// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_MAPBASE_H #define EIGEN_MAPBASE_H /** \class MapBase * * \brief Base class for Map and Block expression with direct access * * \sa class Map, class Block */ template class MapBase : public Base { public: // typedef MatrixBase Base; enum { IsRowMajor = (int(ei_traits::Flags) & RowMajorBit) ? 1 : 0, RowsAtCompileTime = ei_traits::RowsAtCompileTime, ColsAtCompileTime = ei_traits::ColsAtCompileTime, SizeAtCompileTime = Base::SizeAtCompileTime }; typedef typename ei_traits::Scalar Scalar; typedef typename Base::PacketScalar PacketScalar; using Base::derived; inline int rows() const { return m_rows.value(); } inline int cols() const { return m_cols.value(); } /** Returns the leading dimension (for matrices) or the increment (for vectors) to be used with data(). * * More precisely: * - for a column major matrix it returns the number of elements between two successive columns * - for a row major matrix it returns the number of elements between two successive rows * - for a vector it returns the number of elements between two successive coefficients * This function has to be used together with the MapBase::data() function. * * \sa MapBase::data() */ inline int stride() const { return derived().stride(); } /** Returns a pointer to the first coefficient of the matrix or vector. * This function has to be used together with the stride() function. * * \sa MapBase::stride() */ inline const Scalar* data() const { return m_data; } inline const Scalar& coeff(int row, int col) const { if(IsRowMajor) return m_data[col + row * stride()]; else // column-major return m_data[row + col * stride()]; } inline Scalar& coeffRef(int row, int col) { if(IsRowMajor) return const_cast(m_data)[col + row * stride()]; else // column-major return const_cast(m_data)[row + col * stride()]; } inline const Scalar& coeff(int index) const { ei_assert(Derived::IsVectorAtCompileTime || (ei_traits::Flags & LinearAccessBit)); if ( ((RowsAtCompileTime == 1) == IsRowMajor) ) return m_data[index]; else return m_data[index*stride()]; } inline Scalar& coeffRef(int index) { ei_assert(Derived::IsVectorAtCompileTime || (ei_traits::Flags & LinearAccessBit)); if ( ((RowsAtCompileTime == 1) == IsRowMajor) ) return const_cast(m_data)[index]; else return const_cast(m_data)[index*stride()]; } template inline PacketScalar packet(int row, int col) const { return ei_ploadt (m_data + (IsRowMajor ? col + row * stride() : row + col * stride())); } template inline PacketScalar packet(int index) const { return ei_ploadt(m_data + index); } template inline void writePacket(int row, int col, const PacketScalar& x) { ei_pstoret (const_cast(m_data) + (IsRowMajor ? col + row * stride() : row + col * stride()), x); } template inline void writePacket(int index, const PacketScalar& x) { ei_pstoret (const_cast(m_data) + index, x); } inline MapBase(const Scalar* data) : m_data(data), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime) { EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) checkDataAlignment(); } inline MapBase(const Scalar* data, int size) : m_data(data), m_rows(RowsAtCompileTime == Dynamic ? size : RowsAtCompileTime), m_cols(ColsAtCompileTime == Dynamic ? size : ColsAtCompileTime) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) ei_assert(size >= 0); ei_assert(data == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == size); checkDataAlignment(); } inline MapBase(const Scalar* data, int rows, int cols) : m_data(data), m_rows(rows), m_cols(cols) { ei_assert( (data == 0) || ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows) && cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols))); checkDataAlignment(); } Derived& operator=(const MapBase& other) { return Base::operator=(other); } using Base::operator=; using Base::operator*=; protected: void checkDataAlignment() const { ei_assert( ((!(ei_traits::Flags&AlignedBit)) || ((std::size_t(m_data)&0xf)==0)) && "data is not aligned"); } const Scalar* EIGEN_RESTRICT m_data; const ei_int_if_dynamic m_rows; const ei_int_if_dynamic m_cols; }; #endif // EIGEN_MAPBASE_H