From 8998f4099e20ebc80db0aba2582301cd48d31c5a Mon Sep 17 00:00:00 2001 From: Benoit Steiner Date: Thu, 5 Jun 2014 10:49:34 -0700 Subject: Created additional tests for the tensor code. --- unsupported/test/cxx11_tensor_contraction.cpp | 163 ++++++++++++++++++++++++++ 1 file changed, 163 insertions(+) create mode 100644 unsupported/test/cxx11_tensor_contraction.cpp (limited to 'unsupported/test/cxx11_tensor_contraction.cpp') diff --git a/unsupported/test/cxx11_tensor_contraction.cpp b/unsupported/test/cxx11_tensor_contraction.cpp new file mode 100644 index 000000000..1c89dfdd1 --- /dev/null +++ b/unsupported/test/cxx11_tensor_contraction.cpp @@ -0,0 +1,163 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014 Benoit Steiner +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" + +#include + +using Eigen::Tensor; + +typedef Tensor::DimensionPair DimPair; + + +static void test_evals() +{ + Tensor mat1(2, 3); + Tensor mat2(2, 3); + Tensor mat3(3, 2); + + mat1.setRandom(); + mat2.setRandom(); + mat3.setRandom(); + + Tensor mat4(3,3); + mat4.setZero(); + Eigen::array dims3({{DimPair(0, 0)}}); + TensorEvaluator eval(mat1.contract(mat2, dims3)); + eval.evalTo(mat4.data()); + EIGEN_STATIC_ASSERT(TensorEvaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval.dimensions()[0], 3); + VERIFY_IS_EQUAL(eval.dimensions()[1], 3); + + VERIFY_IS_APPROX(mat4(0,0), mat1(0,0)*mat2(0,0) + mat1(1,0)*mat2(1,0)); + VERIFY_IS_APPROX(mat4(0,1), mat1(0,0)*mat2(0,1) + mat1(1,0)*mat2(1,1)); + VERIFY_IS_APPROX(mat4(0,2), mat1(0,0)*mat2(0,2) + mat1(1,0)*mat2(1,2)); + VERIFY_IS_APPROX(mat4(1,0), mat1(0,1)*mat2(0,0) + mat1(1,1)*mat2(1,0)); + VERIFY_IS_APPROX(mat4(1,1), mat1(0,1)*mat2(0,1) + mat1(1,1)*mat2(1,1)); + VERIFY_IS_APPROX(mat4(1,2), mat1(0,1)*mat2(0,2) + mat1(1,1)*mat2(1,2)); + VERIFY_IS_APPROX(mat4(2,0), mat1(0,2)*mat2(0,0) + mat1(1,2)*mat2(1,0)); + VERIFY_IS_APPROX(mat4(2,1), mat1(0,2)*mat2(0,1) + mat1(1,2)*mat2(1,1)); + VERIFY_IS_APPROX(mat4(2,2), mat1(0,2)*mat2(0,2) + mat1(1,2)*mat2(1,2)); + + Tensor mat5(2,2); + mat5.setZero(); + Eigen::array dims4({{DimPair(1, 1)}}); + TensorEvaluator eval2(mat1.contract(mat2, dims4)); + eval2.evalTo(mat5.data()); + EIGEN_STATIC_ASSERT(TensorEvaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval2.dimensions()[0], 2); + VERIFY_IS_EQUAL(eval2.dimensions()[1], 2); + + VERIFY_IS_APPROX(mat5(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(0,1) + mat1(0,2)*mat2(0,2)); + VERIFY_IS_APPROX(mat5(0,1), mat1(0,0)*mat2(1,0) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(1,2)); + VERIFY_IS_APPROX(mat5(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(0,1) + mat1(1,2)*mat2(0,2)); + VERIFY_IS_APPROX(mat5(1,1), mat1(1,0)*mat2(1,0) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(1,2)); + + Tensor mat6(2,2); + mat6.setZero(); + Eigen::array dims6({{DimPair(1, 0)}}); + TensorEvaluator eval3(mat1.contract(mat3, dims6)); + eval3.evalTo(mat6.data()); + EIGEN_STATIC_ASSERT(TensorEvaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval3.dimensions()[0], 2); + VERIFY_IS_EQUAL(eval3.dimensions()[1], 2); + + VERIFY_IS_APPROX(mat6(0,0), mat1(0,0)*mat3(0,0) + mat1(0,1)*mat3(1,0) + mat1(0,2)*mat3(2,0)); + VERIFY_IS_APPROX(mat6(0,1), mat1(0,0)*mat3(0,1) + mat1(0,1)*mat3(1,1) + mat1(0,2)*mat3(2,1)); + VERIFY_IS_APPROX(mat6(1,0), mat1(1,0)*mat3(0,0) + mat1(1,1)*mat3(1,0) + mat1(1,2)*mat3(2,0)); + VERIFY_IS_APPROX(mat6(1,1), mat1(1,0)*mat3(0,1) + mat1(1,1)*mat3(1,1) + mat1(1,2)*mat3(2,1)); +} + + +static void test_scalar() +{ + Tensor vec1({6}); + Tensor vec2({6}); + + vec1.setRandom(); + vec2.setRandom(); + + Tensor scalar(1); + scalar.setZero(); + Eigen::array dims({{DimPair(0, 0)}}); + TensorEvaluator eval(vec1.contract(vec2, dims)); + eval.evalTo(scalar.data()); + EIGEN_STATIC_ASSERT(TensorEvaluator::NumDims==1ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + + float expected = 0.0f; + for (int i = 0; i < 6; ++i) { + expected += vec1(i) * vec2(i); + } + VERIFY_IS_APPROX(scalar(0), expected); +} + + +static void test_multidims() +{ + Tensor mat1(2, 2, 2); + Tensor mat2(2, 2, 2, 2); + + mat1.setRandom(); + mat2.setRandom(); + + Tensor mat3(2, 2, 2); + mat3.setZero(); + Eigen::array dims({{DimPair(1, 2), DimPair(2, 3)}}); + TensorEvaluator eval(mat1.contract(mat2, dims)); + eval.evalTo(mat3.data()); + EIGEN_STATIC_ASSERT(TensorEvaluator::NumDims==3ul, YOU_MADE_A_PROGRAMMING_MISTAKE); + VERIFY_IS_EQUAL(eval.dimensions()[0], 2); + VERIFY_IS_EQUAL(eval.dimensions()[1], 2); + VERIFY_IS_EQUAL(eval.dimensions()[2], 2); + + VERIFY_IS_APPROX(mat3(0,0,0), mat1(0,0,0)*mat2(0,0,0,0) + mat1(0,1,0)*mat2(0,0,1,0) + + mat1(0,0,1)*mat2(0,0,0,1) + mat1(0,1,1)*mat2(0,0,1,1)); + VERIFY_IS_APPROX(mat3(0,0,1), mat1(0,0,0)*mat2(0,1,0,0) + mat1(0,1,0)*mat2(0,1,1,0) + + mat1(0,0,1)*mat2(0,1,0,1) + mat1(0,1,1)*mat2(0,1,1,1)); + VERIFY_IS_APPROX(mat3(0,1,0), mat1(0,0,0)*mat2(1,0,0,0) + mat1(0,1,0)*mat2(1,0,1,0) + + mat1(0,0,1)*mat2(1,0,0,1) + mat1(0,1,1)*mat2(1,0,1,1)); + VERIFY_IS_APPROX(mat3(0,1,1), mat1(0,0,0)*mat2(1,1,0,0) + mat1(0,1,0)*mat2(1,1,1,0) + + mat1(0,0,1)*mat2(1,1,0,1) + mat1(0,1,1)*mat2(1,1,1,1)); + VERIFY_IS_APPROX(mat3(1,0,0), mat1(1,0,0)*mat2(0,0,0,0) + mat1(1,1,0)*mat2(0,0,1,0) + + mat1(1,0,1)*mat2(0,0,0,1) + mat1(1,1,1)*mat2(0,0,1,1)); + VERIFY_IS_APPROX(mat3(1,0,1), mat1(1,0,0)*mat2(0,1,0,0) + mat1(1,1,0)*mat2(0,1,1,0) + + mat1(1,0,1)*mat2(0,1,0,1) + mat1(1,1,1)*mat2(0,1,1,1)); + VERIFY_IS_APPROX(mat3(1,1,0), mat1(1,0,0)*mat2(1,0,0,0) + mat1(1,1,0)*mat2(1,0,1,0) + + mat1(1,0,1)*mat2(1,0,0,1) + mat1(1,1,1)*mat2(1,0,1,1)); + VERIFY_IS_APPROX(mat3(1,1,1), mat1(1,0,0)*mat2(1,1,0,0) + mat1(1,1,0)*mat2(1,1,1,0) + + mat1(1,0,1)*mat2(1,1,0,1) + mat1(1,1,1)*mat2(1,1,1,1)); +} + + +static void test_expr() +{ + Tensor mat1(2, 3); + Tensor mat2(3, 2); + mat1.setRandom(); + mat2.setRandom(); + + Tensor mat3(2,2); + + Eigen::array dims({{DimPair(1, 0)}}); + mat3 = mat1.contract(mat2, dims); + + VERIFY_IS_APPROX(mat3(0,0), mat1(0,0)*mat2(0,0) + mat1(0,1)*mat2(1,0) + mat1(0,2)*mat2(2,0)); + VERIFY_IS_APPROX(mat3(0,1), mat1(0,0)*mat2(0,1) + mat1(0,1)*mat2(1,1) + mat1(0,2)*mat2(2,1)); + VERIFY_IS_APPROX(mat3(1,0), mat1(1,0)*mat2(0,0) + mat1(1,1)*mat2(1,0) + mat1(1,2)*mat2(2,0)); + VERIFY_IS_APPROX(mat3(1,1), mat1(1,0)*mat2(0,1) + mat1(1,1)*mat2(1,1) + mat1(1,2)*mat2(2,1)); +} + + +void test_cxx11_tensor_contraction() +{ + CALL_SUBTEST(test_evals()); + CALL_SUBTEST(test_scalar()); + CALL_SUBTEST(test_multidims()); + CALL_SUBTEST(test_expr()); +} -- cgit v1.2.3