// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_FUNCTORS_H #define EIGEN_FUNCTORS_H // associative functors: /** \internal * \brief Template functor to compute the sum of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator+, class PartialRedux, MatrixBase::sum() */ template struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = NumTraits::PacketSize>0 }; }; /** \internal * \brief Template functor to compute the product of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseProduct(), class PartialRedux, MatrixBase::redux() */ template struct ei_scalar_product_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, IsVectorizable = NumTraits::PacketSize>0 }; }; /** \internal * \brief Template functor to compute the min of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class PartialRedux, MatrixBase::minCoeff() */ template struct ei_scalar_min_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = NumTraits::PacketSize>0 }; }; /** \internal * \brief Template functor to compute the max of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class PartialRedux, MatrixBase::maxCoeff() */ template struct ei_scalar_max_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = NumTraits::PacketSize>0 }; }; // other binary functors: /** \internal * \brief Template functor to compute the difference of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator- */ template struct ei_scalar_difference_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = NumTraits::PacketSize>0 }; }; /** \internal * \brief Template functor to compute the quotient of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseQuotient() */ template struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, IsVectorizable = false }; }; // unary functors: /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return -a; } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseAbs */ template struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_abs(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseAbs2 */ template struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_abs2(a); } enum { Cost = NumTraits::MulCost }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_conj(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, IsVectorizable = false }; }; /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT { typedef NewType result_type; const NewType operator() (const Scalar& a) const { return static_cast(a); } }; template struct ei_functor_traits > { enum { Cost = ei_is_same_type::ret ? 0 : NumTraits::AddCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to multiply a scalar by a fixed other one * * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ */ template struct ei_scalar_multiple_op { ei_scalar_multiple_op(const Scalar& other) : m_other(other) {} Scalar operator() (const Scalar& a) const { return a * m_other; } const Scalar m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, IsVectorizable = false }; }; template struct ei_scalar_quotient1_impl { ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast(1) / other) {} Scalar operator() (const Scalar& a) const { return a * m_other; } const Scalar m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, IsVectorizable = false }; }; template struct ei_scalar_quotient1_impl { ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {} Scalar operator() (const Scalar& a) const { return a / m_other; } const Scalar m_other; enum { Cost = 2 * NumTraits::MulCost }; }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to divide a scalar by a fixed other one * * This functor is used to implement the quotient of a matrix by * a scalar where the scalar type is not a floating point type. * * \sa class CwiseUnaryOp, MatrixBase::operator/ */ template struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl::HasFloatingPoint > { ei_scalar_quotient1_op(const Scalar& other) : ei_scalar_quotient1_impl::HasFloatingPoint >(other) {} }; /** \internal * \brief Template functor to compute the square root of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseSqrt() */ template struct ei_scalar_sqrt_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to compute the exponential of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseExp() */ template struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_exp(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to compute the logarithm of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseLog() */ template struct ei_scalar_log_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_log(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to compute the cosine of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseCos() */ template struct ei_scalar_cos_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_cos(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to compute the sine of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseSin() */ template struct ei_scalar_sin_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_sin(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, IsVectorizable = false }; }; /** \internal * \brief Template functor to raise a scalar to a power * * \sa class CwiseUnaryOp, MatrixBase::cwisePow */ template struct ei_scalar_pow_op { ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); } const Scalar m_exponent; }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, IsVectorizable = false }; }; // default ei_functor_traits for STL functors: template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1 + ei_functor_traits::Cost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 1 + ei_functor_traits::Cost, IsVectorizable = false }; }; #ifdef EIGEN_STDEXT_SUPPORT template struct ei_functor_traits > { enum { Cost = 0, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = 0, IsVectorizable = false }; }; template struct ei_functor_traits > > { enum { Cost = 0, IsVectorizable = false }; }; template struct ei_functor_traits > > { enum { Cost = 0, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost + ei_functor_traits::Cost, IsVectorizable = false }; }; template struct ei_functor_traits > { enum { Cost = ei_functor_traits::Cost + ei_functor_traits::Cost + ei_functor_traits::Cost, IsVectorizable = false }; }; #endif // EIGEN_STDEXT_SUPPORT #endif // EIGEN_FUNCTORS_H