// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Benoit Jacob // Copyright (C) 2011 Gael Guennebaud // Copyright (C) 2011 Jitse Niesen // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_ASSIGN_EVALUATOR_H #define EIGEN_ASSIGN_EVALUATOR_H // This implementation is based on Assign.h // copy_using_evaluator_traits is based on assign_traits namespace internal { template struct copy_using_evaluator_traits { public: enum { DstIsAligned = Derived::Flags & AlignedBit, DstHasDirectAccess = Derived::Flags & DirectAccessBit, SrcIsAligned = OtherDerived::Flags & AlignedBit, JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned }; private: enum { InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime) : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime) : int(Derived::RowsAtCompileTime), InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime) : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime) : int(Derived::MaxRowsAtCompileTime), MaxSizeAtCompileTime = Derived::SizeAtCompileTime, PacketSize = packet_traits::size }; enum { StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)), MightVectorize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit), MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0 && int(DstIsAligned) && int(SrcIsAligned), MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit), MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess && (DstIsAligned || MaxSizeAtCompileTime == Dynamic), /* If the destination isn't aligned, we have to do runtime checks and we don't unroll, so it's only good for large enough sizes. */ MaySliceVectorize = MightVectorize && DstHasDirectAccess && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize) /* slice vectorization can be slow, so we only want it if the slices are big, which is indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block in a fixed-size matrix */ }; public: enum { Traversal = int(MayInnerVectorize) ? int(DefaultTraversal) // int(InnerVectorizedTraversal) : int(MayLinearVectorize) ? int(DefaultTraversal) // int(LinearVectorizedTraversal) : int(MaySliceVectorize) ? int(DefaultTraversal) // int(SliceVectorizedTraversal) : int(MayLinearize) ? int(DefaultTraversal) // int(LinearTraversal) : int(DefaultTraversal), Vectorized = int(Traversal) == InnerVectorizedTraversal || int(Traversal) == LinearVectorizedTraversal || int(Traversal) == SliceVectorizedTraversal }; private: enum { UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1), MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic && int(OtherDerived::CoeffReadCost) != Dynamic && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit), MayUnrollInner = int(InnerSize) != Dynamic && int(OtherDerived::CoeffReadCost) != Dynamic && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit) }; public: enum { Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal)) ? ( int(MayUnrollCompletely) ? int(NoUnrolling) // int(CompleteUnrolling) : int(MayUnrollInner) ? int(NoUnrolling) // int(InnerUnrolling) : int(NoUnrolling) ) : int(Traversal) == int(LinearVectorizedTraversal) ? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(NoUnrolling) // int(CompleteUnrolling) : int(NoUnrolling) ) : int(Traversal) == int(LinearTraversal) ? ( bool(MayUnrollCompletely) ? int(NoUnrolling) // int(CompleteUnrolling) : int(NoUnrolling) ) : int(NoUnrolling) }; #ifdef EIGEN_DEBUG_ASSIGN static void debug() { EIGEN_DEBUG_VAR(DstIsAligned) EIGEN_DEBUG_VAR(SrcIsAligned) EIGEN_DEBUG_VAR(JointAlignment) EIGEN_DEBUG_VAR(InnerSize) EIGEN_DEBUG_VAR(InnerMaxSize) EIGEN_DEBUG_VAR(PacketSize) EIGEN_DEBUG_VAR(StorageOrdersAgree) EIGEN_DEBUG_VAR(MightVectorize) EIGEN_DEBUG_VAR(MayLinearize) EIGEN_DEBUG_VAR(MayInnerVectorize) EIGEN_DEBUG_VAR(MayLinearVectorize) EIGEN_DEBUG_VAR(MaySliceVectorize) EIGEN_DEBUG_VAR(Traversal) EIGEN_DEBUG_VAR(UnrollingLimit) EIGEN_DEBUG_VAR(MayUnrollCompletely) EIGEN_DEBUG_VAR(MayUnrollInner) EIGEN_DEBUG_VAR(Unrolling) } #endif }; // copy_using_evaluator_impl is based on assign_impl template::Traversal, int Unrolling = copy_using_evaluator_traits::Unrolling> struct copy_using_evaluator_impl; template struct copy_using_evaluator_impl { static void run(const LhsXprType& lhs, const RhsXprType& rhs) { typedef typename evaluator::type LhsEvaluatorType; typedef typename evaluator::type RhsEvaluatorType; typedef typename LhsXprType::Index Index; LhsEvaluatorType lhsEvaluator(lhs.const_cast_derived()); RhsEvaluatorType rhsEvaluator(rhs); for(Index outer = 0; outer < lhs.outerSize(); ++outer) { for(Index inner = 0; inner < lhs.innerSize(); ++inner) { Index row = lhs.rowIndexByOuterInner(outer, inner); Index col = lhs.colIndexByOuterInner(outer, inner); lhsEvaluator.coeffRef(row, col) = rhsEvaluator.coeff(row, col); } } } }; // Based on DenseBase::LazyAssign() template void copy_using_evaluator(const LhsXprType& lhs, const RhsXprType& rhs) { copy_using_evaluator_impl::run(lhs, rhs); } } // namespace internal #endif // EIGEN_ASSIGN_EVALUATOR_H