// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2009 Benoit Jacob // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_DENSEBASE_H #define EIGEN_DENSEBASE_H /** \class DenseBase * * \brief Base class for all dense matrices, vectors, and arrays * * This class is the base that is inherited by all dense objects (matrix, vector, arrays, * and related expression types). The common Eigen API for dense objects is contained in this class. * * \param Derived is the derived type, e.g., a matrix type or an expression. */ template class DenseBase #ifndef EIGEN_PARSED_BY_DOXYGEN : public ei_special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real> #else : public AnyMatrixBase #endif // not EIGEN_PARSED_BY_DOXYGEN { public: #ifndef EIGEN_PARSED_BY_DOXYGEN using ei_special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real>::operator*; class InnerIterator; typedef typename ei_traits::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; using AnyMatrixBase::derived; using AnyMatrixBase::const_cast_derived; #endif // not EIGEN_PARSED_BY_DOXYGEN enum { RowsAtCompileTime = ei_traits::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = ei_traits::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (ei_size_at_compile_time::RowsAtCompileTime, ei_traits::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = ei_traits::MaxRowsAtCompileTime, /**< This value is equal to the maximum possible number of rows that this expression * might have. If this expression might have an arbitrarily high number of rows, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime */ MaxColsAtCompileTime = ei_traits::MaxColsAtCompileTime, /**< This value is equal to the maximum possible number of columns that this expression * might have. If this expression might have an arbitrarily high number of columns, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime */ MaxSizeAtCompileTime = (ei_size_at_compile_time::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime>::ret), /**< This value is equal to the maximum possible number of coefficients that this expression * might have. If this expression might have an arbitrarily high number of coefficients, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime */ IsVectorAtCompileTime = ei_traits::RowsAtCompileTime == 1 || ei_traits::ColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = ei_traits::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ CoeffReadCost = ei_traits::CoeffReadCost, /**< This is a rough measure of how expensive it is to read one coefficient from * this expression. */ #ifndef EIGEN_PARSED_BY_DOXYGEN _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC #endif }; #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is the "real scalar" type; if the \a Scalar type is already real numbers * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If * \a Scalar is \a std::complex then RealScalar is \a T. * * \sa class NumTraits */ typedef typename NumTraits::Real RealScalar; #endif // not EIGEN_PARSED_BY_DOXYGEN /** \returns the number of rows. \sa cols(), RowsAtCompileTime */ inline int rows() const { return derived().rows(); } /** \returns the number of columns. \sa rows(), ColsAtCompileTime*/ inline int cols() const { return derived().cols(); } /** \returns the number of coefficients, which is rows()*cols(). * \sa rows(), cols(), SizeAtCompileTime. */ inline int size() const { return rows() * cols(); } /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ inline int nonZeros() const { return size(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ inline bool isVector() const { return rows()==1 || cols()==1; } /** \returns the size of the storage major dimension, * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ int outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } /** \returns the size of the inner dimension according to the storage order, * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ int innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } /** Only plain matrices, not expressions may be resized; therefore the only useful resize method is * Matrix::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(int size) { ei_assert(size == this->size() && "MatrixBase::resize() does not actually allow to resize."); } /** Only plain matrices, not expressions may be resized; therefore the only useful resize method is * Matrix::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(int rows, int cols) { ei_assert(rows == this->rows() && cols == this->cols() && "MatrixBase::resize() does not actually allow to resize."); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal the return type of coeff() */ typedef typename ei_meta_if<_HasDirectAccess, const Scalar&, Scalar>::ret CoeffReturnType; /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp,Derived> ConstantReturnType; /** \internal the return type of MatrixBase::eigenvalues() */ typedef Matrix::Scalar>::Real, ei_traits::ColsAtCompileTime, 1> EigenvaluesReturnType; /** \internal expression tyepe of a column */ typedef Block::RowsAtCompileTime, 1> ColXpr; /** \internal expression tyepe of a column */ typedef Block::ColsAtCompileTime> RowXpr; #endif // not EIGEN_PARSED_BY_DOXYGEN /** Copies \a other into *this. \returns a reference to *this. */ template Derived& operator=(const DenseBase& other); /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ Derived& operator=(const DenseBase& other); template Derived& operator=(const AnyMatrixBase &other); template Derived& operator+=(const AnyMatrixBase &other); template Derived& operator-=(const AnyMatrixBase &other); template Derived& operator=(const ReturnByValue& func); #ifndef EIGEN_PARSED_BY_DOXYGEN /** Copies \a other into *this without evaluating other. \returns a reference to *this. */ template Derived& lazyAssign(const DenseBase& other); #endif // not EIGEN_PARSED_BY_DOXYGEN CommaInitializer operator<< (const Scalar& s); template CommaInitializer operator<< (const DenseBase& other); const CoeffReturnType coeff(int row, int col) const; const CoeffReturnType operator()(int row, int col) const; Scalar& coeffRef(int row, int col); Scalar& operator()(int row, int col); const CoeffReturnType coeff(int index) const; const CoeffReturnType operator[](int index) const; const CoeffReturnType operator()(int index) const; Scalar& coeffRef(int index); Scalar& operator[](int index); Scalar& operator()(int index); #ifndef EIGEN_PARSED_BY_DOXYGEN template void copyCoeff(int row, int col, const DenseBase& other); template void copyCoeff(int index, const DenseBase& other); template void copyPacket(int row, int col, const DenseBase& other); template void copyPacket(int index, const DenseBase& other); #endif // not EIGEN_PARSED_BY_DOXYGEN template PacketScalar packet(int row, int col) const; template void writePacket(int row, int col, const PacketScalar& x); template PacketScalar packet(int index) const; template void writePacket(int index, const PacketScalar& x); Eigen::Transpose transpose(); const Eigen::Transpose transpose() const; void transposeInPlace(); #ifndef EIGEN_NO_DEBUG protected: template void checkTransposeAliasing(const OtherDerived& other) const; public: #endif RowXpr row(int i); const RowXpr row(int i) const; ColXpr col(int i); const ColXpr col(int i) const; typename BlockReturnType::Type block(int startRow, int startCol, int blockRows, int blockCols); const typename BlockReturnType::Type block(int startRow, int startCol, int blockRows, int blockCols) const; VectorBlock segment(int start, int size); const VectorBlock segment(int start, int size) const; VectorBlock head(int size); const VectorBlock head(int size) const; VectorBlock tail(int size); const VectorBlock tail(int size) const; typename BlockReturnType::Type corner(CornerType type, int cRows, int cCols); const typename BlockReturnType::Type corner(CornerType type, int cRows, int cCols) const; template typename BlockReturnType::Type block(int startRow, int startCol); template const typename BlockReturnType::Type block(int startRow, int startCol) const; template typename BlockReturnType::Type corner(CornerType type); template const typename BlockReturnType::Type corner(CornerType type) const; template VectorBlock head(void); template const VectorBlock head() const; template VectorBlock tail(); template const VectorBlock tail() const; template VectorBlock segment(int start); template const VectorBlock segment(int start) const; Diagonal diagonal(); const Diagonal diagonal() const; template Diagonal diagonal(); template const Diagonal diagonal() const; Diagonal diagonal(int index); const Diagonal diagonal(int index) const; template TriangularView part(); template const TriangularView part() const; template TriangularView triangularView(); template const TriangularView triangularView() const; template SelfAdjointView selfadjointView(); template const SelfAdjointView selfadjointView() const; static const ConstantReturnType Constant(int rows, int cols, const Scalar& value); static const ConstantReturnType Constant(int size, const Scalar& value); static const ConstantReturnType Constant(const Scalar& value); template static const CwiseNullaryOp NullaryExpr(int rows, int cols, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(int size, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(const CustomNullaryOp& func); static const ConstantReturnType Zero(int rows, int cols); static const ConstantReturnType Zero(int size); static const ConstantReturnType Zero(); static const ConstantReturnType Ones(int rows, int cols); static const ConstantReturnType Ones(int size); static const ConstantReturnType Ones(); void fill(const Scalar& value); Derived& setConstant(const Scalar& value); Derived& setZero(); Derived& setOnes(); Derived& setRandom(); template bool isApprox(const DenseBase& other, RealScalar prec = dummy_precision()) const; bool isMuchSmallerThan(const RealScalar& other, RealScalar prec = dummy_precision()) const; template bool isMuchSmallerThan(const DenseBase& other, RealScalar prec = dummy_precision()) const; bool isApproxToConstant(const Scalar& value, RealScalar prec = dummy_precision()) const; bool isConstant(const Scalar& value, RealScalar prec = dummy_precision()) const; bool isZero(RealScalar prec = dummy_precision()) const; bool isOnes(RealScalar prec = dummy_precision()) const; inline Derived& operator*=(const Scalar& other); inline Derived& operator/=(const Scalar& other); /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. */ EIGEN_STRONG_INLINE const typename ei_eval::type eval() const { return typename ei_eval::type(derived()); } template void swap(DenseBase EIGEN_REF_TO_TEMPORARY other); /** \returns number of elements to skip to pass from one row (resp. column) to another * for a row-major (resp. column-major) matrix. * Combined with coeffRef() and the \ref flags flags, it allows a direct access to the data * of the underlying matrix. */ inline int stride() const { return derived().stride(); } inline const NestByValue nestByValue() const; inline const ForceAlignedAccess forceAlignedAccess() const; inline ForceAlignedAccess forceAlignedAccess(); template inline const typename ei_meta_if,Derived&>::ret forceAlignedAccessIf() const; template inline typename ei_meta_if,Derived&>::ret forceAlignedAccessIf(); Scalar sum() const; Scalar mean() const; Scalar trace() const; Scalar prod() const; typename ei_traits::Scalar minCoeff() const; typename ei_traits::Scalar maxCoeff() const; typename ei_traits::Scalar minCoeff(int* row, int* col) const; typename ei_traits::Scalar maxCoeff(int* row, int* col) const; typename ei_traits::Scalar minCoeff(int* index) const; typename ei_traits::Scalar maxCoeff(int* index) const; template typename ei_result_of::Scalar)>::type redux(const BinaryOp& func) const; template void visit(Visitor& func) const; inline const WithFormat format(const IOFormat& fmt) const; /////////// Array module /////////// bool all(void) const; bool any(void) const; int count() const; const VectorwiseOp rowwise() const; VectorwiseOp rowwise(); const VectorwiseOp colwise() const; VectorwiseOp colwise(); static const CwiseNullaryOp,Derived> Random(int rows, int cols); static const CwiseNullaryOp,Derived> Random(int size); static const CwiseNullaryOp,Derived> Random(); template const Select select(const DenseBase& thenMatrix, const DenseBase& elseMatrix) const; template inline const Select select(const DenseBase& thenMatrix, typename ThenDerived::Scalar elseScalar) const; template inline const Select select(typename ElseDerived::Scalar thenScalar, const DenseBase& elseMatrix) const; template RealScalar lpNorm() const; template const Replicate replicate() const; const Replicate replicate(int rowFacor,int colFactor) const; Eigen::Reverse reverse(); const Eigen::Reverse reverse() const; void reverseInPlace(); #ifdef EIGEN_DENSEBASE_PLUGIN #include EIGEN_DENSEBASE_PLUGIN #endif protected: /** Default constructor. Do nothing. */ DenseBase() { /* Just checks for self-consistency of the flags. * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down */ #ifdef EIGEN_INTERNAL_DEBUGGING EIGEN_STATIC_ASSERT(ei_are_flags_consistent::ret, INVALID_MATRIXBASE_TEMPLATE_PARAMETERS) #endif } private: explicit DenseBase(int); DenseBase(int,int); template explicit DenseBase(const DenseBase&); }; #endif // EIGEN_DENSEBASE_H