// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_FUZZY_H #define EIGEN_FUZZY_H #ifndef EIGEN_LEGACY_COMPARES /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$ * are considered to be approximately equal within precision \f$ p \f$ if * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f] * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm * L2 norm). * * \note Because of the multiplicativeness of this comparison, one can't use this function * to check whether \c *this is approximately equal to the zero matrix or vector. * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix * or vector. If you want to test whether \c *this is zero, use ei_isMuchSmallerThan(const * RealScalar&, RealScalar) instead. * * \sa ei_isMuchSmallerThan(const RealScalar&, RealScalar) const */ template template bool MatrixBase::isApprox( const MatrixBase& other, typename NumTraits::Real prec ) const { const typename ei_nested::type nested(derived()); const typename ei_nested::type otherNested(other.derived()); return (nested - otherNested).cwise().abs2().sum() <= prec * prec * std::min(nested.cwise().abs2().sum(), otherNested.cwise().abs2().sum()); } /** \returns \c true if the norm of \c *this is much smaller than \a other, * within the precision determined by \a prec. * * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f] * * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason, * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm * of a reference matrix of same dimensions. * * \sa isApprox(), isMuchSmallerThan(const MatrixBase&, RealScalar) const */ template bool MatrixBase::isMuchSmallerThan( const typename NumTraits::Real& other, typename NumTraits::Real prec ) const { return cwise().abs2().sum() <= prec * prec * other * other; } /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other, * within the precision determined by \a prec. * * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f] * For matrices, the comparison is done using the Hilbert-Schmidt norm. * * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const */ template template bool MatrixBase::isMuchSmallerThan( const MatrixBase& other, typename NumTraits::Real prec ) const { return this->cwise().abs2().sum() <= prec * prec * other.cwise().abs2().sum(); } #else template struct ei_fuzzy_selector; /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$ * are considered to be approximately equal within precision \f$ p \f$ if * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f] * For matrices, the comparison is done on all columns. * * \note Because of the multiplicativeness of this comparison, one can't use this function * to check whether \c *this is approximately equal to the zero matrix or vector. * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix * or vector. If you want to test whether \c *this is zero, use ei_isMuchSmallerThan(const * RealScalar&, RealScalar) instead. * * \sa ei_isMuchSmallerThan(const RealScalar&, RealScalar) const */ template template bool MatrixBase::isApprox( const MatrixBase& other, typename NumTraits::Real prec ) const { return ei_fuzzy_selector::isApprox(derived(), other.derived(), prec); } /** \returns \c true if the norm of \c *this is much smaller than \a other, * within the precision determined by \a prec. * * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f] * For matrices, the comparison is done on all columns. * * \sa isApprox(), isMuchSmallerThan(const MatrixBase&, RealScalar) const */ template bool MatrixBase::isMuchSmallerThan( const typename NumTraits::Real& other, typename NumTraits::Real prec ) const { return ei_fuzzy_selector::isMuchSmallerThan(derived(), other, prec); } /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other, * within the precision determined by \a prec. * * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f] * For matrices, the comparison is done on all columns. * * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const */ template template bool MatrixBase::isMuchSmallerThan( const MatrixBase& other, typename NumTraits::Real prec ) const { return ei_fuzzy_selector::isMuchSmallerThan(derived(), other.derived(), prec); } template struct ei_fuzzy_selector { typedef typename Derived::RealScalar RealScalar; static bool isApprox(const Derived& self, const OtherDerived& other, RealScalar prec) { EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) ei_assert(self.size() == other.size()); return((self - other).squaredNorm() <= std::min(self.squaredNorm(), other.squaredNorm()) * prec * prec); } static bool isMuchSmallerThan(const Derived& self, const RealScalar& other, RealScalar prec) { return(self.squaredNorm() <= ei_abs2(other * prec)); } static bool isMuchSmallerThan(const Derived& self, const OtherDerived& other, RealScalar prec) { EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) ei_assert(self.size() == other.size()); return(self.squaredNorm() <= other.squaredNorm() * prec * prec); } }; template struct ei_fuzzy_selector { typedef typename Derived::RealScalar RealScalar; static bool isApprox(const Derived& self, const OtherDerived& other, RealScalar prec) { EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived) ei_assert(self.rows() == other.rows() && self.cols() == other.cols()); typename Derived::Nested nested(self); typename OtherDerived::Nested otherNested(other); for(int i = 0; i < self.cols(); ++i) if((nested.col(i) - otherNested.col(i)).squaredNorm() > std::min(nested.col(i).squaredNorm(), otherNested.col(i).squaredNorm()) * prec * prec) return false; return true; } static bool isMuchSmallerThan(const Derived& self, const RealScalar& other, RealScalar prec) { typename Derived::Nested nested(self); for(int i = 0; i < self.cols(); ++i) if(nested.col(i).squaredNorm() > ei_abs2(other * prec)) return false; return true; } static bool isMuchSmallerThan(const Derived& self, const OtherDerived& other, RealScalar prec) { EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived) ei_assert(self.rows() == other.rows() && self.cols() == other.cols()); typename Derived::Nested nested(self); typename OtherDerived::Nested otherNested(other); for(int i = 0; i < self.cols(); ++i) if(nested.col(i).squaredNorm() > otherNested.col(i).squaredNorm() * prec * prec) return false; return true; } }; #endif #endif // EIGEN_FUZZY_H