// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_FUNCTORS_H #define EIGEN_FUNCTORS_H // associative functors: /** \internal * \brief Template functor to compute the sum of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() */ template struct ei_scalar_sum_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_padd(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const { return ei_predux(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the product of two scalars * * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() */ template struct ei_scalar_product_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a * b; } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pmul(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const { return ei_predux_mul(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the min of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() */ template struct ei_scalar_min_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::min(a, b); } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pmin(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const { return ei_predux_min(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the max of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() */ template struct ei_scalar_max_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return std::max(a, b); } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pmax(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const PacketScalar& a) const { return ei_predux_max(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the hypot of two scalars * * \sa MatrixBase::stableNorm(), class Redux */ template struct ei_scalar_hypot_op EIGEN_EMPTY_STRUCT { // typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const { Scalar p = std::max(_x, _y); Scalar q = std::min(_x, _y); Scalar qp = q/p; return p * ei_sqrt(Scalar(1) + qp*qp); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess=0 }; }; // other binary functors: /** \internal * \brief Template functor to compute the difference of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator- */ template struct ei_scalar_difference_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_psub(a,b); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = ei_packet_traits::size>1 }; }; /** \internal * \brief Template functor to compute the quotient of two scalars * * \sa class CwiseBinaryOp, Cwise::operator/() */ template struct ei_scalar_quotient_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a, const PacketScalar& b) const { return ei_pdiv(a,b); } }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = ei_packet_traits::size>1 #if (defined EIGEN_VECTORIZE_SSE) && NumTraits::HasFloatingPoint #endif }; }; // unary functors: /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return ei_pnegate(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = int(ei_packet_traits::size)>1 }; }; /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs */ template struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT { typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs(a); } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return ei_pabs(a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = int(ei_packet_traits::size)>1 }; }; /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs2 */ template struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT { typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return ei_abs2(a); } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return ei_pmul(a,a); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = int(ei_packet_traits::size)>1 }; }; /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return ei_conj(a); } template EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return a; } }; template struct ei_functor_traits > { enum { Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, PacketAccess = int(ei_packet_traits::size)>1 }; }; /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT { typedef NewType result_type; EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return static_cast(a); } }; template struct ei_functor_traits > { enum { Cost = ei_is_same_type::ret ? 0 : NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct ei_scalar_real_op EIGEN_EMPTY_STRUCT { typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_real(a); } EIGEN_STRONG_INLINE result_type& operator() (Scalar& a) const { return ei_real_ref(a); } }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template struct ei_scalar_imag_op EIGEN_EMPTY_STRUCT { typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return ei_imag(a); } EIGEN_STRONG_INLINE result_type& operator() (Scalar& a) const { return ei_imag_ref(a); } }; template struct ei_functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * * \brief Template functor to compute the exponential of a scalar * * \sa class CwiseUnaryOp, Cwise::exp() */ template struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a) const { return ei_exp(a); } typedef typename ei_packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return ei_pexp(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasExp }; }; /** \internal * * \brief Template functor to compute the logarithm of a scalar * * \sa class CwiseUnaryOp, Cwise::log() */ template struct ei_scalar_log_op EIGEN_EMPTY_STRUCT { inline const Scalar operator() (const Scalar& a) const { return ei_log(a); } typedef typename ei_packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return ei_plog(a); } }; template struct ei_functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = ei_packet_traits::HasLog }; }; /** \internal * \brief Template functor to multiply a scalar by a fixed other one * * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ */ /* NOTE why doing the ei_pset1() in packetOp *is* an optimization ? * indeed it seems better to declare m_other as a PacketScalar and do the ei_pset1() once * in the constructor. However, in practice: * - GCC does not like m_other as a PacketScalar and generate a load every time it needs it * - on the other hand GCC is able to moves the ei_pset1() away the loop :) * - simpler code ;) * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) */ template struct ei_scalar_multiple_op { typedef typename ei_packet_traits::type PacketScalar; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE ei_scalar_multiple_op(const ei_scalar_multiple_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_multiple_op(const Scalar& other) : m_other(other) { } EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return ei_pmul(a, ei_pset1(m_other)); } typename ei_makeconst::Nested>::type m_other; private: ei_scalar_multiple_op& operator=(const ei_scalar_multiple_op&); }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::size>1 }; }; template struct ei_scalar_multiple2_op { typedef typename ei_scalar_product_traits::ReturnType result_type; EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const ei_scalar_multiple2_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_multiple2_op(const Scalar2& other) : m_other(other) { } EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } typename ei_makeconst::Nested>::type m_other; }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; template struct ei_scalar_quotient1_impl { typedef typename ei_packet_traits::type PacketScalar; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast(1) / other) {} EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } EIGEN_STRONG_INLINE const PacketScalar packetOp(const PacketScalar& a) const { return ei_pmul(a, ei_pset1(m_other)); } const Scalar m_other; private: ei_scalar_quotient1_impl& operator=(const ei_scalar_quotient1_impl&); }; template struct ei_functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = ei_packet_traits::size>1 }; }; template struct ei_scalar_quotient1_impl { // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const ei_scalar_quotient1_impl& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {} EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } typename ei_makeconst::Nested>::type m_other; }; template struct ei_functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to divide a scalar by a fixed other one * * This functor is used to implement the quotient of a matrix by * a scalar where the scalar type is not necessarily a floating point type. * * \sa class CwiseUnaryOp, MatrixBase::operator/ */ template struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl::HasFloatingPoint > { EIGEN_STRONG_INLINE ei_scalar_quotient1_op(const Scalar& other) : ei_scalar_quotient1_impl::HasFloatingPoint >(other) {} }; template struct ei_functor_traits > : ei_functor_traits::HasFloatingPoint> > {}; // nullary functors template struct ei_scalar_constant_op { typedef typename ei_packet_traits::type PacketScalar; EIGEN_STRONG_INLINE ei_scalar_constant_op(const ei_scalar_constant_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE ei_scalar_constant_op(const Scalar& other) : m_other(other) { } EIGEN_STRONG_INLINE const Scalar operator() (int, int = 0) const { return m_other; } EIGEN_STRONG_INLINE const PacketScalar packetOp() const { return ei_pset1(m_other); } const Scalar m_other; private: ei_scalar_constant_op& operator=(const ei_scalar_constant_op&); }; template struct ei_functor_traits > { enum { Cost = 1, PacketAccess = ei_packet_traits::size>1, IsRepeatable = true }; }; template struct ei_scalar_identity_op EIGEN_EMPTY_STRUCT { EIGEN_STRONG_INLINE ei_scalar_identity_op(void) {} EIGEN_STRONG_INLINE const Scalar operator() (int row, int col) const { return row==col ? Scalar(1) : Scalar(0); } }; template struct ei_functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; // allow to add new functors and specializations of ei_functor_traits from outside Eigen. // this macro is really needed because ei_functor_traits must be specialized after it is declared but before it is used... #ifdef EIGEN_FUNCTORS_PLUGIN #include EIGEN_FUNCTORS_PLUGIN #endif // all functors allow linear access, except ei_scalar_identity_op. So we fix here a quick meta // to indicate whether a functor allows linear access, just always answering 'yes' except for // ei_scalar_identity_op. template struct ei_functor_has_linear_access { enum { ret = 1 }; }; template struct ei_functor_has_linear_access > { enum { ret = 0 }; }; // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex. template struct ei_functor_allows_mixing_real_and_complex { enum { ret = 0 }; }; template struct ei_functor_allows_mixing_real_and_complex > { enum { ret = 1 }; }; #endif // EIGEN_FUNCTORS_H