// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CWISE_NULLARY_OP_H #define EIGEN_CWISE_NULLARY_OP_H namespace Eigen { /** \class CwiseNullaryOp * \ingroup Core_Module * * \brief Generic expression of a matrix where all coefficients are defined by a functor * * \param NullaryOp template functor implementing the operator * \param PlainObjectType the underlying plain matrix/array type * * This class represents an expression of a generic nullary operator. * It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods, * and most of the time this is the only way it is used. * * However, if you want to write a function returning such an expression, you * will need to use this class. * * \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr() */ namespace internal { template struct traits > : traits { enum { #ifndef EIGEN_TEST_EVALUATORS Flags = (traits::Flags & ( HereditaryBits | (functor_has_linear_access::ret ? LinearAccessBit : 0) | (functor_traits::PacketAccess ? PacketAccessBit : 0))) | (functor_traits::IsRepeatable ? 0 : EvalBeforeNestingBit), CoeffReadCost = functor_traits::Cost #else Flags = traits::Flags & RowMajorBit #endif }; }; } template class CwiseNullaryOp : internal::no_assignment_operator, public internal::dense_xpr_base< CwiseNullaryOp >::type { public: typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp) EIGEN_DEVICE_FUNC CwiseNullaryOp(Index nbRows, Index nbCols, const NullaryOp& func = NullaryOp()) : m_rows(nbRows), m_cols(nbCols), m_functor(func) { eigen_assert(nbRows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == nbRows) && nbCols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == nbCols)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const { return m_functor(rowId, colId); } template EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const { return m_functor.packetOp(rowId, colId); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index index) const { return m_functor(index); } template EIGEN_STRONG_INLINE PacketScalar packet(Index index) const { return m_functor.packetOp(index); } /** \returns the functor representing the nullary operation */ EIGEN_DEVICE_FUNC const NullaryOp& functor() const { return m_functor; } protected: const internal::variable_if_dynamic m_rows; const internal::variable_if_dynamic m_cols; const NullaryOp m_functor; }; /** \returns an expression of a matrix defined by a custom functor \a func * * The parameters \a rows and \a cols are the number of rows and of columns of * the returned matrix. Must be compatible with this MatrixBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used * instead. * * The template parameter \a CustomNullaryOp is the type of the functor. * * \sa class CwiseNullaryOp */ template template EIGEN_STRONG_INLINE const CwiseNullaryOp DenseBase::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func) { return CwiseNullaryOp(rows, cols, func); } /** \returns an expression of a matrix defined by a custom functor \a func * * The parameter \a size is the size of the returned vector. * Must be compatible with this MatrixBase type. * * \only_for_vectors * * This variant is meant to be used for dynamic-size vector types. For fixed-size types, * it is redundant to pass \a size as argument, so Zero() should be used * instead. * * The template parameter \a CustomNullaryOp is the type of the functor. * * Here is an example with C++11 random generators: \include random_cpp11.cpp * Output: \verbinclude random_cpp11.out * * \sa class CwiseNullaryOp */ template template EIGEN_STRONG_INLINE const CwiseNullaryOp DenseBase::NullaryExpr(Index size, const CustomNullaryOp& func) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) if(RowsAtCompileTime == 1) return CwiseNullaryOp(1, size, func); else return CwiseNullaryOp(size, 1, func); } /** \returns an expression of a matrix defined by a custom functor \a func * * This variant is only for fixed-size DenseBase types. For dynamic-size types, you * need to use the variants taking size arguments. * * The template parameter \a CustomNullaryOp is the type of the functor. * * \sa class CwiseNullaryOp */ template template EIGEN_STRONG_INLINE const CwiseNullaryOp DenseBase::NullaryExpr(const CustomNullaryOp& func) { return CwiseNullaryOp(RowsAtCompileTime, ColsAtCompileTime, func); } /** \returns an expression of a constant matrix of value \a value * * The parameters \a nbRows and \a nbCols are the number of rows and of columns of * the returned matrix. Must be compatible with this DenseBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, * it is redundant to pass \a nbRows and \a nbCols as arguments, so Zero() should be used * instead. * * The template parameter \a CustomNullaryOp is the type of the functor. * * \sa class CwiseNullaryOp */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Constant(Index nbRows, Index nbCols, const Scalar& value) { return DenseBase::NullaryExpr(nbRows, nbCols, internal::scalar_constant_op(value)); } /** \returns an expression of a constant matrix of value \a value * * The parameter \a size is the size of the returned vector. * Must be compatible with this DenseBase type. * * \only_for_vectors * * This variant is meant to be used for dynamic-size vector types. For fixed-size types, * it is redundant to pass \a size as argument, so Zero() should be used * instead. * * The template parameter \a CustomNullaryOp is the type of the functor. * * \sa class CwiseNullaryOp */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Constant(Index size, const Scalar& value) { return DenseBase::NullaryExpr(size, internal::scalar_constant_op(value)); } /** \returns an expression of a constant matrix of value \a value * * This variant is only for fixed-size DenseBase types. For dynamic-size types, you * need to use the variants taking size arguments. * * The template parameter \a CustomNullaryOp is the type of the functor. * * \sa class CwiseNullaryOp */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Constant(const Scalar& value) { EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) return DenseBase::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op(value)); } /** * \brief Sets a linearly space vector. * * The function generates 'size' equally spaced values in the closed interval [low,high]. * This particular version of LinSpaced() uses sequential access, i.e. vector access is * assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization * and yields faster code than the random access version. * * When size is set to 1, a vector of length 1 containing 'high' is returned. * * \only_for_vectors * * Example: \include DenseBase_LinSpaced_seq.cpp * Output: \verbinclude DenseBase_LinSpaced_seq.out * * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp */ template EIGEN_STRONG_INLINE const typename DenseBase::SequentialLinSpacedReturnType DenseBase::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); } /** * \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&) * Special version for fixed size types which does not require the size parameter. */ template EIGEN_STRONG_INLINE const typename DenseBase::SequentialLinSpacedReturnType DenseBase::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); } /** * \brief Sets a linearly space vector. * * The function generates 'size' equally spaced values in the closed interval [low,high]. * When size is set to 1, a vector of length 1 containing 'high' is returned. * * \only_for_vectors * * Example: \include DenseBase_LinSpaced.cpp * Output: \verbinclude DenseBase_LinSpaced.out * * \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp */ template EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType DenseBase::LinSpaced(Index size, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) return DenseBase::NullaryExpr(size, internal::linspaced_op(low,high,size)); } /** * \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&) * Special version for fixed size types which does not require the size parameter. */ template EIGEN_STRONG_INLINE const typename DenseBase::RandomAccessLinSpacedReturnType DenseBase::LinSpaced(const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) return DenseBase::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op(low,high,Derived::SizeAtCompileTime)); } /** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */ template bool DenseBase::isApproxToConstant (const Scalar& val, const RealScalar& prec) const { for(Index j = 0; j < cols(); ++j) for(Index i = 0; i < rows(); ++i) if(!internal::isApprox(this->coeff(i, j), val, prec)) return false; return true; } /** This is just an alias for isApproxToConstant(). * * \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */ template bool DenseBase::isConstant (const Scalar& val, const RealScalar& prec) const { return isApproxToConstant(val, prec); } /** Alias for setConstant(): sets all coefficients in this expression to \a val. * * \sa setConstant(), Constant(), class CwiseNullaryOp */ template EIGEN_STRONG_INLINE void DenseBase::fill(const Scalar& val) { setConstant(val); } /** Sets all coefficients in this expression to \a value. * * \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes() */ template EIGEN_STRONG_INLINE Derived& DenseBase::setConstant(const Scalar& val) { return derived() = Constant(rows(), cols(), val); } /** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value. * * \only_for_vectors * * Example: \include Matrix_setConstant_int.cpp * Output: \verbinclude Matrix_setConstant_int.out * * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&) */ template EIGEN_STRONG_INLINE Derived& PlainObjectBase::setConstant(Index size, const Scalar& val) { resize(size); return setConstant(val); } /** Resizes to the given size, and sets all coefficients in this expression to the given \a value. * * \param nbRows the new number of rows * \param nbCols the new number of columns * \param val the value to which all coefficients are set * * Example: \include Matrix_setConstant_int_int.cpp * Output: \verbinclude Matrix_setConstant_int_int.out * * \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&) */ template EIGEN_STRONG_INLINE Derived& PlainObjectBase::setConstant(Index nbRows, Index nbCols, const Scalar& val) { resize(nbRows, nbCols); return setConstant(val); } /** * \brief Sets a linearly space vector. * * The function generates 'size' equally spaced values in the closed interval [low,high]. * When size is set to 1, a vector of length 1 containing 'high' is returned. * * \only_for_vectors * * Example: \include DenseBase_setLinSpaced.cpp * Output: \verbinclude DenseBase_setLinSpaced.out * * \sa CwiseNullaryOp */ template EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op(low,high,newSize)); } /** * \brief Sets a linearly space vector. * * The function fill *this with equally spaced values in the closed interval [low,high]. * When size is set to 1, a vector of length 1 containing 'high' is returned. * * \only_for_vectors * * \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp */ template EIGEN_STRONG_INLINE Derived& DenseBase::setLinSpaced(const Scalar& low, const Scalar& high) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) return setLinSpaced(size(), low, high); } // zero: /** \returns an expression of a zero matrix. * * The parameters \a rows and \a cols are the number of rows and of columns of * the returned matrix. Must be compatible with this MatrixBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, * it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used * instead. * * Example: \include MatrixBase_zero_int_int.cpp * Output: \verbinclude MatrixBase_zero_int_int.out * * \sa Zero(), Zero(Index) */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Zero(Index nbRows, Index nbCols) { return Constant(nbRows, nbCols, Scalar(0)); } /** \returns an expression of a zero vector. * * The parameter \a size is the size of the returned vector. * Must be compatible with this MatrixBase type. * * \only_for_vectors * * This variant is meant to be used for dynamic-size vector types. For fixed-size types, * it is redundant to pass \a size as argument, so Zero() should be used * instead. * * Example: \include MatrixBase_zero_int.cpp * Output: \verbinclude MatrixBase_zero_int.out * * \sa Zero(), Zero(Index,Index) */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Zero(Index size) { return Constant(size, Scalar(0)); } /** \returns an expression of a fixed-size zero matrix or vector. * * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you * need to use the variants taking size arguments. * * Example: \include MatrixBase_zero.cpp * Output: \verbinclude MatrixBase_zero.out * * \sa Zero(Index), Zero(Index,Index) */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Zero() { return Constant(Scalar(0)); } /** \returns true if *this is approximately equal to the zero matrix, * within the precision given by \a prec. * * Example: \include MatrixBase_isZero.cpp * Output: \verbinclude MatrixBase_isZero.out * * \sa class CwiseNullaryOp, Zero() */ template bool DenseBase::isZero(const RealScalar& prec) const { for(Index j = 0; j < cols(); ++j) for(Index i = 0; i < rows(); ++i) if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast(1), prec)) return false; return true; } /** Sets all coefficients in this expression to zero. * * Example: \include MatrixBase_setZero.cpp * Output: \verbinclude MatrixBase_setZero.out * * \sa class CwiseNullaryOp, Zero() */ template EIGEN_STRONG_INLINE Derived& DenseBase::setZero() { return setConstant(Scalar(0)); } /** Resizes to the given \a size, and sets all coefficients in this expression to zero. * * \only_for_vectors * * Example: \include Matrix_setZero_int.cpp * Output: \verbinclude Matrix_setZero_int.out * * \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero() */ template EIGEN_STRONG_INLINE Derived& PlainObjectBase::setZero(Index newSize) { resize(newSize); return setConstant(Scalar(0)); } /** Resizes to the given size, and sets all coefficients in this expression to zero. * * \param nbRows the new number of rows * \param nbCols the new number of columns * * Example: \include Matrix_setZero_int_int.cpp * Output: \verbinclude Matrix_setZero_int_int.out * * \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero() */ template EIGEN_STRONG_INLINE Derived& PlainObjectBase::setZero(Index nbRows, Index nbCols) { resize(nbRows, nbCols); return setConstant(Scalar(0)); } // ones: /** \returns an expression of a matrix where all coefficients equal one. * * The parameters \a nbRows and \a nbCols are the number of rows and of columns of * the returned matrix. Must be compatible with this MatrixBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, * it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used * instead. * * Example: \include MatrixBase_ones_int_int.cpp * Output: \verbinclude MatrixBase_ones_int_int.out * * \sa Ones(), Ones(Index), isOnes(), class Ones */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Ones(Index nbRows, Index nbCols) { return Constant(nbRows, nbCols, Scalar(1)); } /** \returns an expression of a vector where all coefficients equal one. * * The parameter \a newSize is the size of the returned vector. * Must be compatible with this MatrixBase type. * * \only_for_vectors * * This variant is meant to be used for dynamic-size vector types. For fixed-size types, * it is redundant to pass \a size as argument, so Ones() should be used * instead. * * Example: \include MatrixBase_ones_int.cpp * Output: \verbinclude MatrixBase_ones_int.out * * \sa Ones(), Ones(Index,Index), isOnes(), class Ones */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Ones(Index newSize) { return Constant(newSize, Scalar(1)); } /** \returns an expression of a fixed-size matrix or vector where all coefficients equal one. * * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you * need to use the variants taking size arguments. * * Example: \include MatrixBase_ones.cpp * Output: \verbinclude MatrixBase_ones.out * * \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones */ template EIGEN_STRONG_INLINE const typename DenseBase::ConstantReturnType DenseBase::Ones() { return Constant(Scalar(1)); } /** \returns true if *this is approximately equal to the matrix where all coefficients * are equal to 1, within the precision given by \a prec. * * Example: \include MatrixBase_isOnes.cpp * Output: \verbinclude MatrixBase_isOnes.out * * \sa class CwiseNullaryOp, Ones() */ template bool DenseBase::isOnes (const RealScalar& prec) const { return isApproxToConstant(Scalar(1), prec); } /** Sets all coefficients in this expression to one. * * Example: \include MatrixBase_setOnes.cpp * Output: \verbinclude MatrixBase_setOnes.out * * \sa class CwiseNullaryOp, Ones() */ template EIGEN_STRONG_INLINE Derived& DenseBase::setOnes() { return setConstant(Scalar(1)); } /** Resizes to the given \a newSize, and sets all coefficients in this expression to one. * * \only_for_vectors * * Example: \include Matrix_setOnes_int.cpp * Output: \verbinclude Matrix_setOnes_int.out * * \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones() */ template EIGEN_STRONG_INLINE Derived& PlainObjectBase::setOnes(Index newSize) { resize(newSize); return setConstant(Scalar(1)); } /** Resizes to the given size, and sets all coefficients in this expression to one. * * \param nbRows the new number of rows * \param nbCols the new number of columns * * Example: \include Matrix_setOnes_int_int.cpp * Output: \verbinclude Matrix_setOnes_int_int.out * * \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones() */ template EIGEN_STRONG_INLINE Derived& PlainObjectBase::setOnes(Index nbRows, Index nbCols) { resize(nbRows, nbCols); return setConstant(Scalar(1)); } // Identity: /** \returns an expression of the identity matrix (not necessarily square). * * The parameters \a nbRows and \a nbCols are the number of rows and of columns of * the returned matrix. Must be compatible with this MatrixBase type. * * This variant is meant to be used for dynamic-size matrix types. For fixed-size types, * it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used * instead. * * Example: \include MatrixBase_identity_int_int.cpp * Output: \verbinclude MatrixBase_identity_int_int.out * * \sa Identity(), setIdentity(), isIdentity() */ template EIGEN_STRONG_INLINE const typename MatrixBase::IdentityReturnType MatrixBase::Identity(Index nbRows, Index nbCols) { return DenseBase::NullaryExpr(nbRows, nbCols, internal::scalar_identity_op()); } /** \returns an expression of the identity matrix (not necessarily square). * * This variant is only for fixed-size MatrixBase types. For dynamic-size types, you * need to use the variant taking size arguments. * * Example: \include MatrixBase_identity.cpp * Output: \verbinclude MatrixBase_identity.out * * \sa Identity(Index,Index), setIdentity(), isIdentity() */ template EIGEN_STRONG_INLINE const typename MatrixBase::IdentityReturnType MatrixBase::Identity() { EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived) return MatrixBase::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op()); } /** \returns true if *this is approximately equal to the identity matrix * (not necessarily square), * within the precision given by \a prec. * * Example: \include MatrixBase_isIdentity.cpp * Output: \verbinclude MatrixBase_isIdentity.out * * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity() */ template bool MatrixBase::isIdentity (const RealScalar& prec) const { for(Index j = 0; j < cols(); ++j) { for(Index i = 0; i < rows(); ++i) { if(i == j) { if(!internal::isApprox(this->coeff(i, j), static_cast(1), prec)) return false; } else { if(!internal::isMuchSmallerThan(this->coeff(i, j), static_cast(1), prec)) return false; } } } return true; } namespace internal { template=16)> struct setIdentity_impl { EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Derived& run(Derived& m) { return m = Derived::Identity(m.rows(), m.cols()); } }; template struct setIdentity_impl { typedef typename Derived::Index Index; EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Derived& run(Derived& m) { m.setZero(); const Index size = (std::min)(m.rows(), m.cols()); for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1); return m; } }; } // end namespace internal /** Writes the identity expression (not necessarily square) into *this. * * Example: \include MatrixBase_setIdentity.cpp * Output: \verbinclude MatrixBase_setIdentity.out * * \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity() */ template EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity() { return internal::setIdentity_impl::run(derived()); } /** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this. * * \param nbRows the new number of rows * \param nbCols the new number of columns * * Example: \include Matrix_setIdentity_int_int.cpp * Output: \verbinclude Matrix_setIdentity_int_int.out * * \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity() */ template EIGEN_STRONG_INLINE Derived& MatrixBase::setIdentity(Index nbRows, Index nbCols) { derived().resize(nbRows, nbCols); return setIdentity(); } /** \returns an expression of the i-th unit (basis) vector. * * \only_for_vectors * * \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() */ template EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::Unit(Index newSize, Index i) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i); } /** \returns an expression of the i-th unit (basis) vector. * * \only_for_vectors * * This variant is for fixed-size vector only. * * \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() */ template EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::Unit(Index i) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) return BasisReturnType(SquareMatrixType::Identity(),i); } /** \returns an expression of the X axis unit vector (1{,0}^*) * * \only_for_vectors * * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() */ template EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitX() { return Derived::Unit(0); } /** \returns an expression of the Y axis unit vector (0,1{,0}^*) * * \only_for_vectors * * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() */ template EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitY() { return Derived::Unit(1); } /** \returns an expression of the Z axis unit vector (0,0,1{,0}^*) * * \only_for_vectors * * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() */ template EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitZ() { return Derived::Unit(2); } /** \returns an expression of the W axis unit vector (0,0,0,1) * * \only_for_vectors * * \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW() */ template EIGEN_STRONG_INLINE const typename MatrixBase::BasisReturnType MatrixBase::UnitW() { return Derived::Unit(3); } } // end namespace Eigen #endif // EIGEN_CWISE_NULLARY_OP_H