// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_CWISE_BINARY_OP_H #define EIGEN_CWISE_BINARY_OP_H /** \class CwiseBinaryOp * * \brief Generic expression of a coefficient-wise operator between two matrices or vectors * * \param BinaryOp template functor implementing the operator * \param Lhs the type of the left-hand side * \param Rhs the type of the right-hand side * * This class represents an expression of a generic binary operator of two matrices or vectors. * It is the return type of the operator+, operator-, and the Cwise methods, and most * of the time this is the only way it is used. * * However, if you want to write a function returning such an expression, you * will need to use this class. * * \sa MatrixBase::binaryExpr(const MatrixBase &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp */ template struct ei_traits > { // even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor), // we still want to handle the case when the result type is different. typedef typename ei_result_of< BinaryOp( typename Lhs::Scalar, typename Rhs::Scalar ) >::type Scalar; typedef typename Lhs::Nested LhsNested; typedef typename Rhs::Nested RhsNested; typedef typename ei_unref::type _LhsNested; typedef typename ei_unref::type _RhsNested; enum { LhsCoeffReadCost = _LhsNested::CoeffReadCost, RhsCoeffReadCost = _RhsNested::CoeffReadCost, LhsFlags = _LhsNested::Flags, RhsFlags = _RhsNested::Flags, RowsAtCompileTime = Lhs::RowsAtCompileTime, ColsAtCompileTime = Lhs::ColsAtCompileTime, MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime, MaxColsAtCompileTime = Lhs::MaxColsAtCompileTime, Flags = (int(LhsFlags) | int(RhsFlags)) & ( HereditaryBits | (int(LhsFlags) & int(RhsFlags) & (LinearAccessBit | AlignedBit)) | (ei_functor_traits::PacketAccess && ((int(LhsFlags) & RowMajorBit)==(int(RhsFlags) & RowMajorBit)) ? (int(LhsFlags) & int(RhsFlags) & PacketAccessBit) : 0)), CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + ei_functor_traits::Cost }; }; template class CwiseBinaryOp : ei_no_assignment_operator, public MatrixBase > { public: EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp) typedef typename ei_traits::LhsNested LhsNested; typedef typename ei_traits::RhsNested RhsNested; class InnerIterator; inline CwiseBinaryOp(const Lhs& lhs, const Rhs& rhs, const BinaryOp& func = BinaryOp()) : m_lhs(lhs), m_rhs(rhs), m_functor(func) { // we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor // that would take two operands of different types. If there were such an example, then this check should be // moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as // currently they take only one typename Scalar template parameter. // It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths. // So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to // add together a float matrix and a double matrix. EIGEN_STATIC_ASSERT((ei_is_same_type::ret), you_mixed_different_numeric_types__you_need_to_use_the_cast_method_of_MatrixBase_to_cast_numeric_types_explicitly) // require the sizes to match ei_assert(lhs.rows() == rhs.rows() && lhs.cols() == rhs.cols()); } inline int rows() const { return m_lhs.rows(); } inline int cols() const { return m_lhs.cols(); } inline const Scalar coeff(int row, int col) const { return m_functor(m_lhs.coeff(row, col), m_rhs.coeff(row, col)); } template inline PacketScalar packet(int row, int col) const { return m_functor.packetOp(m_lhs.template packet(row, col), m_rhs.template packet(row, col)); } inline const Scalar coeff(int index) const { return m_functor(m_lhs.coeff(index), m_rhs.coeff(index)); } template inline PacketScalar packet(int index) const { return m_functor.packetOp(m_lhs.template packet(index), m_rhs.template packet(index)); } protected: const LhsNested m_lhs; const RhsNested m_rhs; const BinaryOp m_functor; }; /**\returns an expression of the difference of \c *this and \a other * * \note If you want to substract a given scalar from all coefficients, see Cwise::operator-(). * * \sa class CwiseBinaryOp, MatrixBase::operator-=(), Cwise::operator-() */ template template inline const CwiseBinaryOp::Scalar>, Derived, OtherDerived> MatrixBase::operator-(const MatrixBase &other) const { return CwiseBinaryOp, Derived, OtherDerived>(derived(), other.derived()); } /** replaces \c *this by \c *this - \a other. * * \returns a reference to \c *this */ template template inline Derived & MatrixBase::operator-=(const MatrixBase &other) { return *this = *this - other; } /** \relates MatrixBase * * \returns an expression of the sum of \c *this and \a other * * \note If you want to add a given scalar to all coefficients, see Cwise::operator+(). * * \sa class CwiseBinaryOp, MatrixBase::operator+=(), Cwise::operator+() */ template template inline const CwiseBinaryOp::Scalar>, Derived, OtherDerived> MatrixBase::operator+(const MatrixBase &other) const { return CwiseBinaryOp, Derived, OtherDerived>(derived(), other.derived()); } /** replaces \c *this by \c *this + \a other. * * \returns a reference to \c *this */ template template inline Derived & MatrixBase::operator+=(const MatrixBase& other) { return *this = *this + other; } /** \returns an expression of the Schur product (coefficient wise product) of *this and \a other * * Example: \include Cwise_product.cpp * Output: \verbinclude Cwise_product.out * * \sa class CwiseBinaryOp, operator/(), square() */ template template inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_product_op) Cwise::operator*(const MatrixBase &other) const { return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_product_op)(_expression(), other.derived()); } /** \returns an expression of the coefficient-wise quotient of *this and \a other * * Example: \include Cwise_quotient.cpp * Output: \verbinclude Cwise_quotient.out * * \sa class CwiseBinaryOp, operator*(), inverse() */ template template inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op) Cwise::operator/(const MatrixBase &other) const { return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_quotient_op)(_expression(), other.derived()); } /** \returns an expression of the coefficient-wise min of *this and \a other * * Example: \include Cwise_min.cpp * Output: \verbinclude Cwise_min.out * * \sa class CwiseBinaryOp */ template template inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op) Cwise::min(const MatrixBase &other) const { return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_min_op)(_expression(), other.derived()); } /** \returns an expression of the coefficient-wise max of *this and \a other * * Example: \include Cwise_max.cpp * Output: \verbinclude Cwise_max.out * * \sa class CwiseBinaryOp */ template template inline const EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op) Cwise::max(const MatrixBase &other) const { return EIGEN_CWISE_BINOP_RETURN_TYPE(ei_scalar_max_op)(_expression(), other.derived()); } /** \returns an expression of a custom coefficient-wise operator \a func of *this and \a other * * The template parameter \a CustomBinaryOp is the type of the functor * of the custom operator (see class CwiseBinaryOp for an example) * * \addexample CustomCwiseBinaryFunctors \label How to use custom coeff wise binary functors * * Here is an example illustrating the use of custom functors: * \include class_CwiseBinaryOp.cpp * Output: \verbinclude class_CwiseBinaryOp.out * * \sa class CwiseBinaryOp, MatrixBase::operator+, MatrixBase::operator-, Cwise::operator*, Cwise::operator/ */ template template inline const CwiseBinaryOp MatrixBase::binaryExpr(const MatrixBase &other, const CustomBinaryOp& func) const { return CwiseBinaryOp(derived(), other.derived(), func); } #endif // EIGEN_CWISE_BINARY_OP_H