// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_ARRAY_NORMS_H #define EIGEN_ARRAY_NORMS_H template struct ei_lpNorm_selector { typedef typename NumTraits::Scalar>::Real RealScalar; inline static RealScalar run(const MatrixBase& m) { return ei_pow(m.cwise().abs().cwise().pow(p).sum(), RealScalar(1)/p); } }; template struct ei_lpNorm_selector { inline static typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.cwise().abs().sum(); } }; template struct ei_lpNorm_selector { inline static typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.norm(); } }; template struct ei_lpNorm_selector { inline static typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.cwise().abs().maxCoeff(); } }; /** \array_module * * \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^p\infty \f$ * norm, that is the maximum of the absolute values of the coefficients of *this. * * \sa norm() */ template template inline typename NumTraits::Scalar>::Real MatrixBase::lpNorm() const { return ei_lpNorm_selector::run(*this); } #endif // EIGEN_ARRAY_NORMS_H