// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_DOT_H #define EIGEN_DOT_H /*************************************************************************** * Part 1 : the logic deciding a strategy for vectorization and unrolling ***************************************************************************/ template struct ei_dot_traits { public: enum { Vectorization = (int(Derived1::Flags)&int(Derived2::Flags)&ActualPacketAccessBit) && (int(Derived1::Flags)&int(Derived2::Flags)&LinearAccessBit) ? LinearVectorization : NoVectorization }; private: typedef typename Derived1::Scalar Scalar; enum { PacketSize = ei_packet_traits::size, Cost = Derived1::SizeAtCompileTime * (Derived1::CoeffReadCost + Derived2::CoeffReadCost + NumTraits::MulCost) + (Derived1::SizeAtCompileTime-1) * NumTraits::AddCost, UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Vectorization) == int(NoVectorization) ? 1 : int(PacketSize)) }; public: enum { Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling }; }; /*************************************************************************** * Part 2 : unrollers ***************************************************************************/ /*** no vectorization ***/ template struct ei_dot_novec_unroller { enum { HalfLength = Length/2 }; typedef typename Derived1::Scalar Scalar; inline static Scalar run(const Derived1& v1, const Derived2& v2) { return ei_dot_novec_unroller::run(v1, v2) + ei_dot_novec_unroller::run(v1, v2); } }; template struct ei_dot_novec_unroller { typedef typename Derived1::Scalar Scalar; inline static Scalar run(const Derived1& v1, const Derived2& v2) { return v1.coeff(Start) * ei_conj(v2.coeff(Start)); } }; /*** vectorization ***/ template::size)> struct ei_dot_vec_unroller { typedef typename Derived1::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; enum { row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index, col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0, row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index, col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0 }; inline static PacketScalar run(const Derived1& v1, const Derived2& v2) { return ei_pmadd( v1.template packet(row1, col1), v2.template packet(row2, col2), ei_dot_vec_unroller::size, Stop>::run(v1, v2) ); } }; template struct ei_dot_vec_unroller { enum { row1 = Derived1::RowsAtCompileTime == 1 ? 0 : Index, col1 = Derived1::RowsAtCompileTime == 1 ? Index : 0, row2 = Derived2::RowsAtCompileTime == 1 ? 0 : Index, col2 = Derived2::RowsAtCompileTime == 1 ? Index : 0, alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned, alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned }; typedef typename Derived1::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; inline static PacketScalar run(const Derived1& v1, const Derived2& v2) { return ei_pmul(v1.template packet(row1, col1), v2.template packet(row2, col2)); } }; /*************************************************************************** * Part 3 : implementation of all cases ***************************************************************************/ template::Vectorization, int Unrolling = ei_dot_traits::Unrolling > struct ei_dot_impl; template struct ei_dot_impl { typedef typename Derived1::Scalar Scalar; static Scalar run(const Derived1& v1, const Derived2& v2) { ei_assert(v1.size()>0 && "you are using a non initialized vector"); Scalar res; res = v1.coeff(0) * ei_conj(v2.coeff(0)); for(int i = 1; i < v1.size(); ++i) res += v1.coeff(i) * ei_conj(v2.coeff(i)); return res; } }; template struct ei_dot_impl : public ei_dot_novec_unroller {}; template struct ei_dot_impl { typedef typename Derived1::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; static Scalar run(const Derived1& v1, const Derived2& v2) { const int size = v1.size(); const int packetSize = ei_packet_traits::size; const int alignedSize = (size/packetSize)*packetSize; enum { alignment1 = (Derived1::Flags & AlignedBit) ? Aligned : Unaligned, alignment2 = (Derived2::Flags & AlignedBit) ? Aligned : Unaligned }; Scalar res; // do the vectorizable part of the sum if(size >= packetSize) { PacketScalar packet_res = ei_pmul( v1.template packet(0), v2.template packet(0) ); for(int index = packetSize; index(index), v2.template packet(index), packet_res ); } res = ei_predux(packet_res); // now we must do the rest without vectorization. if(alignedSize == size) return res; } else // too small to vectorize anything. // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. { res = Scalar(0); } // do the remainder of the vector for(int index = alignedSize; index < size; ++index) { res += v1.coeff(index) * v2.coeff(index); } return res; } }; template struct ei_dot_impl { typedef typename Derived1::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; enum { PacketSize = ei_packet_traits::size, Size = Derived1::SizeAtCompileTime, VectorizationSize = (Size / PacketSize) * PacketSize }; static Scalar run(const Derived1& v1, const Derived2& v2) { Scalar res = ei_predux(ei_dot_vec_unroller::run(v1, v2)); if (VectorizationSize != Size) res += ei_dot_novec_unroller::run(v1, v2); return res; } }; /*************************************************************************** * Part 4 : implementation of MatrixBase methods ***************************************************************************/ /** \returns the dot product of *this with other. * * \only_for_vectors * * \note If the scalar type is complex numbers, then this function returns the hermitian * (sesquilinear) dot product, linear in the first variable and conjugate-linear in the * second variable. * * \sa squaredNorm(), norm() */ template template typename ei_traits::Scalar MatrixBase::dot(const MatrixBase& other) const { typedef typename Derived::Nested Nested; typedef typename OtherDerived::Nested OtherNested; typedef typename ei_unref::type _Nested; typedef typename ei_unref::type _OtherNested; EIGEN_STATIC_ASSERT_VECTOR_ONLY(_Nested) EIGEN_STATIC_ASSERT_VECTOR_ONLY(_OtherNested) EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(_Nested,_OtherNested) EIGEN_STATIC_ASSERT((ei_is_same_type::ret), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) ei_assert(size() == other.size()); return ei_dot_impl<_Nested, _OtherNested>::run(derived(), other.derived()); } /** \returns the squared norm of *this, i.e. the dot product of *this with itself. * * \note This is \em not the \em l2 norm, but its square. * * \deprecated Use squaredNorm() instead. This norm2() function is kept only for compatibility and will be removed in Eigen 2.0. * * \only_for_vectors * * \sa dot(), norm() */ template EIGEN_DEPRECATED inline typename NumTraits::Scalar>::Real MatrixBase::norm2() const { return ei_real(dot(*this)); } /** \returns the squared norm of *this, i.e. the dot product of *this with itself. * * \only_for_vectors * * \sa dot(), norm() */ template inline typename NumTraits::Scalar>::Real MatrixBase::squaredNorm() const { return ei_real(dot(*this)); } /** \returns the \em l2 norm of *this, i.e. the square root of the dot product of *this with itself. * * \only_for_vectors * * \sa dot(), squaredNorm() */ template inline typename NumTraits::Scalar>::Real MatrixBase::norm() const { return ei_sqrt(squaredNorm()); } /** \returns an expression of the quotient of *this by its own norm. * * \only_for_vectors * * \sa norm(), normalize() */ template inline const typename MatrixBase::PlainMatrixType MatrixBase::normalized() const { typedef typename ei_nested::type Nested; typedef typename ei_unref::type _Nested; _Nested n(derived()); return n / n.norm(); } /** Normalizes the vector, i.e. divides it by its own norm. * * \only_for_vectors * * \sa norm(), normalized() */ template inline void MatrixBase::normalize() { *this /= norm(); } /** \returns true if *this is approximately orthogonal to \a other, * within the precision given by \a prec. * * Example: \include MatrixBase_isOrthogonal.cpp * Output: \verbinclude MatrixBase_isOrthogonal.out */ template template bool MatrixBase::isOrthogonal (const MatrixBase& other, RealScalar prec) const { typename ei_nested::type nested(derived()); typename ei_nested::type otherNested(other.derived()); return ei_abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); } /** \returns true if *this is approximately an unitary matrix, * within the precision given by \a prec. In the case where the \a Scalar * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. * * \note This can be used to check whether a family of vectors forms an orthonormal basis. * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an * orthonormal basis. * * Example: \include MatrixBase_isUnitary.cpp * Output: \verbinclude MatrixBase_isUnitary.out */ template bool MatrixBase::isUnitary(RealScalar prec) const { typename Derived::Nested nested(derived()); for(int i = 0; i < cols(); ++i) { if(!ei_isApprox(nested.col(i).squaredNorm(), static_cast(1), prec)) return false; for(int j = 0; j < i; ++j) if(!ei_isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast(1), prec)) return false; } return true; } #endif // EIGEN_DOT_H