// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_FUNCTORS_H #define EIGEN_FUNCTORS_H // associative functors: /** \internal * \brief Template functor to compute the sum of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() */ template struct ei_scalar_sum_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sum_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return ei_padd(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return ei_predux(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::HasAdd }; }; /** \internal * \brief Template functor to compute the product of two scalars * * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() */ template struct ei_scalar_product_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_product_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return ei_pmul(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return ei_predux_mul(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the conjugate product of two scalars * * This is a short cut for ei_conj(x) * y which is needed for optimization purpose */ template struct ei_scalar_conj_product_op { enum { Conj = NumTraits::IsComplex }; EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_conj_product_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return ei_conj_helper().pmul(a,b); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return ei_conj_helper().pmul(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the min of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() */ template struct ei_scalar_min_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_min_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return ei_pmin(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return ei_predux_min(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::HasMin }; }; /** \internal * \brief Template functor to compute the max of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() */ template struct ei_scalar_max_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_max_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return ei_pmax(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return ei_predux_max(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::HasMax }; }; /** \internal * \brief Template functor to compute the hypot of two scalars * * \sa MatrixBase::stableNorm(), class Redux */ template struct ei_scalar_hypot_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_hypot_op) // typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const { Scalar p = std::max(_x, _y); Scalar q = std::min(_x, _y); Scalar qp = q/p; return p * ei_sqrt(Scalar(1) + qp*qp); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess=0 }; }; // other binary functors: /** \internal * \brief Template functor to compute the difference of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator- */ template struct ei_scalar_difference_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_difference_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return ei_psub(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::HasSub }; }; /** \internal * \brief Template functor to compute the quotient of two scalars * * \sa class CwiseBinaryOp, Cwise::operator/() */ template struct ei_scalar_quotient_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_quotient_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return ei_pdiv(a,b); } }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasDiv }; }; // unary functors: /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template struct ei_scalar_opposite_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_opposite_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return ei_pnegate(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::HasNegate }; }; /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs */ template struct ei_scalar_abs_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_abs_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return ei_pabs(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::HasAbs }; }; /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs2 */ template struct ei_scalar_abs2_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_abs2_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return ei_pmul(a,a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::HasAbs2 }; }; /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template struct ei_scalar_conjugate_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_conjugate_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return ei_pconj(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, PacketAccess = ei_packet_traits::HasConj }; }; /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template struct ei_scalar_cast_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cast_op) typedef NewType result_type; EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return ei_cast(a); } }; template struct ei_functor_traits > { enum { Cost = ei_is_same_type::ret ? 0 : NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct ei_scalar_real_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_real_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); } }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template struct ei_scalar_imag_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_imag_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); } }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct ei_scalar_real_ref_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_real_ref_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return ei_real_ref(*const_cast(&a)); } }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template struct ei_scalar_imag_ref_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_imag_ref_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return ei_imag_ref(*const_cast(&a)); } }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * * \brief Template functor to compute the exponential of a scalar * * \sa class CwiseUnaryOp, Cwise::exp() */ template struct ei_scalar_exp_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_exp_op) inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); } typedef typename ei_packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return ei_pexp(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasExp }; }; /** \internal * * \brief Template functor to compute the logarithm of a scalar * * \sa class CwiseUnaryOp, Cwise::log() */ template struct ei_scalar_log_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_log_op) inline const Scalar operator() (const Scalar& a) const { return ei_log(a); } typedef typename ei_packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return ei_plog(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasLog }; }; /** \internal * \brief Template functor to multiply a scalar by a fixed other one * * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ */ /* NOTE why doing the ei_pset1() in packetOp *is* an optimization ? * indeed it seems better to declare m_other as a Packet and do the ei_pset1() once * in the constructor. However, in practice: * - GCC does not like m_other as a Packet and generate a load every time it needs it * - on the other hand GCC is able to moves the ei_pset1() away the loop :) * - simpler code ;) * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) */ template struct ei_scalar_multiple_op { typedef typename ei_packet_traits::type Packet; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { } EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return ei_pmul(a, ei_pset1(m_other)); } typename ei_makeconst::Nested>::type m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::HasMul }; }; template struct ei_scalar_multiple2_op { typedef typename ei_scalar_product_traits::ReturnType result_type; EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const ei_scalar_multiple2_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const Scalar2& other) : m_other(other) { } EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } typename ei_makeconst::Nested>::type m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; template struct ei_scalar_quotient1_impl { typedef typename ei_packet_traits::type Packet; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast(1) / other) {} EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return ei_pmul(a, ei_pset1(m_other)); } const Scalar m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::HasMul }; }; template struct ei_scalar_quotient1_impl { // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {} EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } typename ei_makeconst::Nested>::type m_other; }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to divide a scalar by a fixed other one * * This functor is used to implement the quotient of a matrix by * a scalar where the scalar type is not necessarily a floating point type. * * \sa class CwiseUnaryOp, MatrixBase::operator/ */ template struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl::IsInteger > { EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other) : ei_scalar_quotient1_impl::IsInteger >(other) {} }; template struct ei_functor_traits > : ei_functor_traits::IsInteger> > {}; // nullary functors template struct ei_scalar_constant_op { typedef typename ei_packet_traits::type Packet; EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { } template EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } template EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return ei_pset1(m_other); } const Scalar m_other; }; template struct ei_functor_traits > // FIXME replace this packet test by a safe one { enum { Cost = 1, PacketAccess = ei_packet_traits::Vectorizable, IsRepeatable = true }; }; template struct ei_scalar_identity_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_identity_op) template EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; template struct ei_linspaced_op_impl; // linear access for packet ops: // 1) initialization // base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) // 2) each step // base += [size*step, ..., size*step] template struct ei_linspaced_op_impl { typedef typename ei_packet_traits::type Packet; ei_linspaced_op_impl(Scalar low, Scalar step) : m_low(low), m_step(step), m_packetStep(ei_pset1(ei_packet_traits::size*step)), m_base(ei_padd(ei_pset1(low),ei_pmul(ei_pset1(step),ei_plset(-ei_packet_traits::size)))) {} template EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } template EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = ei_padd(m_base,m_packetStep); } const Scalar m_low; const Scalar m_step; const Packet m_packetStep; mutable Packet m_base; }; // random access for packet ops: // 1) each step // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) template struct ei_linspaced_op_impl { typedef typename ei_packet_traits::type Packet; ei_linspaced_op_impl(Scalar low, Scalar step) : m_low(low), m_step(step), m_lowPacket(ei_pset1(m_low)), m_stepPacket(ei_pset1(m_step)), m_interPacket(ei_plset(0)) {} template EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } template EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return ei_padd(m_lowPacket, ei_pmul(m_stepPacket, ei_padd(ei_pset1(i),m_interPacket))); } const Scalar m_low; const Scalar m_step; const Packet m_lowPacket; const Packet m_stepPacket; const Packet m_interPacket; }; // ----- Linspace functor ---------------------------------------------------------------- // Forward declaration (we default to random access which does not really give // us a speed gain when using packet access but it allows to use the functor in // nested expressions). template struct ei_linspaced_op; template struct ei_functor_traits< ei_linspaced_op > { enum { Cost = 1, PacketAccess = ei_packet_traits::HasSetLinear, IsRepeatable = true }; }; template struct ei_linspaced_op { typedef typename ei_packet_traits::type Packet; ei_linspaced_op(Scalar low, Scalar high, int num_steps) : impl(low, (high-low)/(num_steps-1)) {} template EIGEN_STRONG_INLINE const Scalar operator() (Index i, Index = 0) const { return impl(i); } template EIGEN_STRONG_INLINE const Packet packetOp(Index i, Index = 0) const { return impl.packetOp(i); } // This proxy object handles the actual required temporaries, the different // implementations (random vs. sequential access) as well as the piping // correct piping to size 2/4 packet operations. const ei_linspaced_op_impl impl; }; // all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta // to indicate whether a functor allows linear access, just always answering 'yes' except for // ei_scalar_identity_op. template struct ei_functor_has_linear_access { enum { ret = 1 }; }; template struct ei_functor_has_linear_access > { enum { ret = 0 }; }; // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex. template struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; }; template struct ei_functor_allows_mixing_real_and_complex > { enum { ret = 1 }; }; /** \internal * \brief Template functor to add a scalar to a fixed other one * \sa class CwiseUnaryOp, Array::operator+ */ /* If you wonder why doing the ei_pset1() in packetOp() is an optimization check ei_scalar_multiple_op */ template struct ei_scalar_add_op { typedef typename ei_packet_traits::type Packet; // FIXME default copy constructors seems bugged with std::complex<> inline ei_scalar_add_op(const ei_scalar_add_op& other) : m_other(other.m_other) { } inline ei_scalar_add_op(const Scalar& other) : m_other(other) { } inline Scalar operator() (const Scalar& a) const { return a + m_other; } inline const Packet packetOp(const Packet& a) const { return ei_padd(a, ei_pset1(m_other)); } const Scalar m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::HasAdd }; }; /** \internal * \brief Template functor to compute the square root of a scalar * \sa class CwiseUnaryOp, Cwise::sqrt() */ template struct ei_scalar_sqrt_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sqrt_op) inline const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); } typedef typename ei_packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return ei_psqrt(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasSqrt }; }; /** \internal * \brief Template functor to compute the cosine of a scalar * \sa class CwiseUnaryOp, Cwise::cos() */ template struct ei_scalar_cos_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cos_op) inline Scalar operator() (const Scalar& a) const { return ei_cos(a); } typedef typename ei_packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return ei_pcos(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasCos }; }; /** \internal * \brief Template functor to compute the sine of a scalar * \sa class CwiseUnaryOp, Cwise::sin() */ template struct ei_scalar_sin_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_sin_op) inline const Scalar operator() (const Scalar& a) const { return ei_sin(a); } typedef typename ei_packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return ei_psin(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasSin }; }; /** \internal * \brief Template functor to raise a scalar to a power * \sa class CwiseUnaryOp, Cwise::pow */ template struct ei_scalar_pow_op { // FIXME default copy constructors seems bugged with std::complex<> inline ei_scalar_pow_op(const ei_scalar_pow_op& other) : m_exponent(other.m_exponent) { } inline ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} inline Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); } const Scalar m_exponent; }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the inverse of a scalar * \sa class CwiseUnaryOp, Cwise::inverse() */ template struct ei_scalar_inverse_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_inverse_op) inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } template inline const Packet packetOp(const Packet& a) const { return ei_pdiv(ei_pset1(Scalar(1)),a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::HasDiv }; }; /** \internal * \brief Template functor to compute the square of a scalar * \sa class CwiseUnaryOp, Cwise::square() */ template struct ei_scalar_square_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_square_op) inline Scalar operator() (const Scalar& a) const { return a*a; } template inline const Packet packetOp(const Packet& a) const { return ei_pmul(a,a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the cube of a scalar * \sa class CwiseUnaryOp, Cwise::cube() */ template struct ei_scalar_cube_op { EIGEN_EMPTY_STRUCT_CTOR(ei_scalar_cube_op) inline Scalar operator() (const Scalar& a) const { return a*a*a; } template inline const Packet packetOp(const Packet& a) const { return ei_pmul(a,ei_pmul(a,a)); } }; template struct ei_functor_traits > { enum { Cost = 2*NumTraits::MulCost, PacketAccess = ei_packet_traits::HasMul }; }; // default functor traits for STL functors: template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1 + ei_functor_traits::Cost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 1 + ei_functor_traits::Cost, PacketAccess = false }; }; #ifdef EIGEN_STDEXT_SUPPORT template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; template struct ei_functor_traits > > { enum { Cost = 0, PacketAccess = false }; }; template struct ei_functor_traits > > { enum { Cost = 0, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost + ei_functor_traits::Cost, PacketAccess = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost + ei_functor_traits::Cost + ei_functor_traits::Cost, PacketAccess = false }; }; #endif // EIGEN_STDEXT_SUPPORT // allow to add new functors and specializations of ei_functor_traits from outside Eigen. // this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used... #ifdef EIGEN_FUNCTORS_PLUGIN #include EIGEN_FUNCTORS_PLUGIN #endif #endif // EIGEN_FUNCTORS_H