// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CWISE_BINARY_OP_H #define EIGEN_CWISE_BINARY_OP_H namespace Eigen { /** \class CwiseBinaryOp * \ingroup Core_Module * * \brief Generic expression where a coefficient-wise binary operator is applied to two expressions * * \param BinaryOp template functor implementing the operator * \param Lhs the type of the left-hand side * \param Rhs the type of the right-hand side * * This class represents an expression where a coefficient-wise binary operator is applied to two expressions. * It is the return type of binary operators, by which we mean only those binary operators where * both the left-hand side and the right-hand side are Eigen expressions. * For example, the return type of matrix1+matrix2 is a CwiseBinaryOp. * * Most of the time, this is the only way that it is used, so you typically don't have to name * CwiseBinaryOp types explicitly. * * \sa MatrixBase::binaryExpr(const MatrixBase &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp */ namespace internal { template struct traits > { // we must not inherit from traits since it has // the potential to cause problems with MSVC typedef typename remove_all::type Ancestor; typedef typename traits::XprKind XprKind; enum { RowsAtCompileTime = traits::RowsAtCompileTime, ColsAtCompileTime = traits::ColsAtCompileTime, MaxRowsAtCompileTime = traits::MaxRowsAtCompileTime, MaxColsAtCompileTime = traits::MaxColsAtCompileTime }; // even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor), // we still want to handle the case when the result type is different. typedef typename result_of< BinaryOp( typename Lhs::Scalar, typename Rhs::Scalar ) >::type Scalar; typedef typename promote_storage_type::StorageKind, typename traits::StorageKind>::ret StorageKind; typedef typename promote_index_type::Index, typename traits::Index>::type Index; typedef typename Lhs::Nested LhsNested; typedef typename Rhs::Nested RhsNested; typedef typename remove_reference::type _LhsNested; typedef typename remove_reference::type _RhsNested; enum { LhsCoeffReadCost = _LhsNested::CoeffReadCost, RhsCoeffReadCost = _RhsNested::CoeffReadCost, LhsFlags = _LhsNested::Flags, RhsFlags = _RhsNested::Flags, SameType = is_same::value, StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit), Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( HereditaryBits | (int(LhsFlags) & int(RhsFlags) & ( AlignedBit | (StorageOrdersAgree ? LinearAccessBit : 0) | (functor_traits::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) ) ) ), Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits::Cost }; }; } // end namespace internal // we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor // that would take two operands of different types. If there were such an example, then this check should be // moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as // currently they take only one typename Scalar template parameter. // It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths. // So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to // add together a float matrix and a double matrix. #define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \ EIGEN_STATIC_ASSERT((internal::functor_is_product_like::ret \ ? int(internal::scalar_product_traits::Defined) \ : int(internal::is_same::value)), \ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) template class CwiseBinaryOpImpl; template class CwiseBinaryOp : internal::no_assignment_operator, public CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, typename internal::promote_storage_type::StorageKind, typename internal::traits::StorageKind>::ret> { public: typedef typename CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, typename internal::promote_storage_type::StorageKind, typename internal::traits::StorageKind>::ret>::Base Base; EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp) typedef typename internal::nested::type LhsNested; typedef typename internal::nested::type RhsNested; typedef typename internal::remove_reference::type _LhsNested; typedef typename internal::remove_reference::type _RhsNested; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp()) : m_lhs(aLhs), m_rhs(aRhs), m_functor(func) { EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar); // require the sizes to match EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs) eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { // return the fixed size type if available to enable compile time optimizations if (internal::traits::type>::RowsAtCompileTime==Dynamic) return m_rhs.rows(); else return m_lhs.rows(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { // return the fixed size type if available to enable compile time optimizations if (internal::traits::type>::ColsAtCompileTime==Dynamic) return m_rhs.cols(); else return m_lhs.cols(); } /** \returns the left hand side nested expression */ EIGEN_DEVICE_FUNC const _LhsNested& lhs() const { return m_lhs; } /** \returns the right hand side nested expression */ EIGEN_DEVICE_FUNC const _RhsNested& rhs() const { return m_rhs; } /** \returns the functor representing the binary operation */ EIGEN_DEVICE_FUNC const BinaryOp& functor() const { return m_functor; } protected: LhsNested m_lhs; RhsNested m_rhs; const BinaryOp m_functor; }; template class CwiseBinaryOpImpl : public internal::dense_xpr_base >::type { typedef CwiseBinaryOp Derived; public: typedef typename internal::dense_xpr_base >::type Base; EIGEN_DENSE_PUBLIC_INTERFACE( Derived ) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const { return derived().functor()(derived().lhs().coeff(rowId, colId), derived().rhs().coeff(rowId, colId)); } template EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const { return derived().functor().packetOp(derived().lhs().template packet(rowId, colId), derived().rhs().template packet(rowId, colId)); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index index) const { return derived().functor()(derived().lhs().coeff(index), derived().rhs().coeff(index)); } template EIGEN_STRONG_INLINE PacketScalar packet(Index index) const { return derived().functor().packetOp(derived().lhs().template packet(index), derived().rhs().template packet(index)); } }; /** replaces \c *this by \c *this - \a other. * * \returns a reference to \c *this */ template template EIGEN_STRONG_INLINE Derived & MatrixBase::operator-=(const MatrixBase &other) { #ifdef EIGEN_TEST_EVALUATORS call_assignment(derived(), other.derived(), internal::sub_assign_op()); #else SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); tmp = other.derived(); #endif return derived(); } /** replaces \c *this by \c *this + \a other. * * \returns a reference to \c *this */ template template EIGEN_STRONG_INLINE Derived & MatrixBase::operator+=(const MatrixBase& other) { #ifdef EIGEN_TEST_EVALUATORS call_assignment(derived(), other.derived(), internal::add_assign_op()); #else SelfCwiseBinaryOp, Derived, OtherDerived> tmp(derived()); tmp = other.derived(); #endif return derived(); } } // end namespace Eigen #endif // EIGEN_CWISE_BINARY_OP_H