation& j); template void applyOnTheRight(int p, int q, const PlanarRotation& j); #ifdef EIGEN_MATRIXBASE_PLUGIN #include EIGEN_MATRIXBASE_PLUGIN #endif protected: /** Default constructor. Do nothing. */ MatrixBase() { /* Just checks for self-consistency of the flags. * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down */ #ifdef EIGEN_INTERNAL_DEBUGGING EIGEN_STATIC_ASSERT(ei_are_flags_consistent::ret, INVALID_MATRIXBASE_TEMPLATE_PARAMETERS) #endif } private: explicit MatrixBase(int); MatrixBase(int,int); template explicit MatrixBase(const MatrixBase&); }; #endif // EIGEN_MATRIXBASE_H