// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_FUNCTORS_H #define EIGEN_FUNCTORS_H // associative functors: /** \internal * \brief Template functor to compute the sum of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator+, class PartialRedux, MatrixBase::sum() */ template struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } template inline const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_padd(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the product of two scalars * * \sa class CwiseBinaryOp, Cwise::operator*(), class PartialRedux, MatrixBase::redux() */ template struct ei_scalar_product_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; } template inline const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pmul(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the min of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class PartialRedux, MatrixBase::minCoeff() */ template struct ei_scalar_min_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); } template inline const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pmin(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the max of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class PartialRedux, MatrixBase::maxCoeff() */ template struct ei_scalar_max_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); } template inline const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pmax(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; // other binary functors: /** \internal * \brief Template functor to compute the difference of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator- */ template struct ei_scalar_difference_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } template inline const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_psub(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the quotient of two scalars * * \sa class CwiseBinaryOp, Cwise::operator/() */ template struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } template inline const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pdiv(a,b); } }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = ei_packet_traits::size>1 #ifdef EIGEN_VECTORIZE_SSE && NumTraits::HasFloatingPoint #endif }; }; // unary functors: /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a) const { return -a; } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs */ template struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT { typedef typename NumTraits::Real result_type; inline const result_type operator() (const Scalar& a) const { return ei_abs(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false // this could actually be vectorized with SSSE3. }; }; /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs2 */ template struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT { typedef typename NumTraits::Real result_type; inline const result_type operator() (const Scalar& a) const { return ei_abs2(a); } template inline const PacketScalar packetOp(const PacketScalar& a) const { return ei_pmul(a,a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = int(ei_packet_traits::size)>1 }; }; /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a) const { return ei_conj(a); } template inline const PacketScalar packetOp(const PacketScalar& a) const { return a; } }; template struct ei_functor_traits > { enum { Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, PacketAccess = int(ei_packet_traits::size)>1 }; }; /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT { typedef NewType result_type; inline const NewType operator() (const Scalar& a) const { return static_cast(a); } }; template struct ei_functor_traits > { enum { Cost = ei_is_same_type::ret ? 0 : NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct ei_scalar_real_op EIGEN_EMPTY_STRUCT { typedef typename NumTraits::Real result_type; inline result_type operator() (const Scalar& a) const { return ei_real(a); } }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to multiply a scalar by a fixed other one * * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ */ template::size)>1) > struct ei_scalar_multiple_op; template struct ei_scalar_multiple_op { typedef typename ei_packet_traits::type PacketScalar; inline ei_scalar_multiple_op(const Scalar& other) : m_other(ei_pset1(other)) { } inline Scalar operator() (const Scalar& a) const { return a * ei_pfirst(m_other); } inline const PacketScalar packetOp(const PacketScalar& a) const { return ei_pmul(a, m_other); } const PacketScalar m_other; }; template struct ei_scalar_multiple_op { inline ei_scalar_multiple_op(const Scalar& other) : m_other(other) { } inline Scalar operator() (const Scalar& a) const { return a * m_other; } const Scalar m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::size>1 }; }; template struct ei_scalar_quotient1_impl { inline ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast(1) / other) {} inline Scalar operator() (const Scalar& a) const { return a * m_other; } const Scalar m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; template struct ei_scalar_quotient1_impl { inline ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {} inline Scalar operator() (const Scalar& a) const { return a / m_other; } const Scalar m_other; enum { Cost = 2 * NumTraits::MulCost }; }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to divide a scalar by a fixed other one * * This functor is used to implement the quotient of a matrix by * a scalar where the scalar type is not necessarily a floating point type. * * \sa class CwiseUnaryOp, MatrixBase::operator/ */ template struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl::HasFloatingPoint > { inline ei_scalar_quotient1_op(const Scalar& other) : ei_scalar_quotient1_impl::HasFloatingPoint >(other) {} }; // nullary functors template::size)>1) > struct ei_scalar_constant_op; template struct ei_scalar_constant_op { typedef typename ei_packet_traits::type PacketScalar; inline ei_scalar_constant_op(const Scalar& other) : m_other(ei_pset1(other)) { } inline const Scalar operator() (int, int = 0) const { return ei_pfirst(m_other); } inline const PacketScalar packetOp() const { return m_other; } const PacketScalar m_other; }; template struct ei_scalar_constant_op { inline ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { } inline ei_scalar_constant_op(const Scalar& other) : m_other(other) { } inline const Scalar operator() (int, int = 0) const { return m_other; } const Scalar m_other; }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = ei_packet_traits::size>1, IsRepeatable = true }; }; template struct ei_scalar_identity_op EIGEN_EMPTY_STRUCT { inline ei_scalar_identity_op(void) {} inline const Scalar operator() (int row, int col) const { return row==col ? Scalar(1) : Scalar(0); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; // NOTE quick hack: // all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta // to indicate whether a functor allows linear access, just always answering 'yes' except for // ei_scalar_identity_op. template struct ei_functor_has_linear_access { enum { ret = 1 }; }; template struct ei_functor_has_linear_access > { enum { ret = 0 }; }; #endif // EIGEN_FUNCTORS_H