From 5f350448e163c42b400c1191d790e3d2fa12d235 Mon Sep 17 00:00:00 2001 From: Benoit Jacob Date: Thu, 7 Aug 2008 21:48:21 +0000 Subject: - add kernel computation using the triangular solver - take advantage of the fact that our LU dec sorts the eigenvalues of U in decreasing order - add meta selector in determinant --- Eigen/src/LU/LU.h | 79 ++++++++++++++++++++++++++++++++++++++----------------- 1 file changed, 55 insertions(+), 24 deletions(-) (limited to 'Eigen/src/LU/LU.h') diff --git a/Eigen/src/LU/LU.h b/Eigen/src/LU/LU.h index b891b2fbf..5f6729251 100644 --- a/Eigen/src/LU/LU.h +++ b/Eigen/src/LU/LU.h @@ -51,8 +51,15 @@ template class LU typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; - typedef Matrix IntRowVectorType; + typedef Matrix IntRowVectorType; typedef Matrix IntColVectorType; + typedef Matrix RowVectorType; + typedef Matrix ColVectorType; + + enum { MaxKerDimAtCompileTime = EIGEN_ENUM_MIN( + MatrixType::MaxColsAtCompileTime, + MatrixType::MaxRowsAtCompileTime) + }; LU(const MatrixType& matrix); @@ -81,9 +88,9 @@ template class LU return m_q; } - inline const Matrix kernel() const; + inline const Matrix::MaxKerDimAtCompileTime> kernel() const; template typename ProductReturnType, OtherDerived>::Type::Eval @@ -131,7 +138,6 @@ template class LU IntColVectorType m_p; IntRowVectorType m_q; int m_det_pq; - Scalar m_biggest_eigenvalue_of_u; int m_rank; }; @@ -173,8 +179,7 @@ LU::LU(const MatrixType& matrix) if(k==0) biggest = biggest_in_corner; const Scalar lu_k_k = m_lu.coeff(k,k); - std::cout << lu_k_k << " " << biggest << std::endl; - if(ei_isMuchSmallerThan(lu_k_k, biggest)) { std::cout << "hello" << std::endl; continue; } + if(ei_isMuchSmallerThan(lu_k_k, biggest)) continue; if(k::LU(const MatrixType& matrix) m_det_pq = (number_of_transpositions%2) ? -1 : 1; - int index_of_biggest_in_diagonal; - m_lu.diagonal().cwise().abs().maxCoeff(&index_of_biggest_in_diagonal); - m_biggest_eigenvalue_of_u = m_lu.diagonal().coeff(index_of_biggest_in_diagonal); - m_rank = 0; for(int k = 0; k < size; k++) - m_rank += !ei_isMuchSmallerThan(m_lu.diagonal().coeff(k), m_biggest_eigenvalue_of_u); + m_rank += !ei_isMuchSmallerThan(m_lu.diagonal().coeff(k), + m_lu.diagonal().coeff(0)); } template typename ei_traits::Scalar LU::determinant() const { - if(!isInvertible()) return Scalar(0); - Scalar res = m_det_pq; - for(int k = 0; k < m_lu.diagonal().size(); k++) res *= m_lu.diagonal().coeff(k); - return res; + return m_lu.diagonal().redux(ei_scalar_product_op()) * Scalar(m_det_pq); } -#if 0 template -inline const Matrix kernel() const +inline const Matrix::MaxKerDimAtCompileTime> +LU::kernel() const { - Matrix - result(m_lu.rows(), dimensionOfKernel()); - + ei_assert(!isInvertible()); + const int dimker = dimensionOfKernel(), rows = m_lu.rows(), cols = m_lu.cols(); + Matrix::MaxKerDimAtCompileTime> + result(cols, dimker); + + /* Let us use the following lemma: + * + * Lemma: If the matrix A has the LU decomposition PAQ = LU, + * then Ker A = Q( Ker U ). + * + * Proof: trivial: just keep in mind that P, Q, L are invertible. + */ + + /* Thus, all we need to do is to compute Ker U, and then apply Q. + * + * U is upper triangular, with eigenvalues sorted in decreasing order of + * absolute value. Thus, the diagonal of U ends with exactly + * m_dimKer zero's. Let us use that to construct m_dimKer linearly + * independent vectors in Ker U. + */ + + Matrix + y(-m_lu.corner(TopRight, m_rank, dimker)); + + m_lu.corner(TopLeft, m_rank, m_rank) + .template marked() + .inverseProductInPlace(y); + + for(int i = 0; i < m_rank; i++) + result.row(m_q.coeff(i)) = y.row(i); + for(int i = m_rank; i < cols; i++) result.row(m_q.coeff(i)).setZero(); + for(int k = 0; k < dimker; k++) result.coeffRef(m_q.coeff(m_rank+k), k) = Scalar(1); + + return result; } -#endif /** \return the LU decomposition of \c *this. * -- cgit v1.2.3