// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2007-2010 Benoit Jacob // Copyright (C) 2008-2010 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_DENSEBASE_H #define EIGEN_DENSEBASE_H /** \class DenseBase * * \brief Base class for all dense matrices, vectors, and arrays * * This class is the base that is inherited by all dense objects (matrix, vector, arrays, * and related expression types). The common Eigen API for dense objects is contained in this class. * * \param Derived is the derived type, e.g., a matrix type or an expression. */ template class DenseBase #ifndef EIGEN_PARSED_BY_DOXYGEN : public ei_special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real> #else : public DenseCoeffsBase #endif // not EIGEN_PARSED_BY_DOXYGEN { public: #ifndef EIGEN_PARSED_BY_DOXYGEN using ei_special_scalar_op_base::Scalar, typename NumTraits::Scalar>::Real>::operator*; class InnerIterator; typedef typename ei_traits::StorageKind StorageKind; typedef typename ei_traits::Index Index; typedef typename ei_traits::Scalar Scalar; typedef typename ei_packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; typedef DenseCoeffsBase Base; using Base::derived; using Base::const_cast_derived; using Base::rows; using Base::cols; using Base::size; using Base::rowIndexByOuterInner; using Base::colIndexByOuterInner; using Base::coeff; using Base::coeffByOuterInner; using Base::packet; using Base::packetByOuterInner; using Base::writePacket; using Base::writePacketByOuterInner; using Base::coeffRef; using Base::coeffRefByOuterInner; using Base::copyCoeff; using Base::copyCoeffByOuterInner; using Base::copyPacket; using Base::copyPacketByOuterInner; using Base::operator(); using Base::operator[]; using Base::x; using Base::y; using Base::z; using Base::w; using Base::stride; using Base::innerStride; using Base::outerStride; using Base::rowStride; using Base::colStride; using typename Base::CoeffReturnType; #endif // not EIGEN_PARSED_BY_DOXYGEN enum { RowsAtCompileTime = ei_traits::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = ei_traits::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (ei_size_at_compile_time::RowsAtCompileTime, ei_traits::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = ei_traits::MaxRowsAtCompileTime, /**< This value is equal to the maximum possible number of rows that this expression * might have. If this expression might have an arbitrarily high number of rows, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime */ MaxColsAtCompileTime = ei_traits::MaxColsAtCompileTime, /**< This value is equal to the maximum possible number of columns that this expression * might have. If this expression might have an arbitrarily high number of columns, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime */ MaxSizeAtCompileTime = (ei_size_at_compile_time::MaxRowsAtCompileTime, ei_traits::MaxColsAtCompileTime>::ret), /**< This value is equal to the maximum possible number of coefficients that this expression * might have. If this expression might have an arbitrarily high number of coefficients, * this value is set to \a Dynamic. * * This value is useful to know when evaluating an expression, in order to determine * whether it is possible to avoid doing a dynamic memory allocation. * * \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime */ IsVectorAtCompileTime = ei_traits::MaxRowsAtCompileTime == 1 || ei_traits::MaxColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = ei_traits::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */ InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? SizeAtCompileTime : int(IsRowMajor) ? ColsAtCompileTime : RowsAtCompileTime, CoeffReadCost = ei_traits::CoeffReadCost, /**< This is a rough measure of how expensive it is to read one coefficient from * this expression. */ InnerStrideAtCompileTime = ei_inner_stride_at_compile_time::ret, OuterStrideAtCompileTime = ei_outer_stride_at_compile_time::ret }; /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ inline Index nonZeros() const { return size(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ /** \returns the outer size. * * \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension * with respect to the storage order, i.e., the number of columns for a column-major matrix, * and the number of rows for a row-major matrix. */ Index outerSize() const { return IsVectorAtCompileTime ? 1 : int(IsRowMajor) ? this->rows() : this->cols(); } /** \returns the inner size. * * \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension * with respect to the storage order, i.e., the number of rows for a column-major matrix, * and the number of columns for a row-major matrix. */ Index innerSize() const { return IsVectorAtCompileTime ? this->size() : int(IsRowMajor) ? this->cols() : this->rows(); } /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(Index size) { EIGEN_ONLY_USED_FOR_DEBUG(size); ei_assert(size == this->size() && "DenseBase::resize() does not actually allow to resize."); } /** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are * Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does * nothing else. */ void resize(Index rows, Index cols) { EIGEN_ONLY_USED_FOR_DEBUG(rows); EIGEN_ONLY_USED_FOR_DEBUG(cols); ei_assert(rows == this->rows() && cols == this->cols() && "DenseBase::resize() does not actually allow to resize."); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp,Derived> ConstantReturnType; /** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */ typedef CwiseNullaryOp,Derived> SequentialLinSpacedReturnType; /** \internal Represents a vector with linearly spaced coefficients that allows random access. */ typedef CwiseNullaryOp,Derived> RandomAccessLinSpacedReturnType; /** \internal the return type of MatrixBase::eigenvalues() */ typedef Matrix::Scalar>::Real, ei_traits::ColsAtCompileTime, 1> EigenvaluesReturnType; /** \internal expression type of a column */ typedef Block::RowsAtCompileTime, 1> ColXpr; /** \internal expression type of a row */ typedef Block::ColsAtCompileTime> RowXpr; /** \internal expression type of a block of whole columns */ typedef Block::RowsAtCompileTime, Dynamic> ColsBlockXpr; /** \internal expression type of a block of whole rows */ typedef Block::ColsAtCompileTime> RowsBlockXpr; /** \internal expression type of a block of whole columns */ template struct NColsBlockXpr { typedef Block::RowsAtCompileTime, N> Type; }; /** \internal expression type of a block of whole rows */ template struct NRowsBlockXpr { typedef Block::ColsAtCompileTime> Type; }; #endif // not EIGEN_PARSED_BY_DOXYGEN /** Copies \a other into *this. \returns a reference to *this. */ template Derived& operator=(const DenseBase& other); /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ Derived& operator=(const DenseBase& other); template Derived& operator=(const EigenBase &other); template Derived& operator+=(const EigenBase &other); template Derived& operator-=(const EigenBase &other); template Derived& operator=(const ReturnByValue& func); #ifndef EIGEN_PARSED_BY_DOXYGEN /** Copies \a other into *this without evaluating other. \returns a reference to *this. */ template Derived& lazyAssign(const DenseBase& other); #endif // not EIGEN_PARSED_BY_DOXYGEN CommaInitializer operator<< (const Scalar& s); template const Flagged flagged() const; template CommaInitializer operator<< (const DenseBase& other); Eigen::Transpose transpose(); const Eigen::Transpose transpose() const; void transposeInPlace(); #ifndef EIGEN_NO_DEBUG protected: template void checkTransposeAliasing(const OtherDerived& other) const; public: #endif RowXpr row(Index i); const RowXpr row(Index i) const; ColXpr col(Index i); const ColXpr col(Index i) const; Block block(Index startRow, Index startCol, Index blockRows, Index blockCols); const Block block(Index startRow, Index startCol, Index blockRows, Index blockCols) const; VectorBlock segment(Index start, Index size); const VectorBlock segment(Index start, Index size) const; VectorBlock head(Index size); const VectorBlock head(Index size) const; VectorBlock tail(Index size); const VectorBlock tail(Index size) const; Block topLeftCorner(Index cRows, Index cCols); const Block topLeftCorner(Index cRows, Index cCols) const; Block topRightCorner(Index cRows, Index cCols); const Block topRightCorner(Index cRows, Index cCols) const; Block bottomLeftCorner(Index cRows, Index cCols); const Block bottomLeftCorner(Index cRows, Index cCols) const; Block bottomRightCorner(Index cRows, Index cCols); const Block bottomRightCorner(Index cRows, Index cCols) const; RowsBlockXpr topRows(Index n); const RowsBlockXpr topRows(Index n) const; RowsBlockXpr bottomRows(Index n); const RowsBlockXpr bottomRows(Index n) const; ColsBlockXpr leftCols(Index n); const ColsBlockXpr leftCols(Index n) const; ColsBlockXpr rightCols(Index n); const ColsBlockXpr rightCols(Index n) const; template Block topLeftCorner(); template const Block topLeftCorner() const; template Block topRightCorner(); template const Block topRightCorner() const; template Block bottomLeftCorner(); template const Block bottomLeftCorner() const; template Block bottomRightCorner(); template const Block bottomRightCorner() const; template typename NRowsBlockXpr::Type topRows(); template const typename NRowsBlockXpr::Type topRows() const; template typename NRowsBlockXpr::Type bottomRows(); template const typename NRowsBlockXpr::Type bottomRows() const; template typename NColsBlockXpr::Type leftCols(); template const typename NColsBlockXpr::Type leftCols() const; template typename NColsBlockXpr::Type rightCols(); template const typename NColsBlockXpr::Type rightCols() const; template Block block(Index startRow, Index startCol); template const Block block(Index startRow, Index startCol) const; template VectorBlock head(void); template const VectorBlock head() const; template VectorBlock tail(); template const VectorBlock tail() const; template VectorBlock segment(Index start); template const VectorBlock segment(Index start) const; Diagonal diagonal(); const Diagonal diagonal() const; template Diagonal diagonal(); template const Diagonal diagonal() const; Diagonal diagonal(Index index); const Diagonal diagonal(Index index) const; template TriangularView part(); template const TriangularView part() const; template TriangularView triangularView(); template const TriangularView triangularView() const; template SelfAdjointView selfadjointView(); template const SelfAdjointView selfadjointView() const; static const ConstantReturnType Constant(Index rows, Index cols, const Scalar& value); static const ConstantReturnType Constant(Index size, const Scalar& value); static const ConstantReturnType Constant(const Scalar& value); static const SequentialLinSpacedReturnType LinSpaced(Sequential_t, const Scalar& low, const Scalar& high, Index size); static const RandomAccessLinSpacedReturnType LinSpaced(const Scalar& low, const Scalar& high, Index size); template static const CwiseNullaryOp NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(Index size, const CustomNullaryOp& func); template static const CwiseNullaryOp NullaryExpr(const CustomNullaryOp& func); static const ConstantReturnType Zero(Index rows, Index cols); static const ConstantReturnType Zero(Index size); static const ConstantReturnType Zero(); static const ConstantReturnType Ones(Index rows, Index cols); static const ConstantReturnType Ones(Index size); static const ConstantReturnType Ones(); void fill(const Scalar& value); Derived& setConstant(const Scalar& value); Derived& setLinSpaced(const Scalar& low, const Scalar& high, Index size); Derived& setZero(); Derived& setOnes(); Derived& setRandom(); template bool isApprox(const DenseBase& other, RealScalar prec = NumTraits::dummy_precision()) const; bool isMuchSmallerThan(const RealScalar& other, RealScalar prec = NumTraits::dummy_precision()) const; template bool isMuchSmallerThan(const DenseBase& other, RealScalar prec = NumTraits::dummy_precision()) const; bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits::dummy_precision()) const; bool isConstant(const Scalar& value, RealScalar prec = NumTraits::dummy_precision()) const; bool isZero(RealScalar prec = NumTraits::dummy_precision()) const; bool isOnes(RealScalar prec = NumTraits::dummy_precision()) const; inline Derived& operator*=(const Scalar& other); inline Derived& operator/=(const Scalar& other); /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. */ EIGEN_STRONG_INLINE const typename ei_eval::type eval() const { // Even though MSVC does not honor strong inlining when the return type // is a dynamic matrix, we desperately need strong inlining for fixed // size types on MSVC. return typename ei_eval::type(derived()); } template void swap(DenseBase EIGEN_REF_TO_TEMPORARY other); inline const NestByValue nestByValue() const; inline const ForceAlignedAccess forceAlignedAccess() const; inline ForceAlignedAccess forceAlignedAccess(); template inline const typename ei_meta_if,Derived&>::ret forceAlignedAccessIf() const; template inline typename ei_meta_if,Derived&>::ret forceAlignedAccessIf(); Scalar sum() const; Scalar mean() const; Scalar trace() const; Scalar prod() const; typename ei_traits::Scalar minCoeff() const; typename ei_traits::Scalar maxCoeff() const; typename ei_traits::Scalar minCoeff(Index* row, Index* col) const; typename ei_traits::Scalar maxCoeff(Index* row, Index* col) const; typename ei_traits::Scalar minCoeff(Index* index) const; typename ei_traits::Scalar maxCoeff(Index* index) const; template typename ei_result_of::Scalar)>::type redux(const BinaryOp& func) const; template void visit(Visitor& func) const; inline const WithFormat format(const IOFormat& fmt) const; /////////// Array module /////////// bool all(void) const; bool any(void) const; Index count() const; const VectorwiseOp rowwise() const; VectorwiseOp rowwise(); const VectorwiseOp colwise() const; VectorwiseOp colwise(); static const CwiseNullaryOp,Derived> Random(Index rows, Index cols); static const CwiseNullaryOp,Derived> Random(Index size); static const CwiseNullaryOp,Derived> Random(); template const Select select(const DenseBase& thenMatrix, const DenseBase& elseMatrix) const; template inline const Select select(const DenseBase& thenMatrix, typename ThenDerived::Scalar elseScalar) const; template inline const Select select(typename ElseDerived::Scalar thenScalar, const DenseBase& elseMatrix) const; template RealScalar lpNorm() const; template const Replicate replicate() const; const Replicate replicate(Index rowFacor,Index colFactor) const; Eigen::Reverse reverse(); const Eigen::Reverse reverse() const; void reverseInPlace(); #ifdef EIGEN2_SUPPORT Block corner(CornerType type, Index cRows, Index cCols); const Block corner(CornerType type, Index cRows, Index cCols) const; template Block corner(CornerType type); template const Block corner(CornerType type) const; #endif // EIGEN2_SUPPORT #ifdef EIGEN_DENSEBASE_PLUGIN #include EIGEN_DENSEBASE_PLUGIN #endif // disable the use of evalTo for dense objects with a nice compilation error template inline void evalTo(Dest& ) const { EIGEN_STATIC_ASSERT((ei_is_same_type::ret),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS); } protected: /** Default constructor. Do nothing. */ DenseBase() { /* Just checks for self-consistency of the flags. * Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down */ #ifdef EIGEN_INTERNAL_DEBUGGING EIGEN_STATIC_ASSERT(ei_are_flags_consistent::ret, INVALID_MATRIXBASE_TEMPLATE_PARAMETERS) EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor)) && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))), INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION) #endif } private: explicit DenseBase(int); DenseBase(int,int); template explicit DenseBase(const DenseBase&); }; #endif // EIGEN_DENSEBASE_H