// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_DENSECOEFFSBASE_H #define EIGEN_DENSECOEFFSBASE_H template class DenseCoeffsBase : public EigenBase { public: typedef typename ei_traits::StorageKind StorageKind; typedef typename ei_traits::Index Index; typedef typename ei_traits::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; typedef typename ei_meta_if::ret, const Scalar&, typename ei_meta_if::ret, Scalar, const Scalar>::ret >::ret CoeffReturnType; typedef typename ei_makeconst_return_type::type>::type PacketReturnType; typedef EigenBase Base; using Base::rows; using Base::cols; using Base::size; using Base::derived; EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const { return int(Derived::RowsAtCompileTime) == 1 ? 0 : int(Derived::ColsAtCompileTime) == 1 ? inner : int(Derived::Flags)&RowMajorBit ? outer : inner; } EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const { return int(Derived::ColsAtCompileTime) == 1 ? 0 : int(Derived::RowsAtCompileTime) == 1 ? inner : int(Derived::Flags)&RowMajorBit ? inner : outer; } /** Short version: don't use this function, use * \link operator()(Index,Index) const \endlink instead. * * Long version: this function is similar to * \link operator()(Index,Index) const \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator()(Index,Index) const \endlink. * * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const */ EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeff(row, col); } EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const { return coeff(rowIndexByOuterInner(outer, inner), colIndexByOuterInner(outer, inner)); } /** \returns the coefficient at given the given row and column. * * \sa operator()(Index,Index), operator[](Index) */ EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const { ei_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeff(row, col); } /** Short version: don't use this function, use * \link operator[](Index) const \endlink instead. * * Long version: this function is similar to * \link operator[](Index) const \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameter \a index is in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator[](Index) const \endlink. * * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const */ EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { ei_internal_assert(index >= 0 && index < size()); return derived().coeff(index); } /** \returns the coefficient at given index. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, * z() const, w() const */ EIGEN_STRONG_INLINE CoeffReturnType operator[](Index index) const { EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) ei_assert(index >= 0 && index < size()); return derived().coeff(index); } /** \returns the coefficient at given index. * * This is synonymous to operator[](Index) const. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, * z() const, w() const */ EIGEN_STRONG_INLINE CoeffReturnType operator()(Index index) const { ei_assert(index >= 0 && index < size()); return derived().coeff(index); } /** equivalent to operator[](0). */ EIGEN_STRONG_INLINE CoeffReturnType x() const { return (*this)[0]; } /** equivalent to operator[](1). */ EIGEN_STRONG_INLINE CoeffReturnType y() const { return (*this)[1]; } /** equivalent to operator[](2). */ EIGEN_STRONG_INLINE CoeffReturnType z() const { return (*this)[2]; } /** equivalent to operator[](3). */ EIGEN_STRONG_INLINE CoeffReturnType w() const { return (*this)[3]; } /** \returns the packet of coefficients starting at the given row and column. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().template packet(row,col); } template EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const { return packet(rowIndexByOuterInner(outer, inner), colIndexByOuterInner(outer, inner)); } /** \returns the packet of coefficients starting at the given index. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit and the LinearAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { ei_internal_assert(index >= 0 && index < size()); return derived().template packet(index); } protected: // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase. // But some methods are only available in the EnableDirectAccessAPI case. // So we add dummy methods here with these names, so that "using... " doesn't fail. // It's not private so that the child class DenseBase can access them, and it's not public // either since it's an implementation detail, so has to be protected. void coeffRef(); void coeffRefByOuterInner(); void writePacket(); void writePacketByOuterInner(); void copyCoeff(); void copyCoeffByOuterInner(); void copyPacket(); void copyPacketByOuterInner(); void stride(); void innerStride(); void outerStride(); void rowStride(); void colStride(); }; template class DenseCoeffsBase : public DenseCoeffsBase { public: typedef DenseCoeffsBase Base; typedef typename ei_traits::StorageKind StorageKind; typedef typename ei_traits::Index Index; typedef typename ei_traits::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; using Base::coeff; using Base::rows; using Base::cols; using Base::size; using Base::derived; using Base::rowIndexByOuterInner; using Base::colIndexByOuterInner; using Base::operator[]; using Base::operator(); using Base::x; using Base::y; using Base::z; using Base::w; /** Short version: don't use this function, use * \link operator()(Index,Index) \endlink instead. * * Long version: this function is similar to * \link operator()(Index,Index) \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator()(Index,Index) \endlink. * * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index) */ EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeffRef(row, col); } EIGEN_STRONG_INLINE Scalar& coeffRefByOuterInner(Index outer, Index inner) { return coeffRef(rowIndexByOuterInner(outer, inner), colIndexByOuterInner(outer, inner)); } /** \returns a reference to the coefficient at given the given row and column. * * \sa operator[](Index) */ EIGEN_STRONG_INLINE Scalar& operator()(Index row, Index col) { ei_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeffRef(row, col); } /** Short version: don't use this function, use * \link operator[](Index) \endlink instead. * * Long version: this function is similar to * \link operator[](Index) \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator[](Index) \endlink. * * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index) */ EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { ei_internal_assert(index >= 0 && index < size()); return derived().coeffRef(index); } /** \returns a reference to the coefficient at given index. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() */ EIGEN_STRONG_INLINE Scalar& operator[](Index index) { EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) ei_assert(index >= 0 && index < size()); return derived().coeffRef(index); } /** \returns a reference to the coefficient at given index. * * This is synonymous to operator[](Index). * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() */ EIGEN_STRONG_INLINE Scalar& operator()(Index index) { ei_assert(index >= 0 && index < size()); return derived().coeffRef(index); } /** equivalent to operator[](0). */ EIGEN_STRONG_INLINE Scalar& x() { return (*this)[0]; } /** equivalent to operator[](1). */ EIGEN_STRONG_INLINE Scalar& y() { return (*this)[1]; } /** equivalent to operator[](2). */ EIGEN_STRONG_INLINE Scalar& z() { return (*this)[2]; } /** equivalent to operator[](3). */ EIGEN_STRONG_INLINE Scalar& w() { return (*this)[3]; } /** Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template EIGEN_STRONG_INLINE void writePacket (Index row, Index col, const typename ei_packet_traits::type& x) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); derived().template writePacket(row,col,x); } template EIGEN_STRONG_INLINE void writePacketByOuterInner (Index outer, Index inner, const typename ei_packet_traits::type& x) { writePacket(rowIndexByOuterInner(outer, inner), colIndexByOuterInner(outer, inner), x); } /** Stores the given packet of coefficients, at the given index in this expression. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit and the LinearAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template EIGEN_STRONG_INLINE void writePacket (Index index, const typename ei_packet_traits::type& x) { ei_internal_assert(index >= 0 && index < size()); derived().template writePacket(index,x); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal Copies the coefficient at position (row,col) of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase& other) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); derived().coeffRef(row, col) = other.derived().coeff(row, col); } /** \internal Copies the coefficient at the given index of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase& other) { ei_internal_assert(index >= 0 && index < size()); derived().coeffRef(index) = other.derived().coeff(index); } template EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase& other) { const Index row = rowIndexByOuterInner(outer,inner); const Index col = colIndexByOuterInner(outer,inner); // derived() is important here: copyCoeff() may be reimplemented in Derived! derived().copyCoeff(row, col, other); } /** \internal Copies the packet at position (row,col) of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase& other) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); derived().template writePacket(row, col, other.derived().template packet(row, col)); } /** \internal Copies the packet at the given index of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase& other) { ei_internal_assert(index >= 0 && index < size()); derived().template writePacket(index, other.derived().template packet(index)); } template EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase& other) { const Index row = rowIndexByOuterInner(outer,inner); const Index col = colIndexByOuterInner(outer,inner); // derived() is important here: copyCoeff() may be reimplemented in Derived! derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other); } #endif /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. * * \sa outerStride(), rowStride(), colStride() */ inline Index innerStride() const { return derived().innerStride(); } /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns * in a column-major matrix). * * \sa innerStride(), rowStride(), colStride() */ inline Index outerStride() const { return derived().outerStride(); } inline Index stride() const { return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); } /** \returns the pointer increment between two consecutive rows. * * \sa innerStride(), outerStride(), colStride() */ inline Index rowStride() const { return Derived::IsRowMajor ? outerStride() : innerStride(); } /** \returns the pointer increment between two consecutive columns. * * \sa innerStride(), outerStride(), rowStride() */ inline Index colStride() const { return Derived::IsRowMajor ? innerStride() : outerStride(); } }; template struct ei_first_aligned_impl { inline static typename Derived::Index run(const Derived&) { return 0; } }; template struct ei_first_aligned_impl { inline static typename Derived::Index run(const Derived& m) { return ei_first_aligned(&m.const_cast_derived().coeffRef(0,0), m.size()); } }; /** \internal \returns the index of the first element of the array that is well aligned for vectorization. * * There is also the variant ei_first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more * documentation. */ template inline static typename Derived::Index ei_first_aligned(const Derived& m) { return ei_first_aligned_impl ::run(m); } template::ret> struct ei_inner_stride_at_compile_time { enum { ret = ei_traits::InnerStrideAtCompileTime }; }; template struct ei_inner_stride_at_compile_time { enum { ret = 0 }; }; template::ret> struct ei_outer_stride_at_compile_time { enum { ret = ei_traits::OuterStrideAtCompileTime }; }; template struct ei_outer_stride_at_compile_time { enum { ret = 0 }; }; #endif // EIGEN_DENSECOEFFSBASE_H