// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_MATRIX_H #define EIGEN_MATRIX_H /** \class Matrix * * \brief The matrix class, also used for vectors and row-vectors * * Eigen's matrix class is the work-horse for all \em dense matrices and vectors within Eigen. Dense * matrices may either be allocated on the stack, using the template parameters above, or \em dynamically * by specifying \em Dynamic as the size. * * * \param _Scalar Numeric type, i.e. float, double, int * \param _Rows Number of rows, or \b Dynamic * \param _Cols Number of columns, or \b Dynamic * \param _StorageOrder Either RowMajor or ColMajor. The default is ColMajor. * \param _MaxRows Maximum number of rows. Defaults to \a _Rows. See note below. * \param _MaxCols Maximum number of columns. Defaults to \a _Cols. See note below. * * \note Dynamic size: * \em Dynamic in this context only means specified at run-time instead of at compile time. Dynamic * matrices do not expand dynamically. * * \note Max Rows / Columns: * The most common reason to use these values is when you don't know the exact number of columns or rows, * but know that they will remain below the given value. Then you can set the \a _MaxRows or \a _MaxCols * to that value, and set \a _Rows or \a _Cols to \a Dynamic. * * \warning For very large matrices, \em Dynamic allocation should be used, otherwise the stack will be * overflowed. * * Eigen provides a number of typedefs to make working with matrices and vector simpler: * * For example: * * \li \c MatrixXf is a dynamically sized matrix of floats (\c Matrix) * \li \c VectorXf is a dynamically sized vector of floats (\c Matrix) * * \li \c Matrix2d is a 2-row by 2-column square matrix of doubles (\c Matrix) * \li \c RowVector3i is a row-vector with three elements containing integers (\c Matrix) * * \see matrixtypedefs for a complete list of predefined \em Matrix and \em Vector types. * * You can access elements of vectors and matrices using normal subscripting: * * \code * * Eigen::VectorXf v(10); * v[0] = 0.1; * v[1] = 0.2; * * Eigen::MatrixXi m(10, 10); * m(0, 1) = 1; * m(0, 2) = 2; * m(0, 3) = 3; * * \endcode * * \see MatrixBase for the majority of the API methods for matrices */ template struct ei_traits > { typedef _Scalar Scalar; enum { RowsAtCompileTime = _Rows, ColsAtCompileTime = _Cols, MaxRowsAtCompileTime = _MaxRows, MaxColsAtCompileTime = _MaxCols, Flags = ei_compute_matrix_flags<_Scalar, _Rows, _Cols, _StorageOrder, _MaxRows, _MaxCols>::ret, CoeffReadCost = NumTraits::ReadCost, SupportedAccessPatterns = RandomAccessPattern }; }; template class Matrix : public MatrixBase > #ifdef EIGEN_VECTORIZE , public ei_with_aligned_operator_new<_Scalar,ei_size_at_compile_time<_Rows,_Cols>::ret> #endif { public: EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix) friend class Eigen::Map; friend class Eigen::Map; protected: ei_matrix_storage m_storage; public: inline int rows() const { return m_storage.rows(); } inline int cols() const { return m_storage.cols(); } inline int stride(void) const { if(Flags & RowMajorBit) return m_storage.cols(); else return m_storage.rows(); } inline const Scalar& coeff(int row, int col) const { if(Flags & RowMajorBit) return m_storage.data()[col + row * m_storage.cols()]; else // column-major return m_storage.data()[row + col * m_storage.rows()]; } inline const Scalar& coeff(int index) const { return m_storage.data()[index]; } inline Scalar& coeffRef(int row, int col) { if(Flags & RowMajorBit) return m_storage.data()[col + row * m_storage.cols()]; else // column-major return m_storage.data()[row + col * m_storage.rows()]; } inline Scalar& coeffRef(int index) { return m_storage.data()[index]; } template inline PacketScalar packet(int row, int col) const { return ei_ploadt (m_storage.data() + (Flags & RowMajorBit ? col + row * m_storage.cols() : row + col * m_storage.rows())); } template inline PacketScalar packet(int index) const { return ei_ploadt(m_storage.data() + index); } template inline void writePacket(int row, int col, const PacketScalar& x) { ei_pstoret (m_storage.data() + (Flags & RowMajorBit ? col + row * m_storage.cols() : row + col * m_storage.rows()), x); } template inline void writePacket(int index, const PacketScalar& x) { ei_pstoret(m_storage.data() + index, x); } /** \returns a const pointer to the data array of this matrix */ inline const Scalar *data() const { return m_storage.data(); } /** \returns a pointer to the data array of this matrix */ inline Scalar *data() { return m_storage.data(); } inline void resize(int rows, int cols) { ei_assert(rows > 0 && (MaxRowsAtCompileTime == Dynamic || MaxRowsAtCompileTime >= rows) && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) && cols > 0 && (MaxColsAtCompileTime == Dynamic || MaxColsAtCompileTime >= cols) && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)); m_storage.resize(rows * cols, rows, cols); } inline void resize(int size) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix) if(RowsAtCompileTime == 1) m_storage.resize(size, 1, size); else m_storage.resize(size, size, 1); } /** Copies the value of the expression \a other into *this. * * *this is resized (if possible) to match the dimensions of \a other. * * As a special exception, copying a row-vector into a vector (and conversely) * is allowed. The resizing, if any, is then done in the appropriate way so that * row-vectors remain row-vectors and vectors remain vectors. */ template inline Matrix& operator=(const MatrixBase& other) { if(RowsAtCompileTime == 1) { ei_assert(other.isVector()); resize(1, other.size()); } else if(ColsAtCompileTime == 1) { ei_assert(other.isVector()); resize(other.size(), 1); } else resize(other.rows(), other.cols()); return Base::operator=(other.derived()); } /** This is a special case of the templated operator=. Its purpose is to * prevent a default operator= from hiding the templated operator=. */ inline Matrix& operator=(const Matrix& other) { return operator=(other); } EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, +=) EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Matrix, -=) EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, *=) EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Matrix, /=) /** Default constructor. * * For fixed-size matrices, does nothing. * * For dynamic-size matrices, initializes with initial size 1x1, which is inefficient, hence * when performance matters one should avoid using this constructor on dynamic-size matrices. */ inline explicit Matrix() : m_storage(1, 1, 1) { ei_assert(RowsAtCompileTime > 0 && ColsAtCompileTime > 0); } /** Constructs a vector or row-vector with given dimension. \only_for_vectors * * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, * it is redundant to pass the dimension here, so it makes more sense to use the default * constructor Matrix() instead. */ inline explicit Matrix(int dim) : m_storage(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix) ei_assert(dim > 0); ei_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim); } /** This constructor has two very different behaviors, depending on the type of *this. * * \li When Matrix is a fixed-size vector type of size 2, this constructor constructs * an initialized vector. The parameters \a x, \a y are copied into the first and second * coords of the vector respectively. * \li Otherwise, this constructor constructs an uninitialized matrix with \a x rows and * \a y columns. This is useful for dynamic-size matrices. For fixed-size matrices, * it is redundant to pass these parameters, so one should use the default constructor * Matrix() instead. */ inline Matrix(int x, int y) : m_storage(x*y, x, y) { if((RowsAtCompileTime == 1 && ColsAtCompileTime == 2) || (RowsAtCompileTime == 2 && ColsAtCompileTime == 1)) { m_storage.data()[0] = Scalar(x); m_storage.data()[1] = Scalar(y); } else { ei_assert(x > 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == x) && y > 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == y)); } } /** constructs an initialized 2D vector with given coefficients */ inline Matrix(const float& x, const float& y) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2); m_storage.data()[0] = x; m_storage.data()[1] = y; } /** constructs an initialized 2D vector with given coefficients */ inline Matrix(const double& x, const double& y) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 2); m_storage.data()[0] = x; m_storage.data()[1] = y; } /** constructs an initialized 3D vector with given coefficients */ inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 3); m_storage.data()[0] = x; m_storage.data()[1] = y; m_storage.data()[2] = z; } /** constructs an initialized 4D vector with given coefficients */ inline Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w) { EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Matrix, 4); m_storage.data()[0] = x; m_storage.data()[1] = y; m_storage.data()[2] = z; m_storage.data()[3] = w; } explicit Matrix(const Scalar *data); /** Constructor copying the value of the expression \a other */ template inline Matrix(const MatrixBase& other) : m_storage(other.rows() * other.cols(), other.rows(), other.cols()) { ei_assign_selector::run(*this, other.derived()); //Base::operator=(other.derived()); } /** Copy constructor */ inline Matrix(const Matrix& other) : Base(), m_storage(other.rows() * other.cols(), other.rows(), other.cols()) { Base::lazyAssign(other); } /** Destructor */ inline ~Matrix() {} /** Override MatrixBase::eval() since matrices don't need to be evaluated, it is enough to just read them. * This prevents a useless copy when doing e.g. "m1 = m2.eval()" */ const Matrix& eval() const { return *this; } /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the * data pointers. */ void swap(Matrix& other) { if (Base::SizeAtCompileTime==Dynamic) m_storage.swap(other.m_storage); else this->Base::swap(other); } /////////// Geometry module /////////// template explicit Matrix(const RotationBase& r); template Matrix& operator=(const RotationBase& r); }; /** \defgroup matrixtypedefs Global matrix typedefs * * \ingroup Core_Module * * Eigen defines several typedef shortcuts for most common matrix and vector types. * * The general patterns are the following: * * \c MatrixSizeType where \c Size can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd * for complex double. * * For example, \c Matrix3d is a fixed-size 3x3 matrix type of doubles, and \c MatrixXf is a dynamic-size matrix of floats. * * There are also \c VectorSizeType and \c RowVectorSizeType which are self-explanatory. For example, \c Vector4cf is * a fixed-size vector of 4 complex floats. * * \sa class Matrix */ #define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ /** \ingroup matrixtypedefs */ \ typedef Matrix Matrix##SizeSuffix##TypeSuffix; \ /** \ingroup matrixtypedefs */ \ typedef Matrix Vector##SizeSuffix##TypeSuffix; \ /** \ingroup matrixtypedefs */ \ typedef Matrix RowVector##SizeSuffix##TypeSuffix; #define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex, cf) EIGEN_MAKE_TYPEDEFS_ALL_SIZES(std::complex, cd) #undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES #undef EIGEN_MAKE_TYPEDEFS #undef EIGEN_MAKE_TYPEDEFS_LARGE #define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ using Eigen::Matrix##SizeSuffix##TypeSuffix; \ using Eigen::Vector##SizeSuffix##TypeSuffix; \ using Eigen::RowVector##SizeSuffix##TypeSuffix; #define EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(TypeSuffix) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ #define EIGEN_USING_MATRIX_TYPEDEFS \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(i) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(f) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(d) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cf) \ EIGEN_USING_MATRIX_TYPEDEFS_FOR_TYPE(cd) #endif // EIGEN_MATRIX_H