// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_CWISE_UNARY_OP_H #define EIGEN_CWISE_UNARY_OP_H /** \class CwiseUnaryOp * * \brief Generic expression of a coefficient-wise unary operator of a matrix or a vector * * \param UnaryOp template functor implementing the operator * \param MatrixType the type of the matrix we are applying the unary operator * * This class represents an expression of a generic unary operator of a matrix or a vector. * It is the return type of the unary operator-, of a matrix or a vector, and most * of the time this is the only way it is used. * * \sa class CwiseBinaryOp */ template struct ei_traits > { typedef typename ei_result_of< UnaryOp(typename MatrixType::Scalar) >::type Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Flags = MatrixType::Flags, CoeffReadCost = MatrixType::CoeffReadCost + UnaryOp::Cost }; }; template class CwiseUnaryOp : ei_no_assignment_operator, public MatrixBase > { public: EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp) CwiseUnaryOp(const MatrixType& mat, const UnaryOp& func = UnaryOp()) : m_matrix(mat), m_functor(func) {} private: int _rows() const { return m_matrix.rows(); } int _cols() const { return m_matrix.cols(); } const Scalar _coeff(int row, int col) const { return m_functor(m_matrix.coeff(row, col)); } protected: const typename MatrixType::XprCopy m_matrix; const UnaryOp m_functor; }; /** \returns an expression of a custom coefficient-wise unary operator \a func of *this * * The template parameter \a CustomUnaryOp is the type of the functor * of the custom unary operator. * * Here is an example: * \include class_CwiseUnaryOp.cpp * * \sa class CwiseUnaryOp, class CwiseBinarOp, MatrixBase::operator-, MatrixBase::cwiseAbs */ template template const CwiseUnaryOp MatrixBase::cwise(const CustomUnaryOp& func) const { return CwiseUnaryOp(derived(), func); } /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template struct ei_scalar_opposite_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return -a; } enum { Cost = NumTraits::AddCost }; }; /** \returns an expression of the opposite of \c *this */ template const CwiseUnaryOp::Scalar>,Derived> MatrixBase::operator-() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseAbs */ template struct ei_scalar_abs_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_abs(a); } enum { Cost = NumTraits::AddCost }; }; /** \returns an expression of the coefficient-wise absolute value of \c *this */ template const CwiseUnaryOp::Scalar>,Derived> MatrixBase::cwiseAbs() const { return CwiseUnaryOp,Derived>(derived()); } /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseAbs2 */ template struct ei_scalar_abs2_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_abs2(a); } enum { Cost = NumTraits::MulCost }; }; /** \returns an expression of the coefficient-wise squared absolute value of \c *this */ template const CwiseUnaryOp::Scalar>,Derived> MatrixBase::cwiseAbs2() const { return CwiseUnaryOp,Derived>(derived()); } /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template struct ei_scalar_conjugate_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_conj(a); } enum { Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0 }; }; /** \returns an expression of the complex conjugate of *this. * * \sa adjoint() */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::conjugate() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template struct ei_scalar_cast_op EIGEN_EMPTY_STRUCT { typedef NewType result_type; const NewType operator() (const Scalar& a) const { return static_cast(a); } enum { Cost = ei_is_same_type::ret ? 0 : NumTraits::AddCost }; }; /** \returns an expression of *this with the \a Scalar type casted to * \a NewScalar. * * The template parameter \a NewScalar is the type we are casting the scalars to. * * \sa class CwiseUnaryOp */ template template const CwiseUnaryOp::Scalar, NewType>, Derived> MatrixBase::cast() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to multiply a scalar by a fixed other one * * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ */ template struct ei_scalar_multiple_op { ei_scalar_multiple_op(const Scalar& other) : m_other(other) {} Scalar operator() (const Scalar& a) const { return a * m_other; } const Scalar m_other; enum { Cost = NumTraits::MulCost }; }; template struct ei_scalar_quotient1_impl { ei_scalar_quotient1_impl(const Scalar& other) : m_other(static_cast(1) / other) {} Scalar operator() (const Scalar& a) const { return a * m_other; } const Scalar m_other; enum { Cost = NumTraits::MulCost }; }; template struct ei_scalar_quotient1_impl { ei_scalar_quotient1_impl(const Scalar& other) : m_other(other) {} Scalar operator() (const Scalar& a) const { return a / m_other; } const Scalar m_other; enum { Cost = 2 * NumTraits::MulCost }; }; /** \internal * \brief Template functor to divide a scalar by a fixed other one * * This functor is used to implement the quotient of a matrix by * a scalar where the scalar type is not a floating point type. * * \sa class CwiseUnaryOp, MatrixBase::operator/ */ template struct ei_scalar_quotient1_op : ei_scalar_quotient1_impl::HasFloatingPoint > { ei_scalar_quotient1_op(const Scalar& other) : ei_scalar_quotient1_impl::HasFloatingPoint >(other) {} }; /** \relates MatrixBase */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::operator*(const Scalar& scalar) const { return CwiseUnaryOp, Derived> (derived(), ei_scalar_multiple_op(scalar)); } /** \relates MatrixBase */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::operator/(const Scalar& scalar) const { return CwiseUnaryOp, Derived> (derived(), ei_scalar_quotient1_op(scalar)); } template Derived& MatrixBase::operator*=(const Scalar& other) { return *this = *this * other; } template Derived& MatrixBase::operator/=(const Scalar& other) { return *this = *this / other; } /** \internal * \brief Template functor to compute the square root of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseSqrt() */ template struct ei_scalar_sqrt_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_sqrt(a); } enum { Cost = 5 * NumTraits::MulCost }; }; /** \returns an expression of the coefficient-wise square root of *this. */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::cwiseSqrt() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to compute the exponential of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseExp() */ template struct ei_scalar_exp_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_exp(a); } enum { Cost = 5 * NumTraits::MulCost }; }; /** \returns an expression of the coefficient-wise exponential of *this. */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::cwiseExp() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to compute the logarithm of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseLog() */ template struct ei_scalar_log_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_log(a); } enum { Cost = 5 * NumTraits::MulCost }; }; /** \returns an expression of the coefficient-wise logarithm of *this. */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::cwiseLog() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to compute the cosine of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseCos() */ template struct ei_scalar_cos_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_cos(a); } enum { Cost = 5 * NumTraits::MulCost }; }; /** \returns an expression of the coefficient-wise cosine of *this. */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::cwiseCos() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to compute the sine of a scalar * * \sa class CwiseUnaryOp, MatrixBase::cwiseSin() */ template struct ei_scalar_sin_op EIGEN_EMPTY_STRUCT { const Scalar operator() (const Scalar& a) const { return ei_sin(a); } enum { Cost = 5 * NumTraits::MulCost }; }; /** \returns an expression of the coefficient-wise sine of *this. */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::cwiseSin() const { return CwiseUnaryOp, Derived>(derived()); } /** \internal * \brief Template functor to raise a scalar to a power * * \sa class CwiseUnaryOp, MatrixBase::cwisePow */ template struct ei_scalar_pow_op { ei_scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} Scalar operator() (const Scalar& a) const { return ei_pow(a, m_exponent); } const Scalar m_exponent; enum { Cost = 5 * NumTraits::MulCost }; }; /** \relates MatrixBase */ template const CwiseUnaryOp::Scalar>, Derived> MatrixBase::cwisePow(const Scalar& exponent) const { return CwiseUnaryOp, Derived> (derived(), ei_scalar_pow_op(exponent)); } #endif // EIGEN_CWISE_UNARY_OP_H