From 3ed83fa6813bd1401adce03a87ad452661d72f5e Mon Sep 17 00:00:00 2001 From: Benoit Jacob Date: Sun, 9 Aug 2009 16:58:13 +0200 Subject: * add Jacobi transformations * add Jacobi (Hestenes) SVD decomposition for square matrices * add function for trivial Householder --- Eigen/Jacobi | 24 +++++ Eigen/SVD | 4 + Eigen/src/Core/MatrixBase.h | 6 ++ Eigen/src/Householder/Householder.h | 9 ++ Eigen/src/Jacobi/Jacobi.h | 91 +++++++++++++++++++ Eigen/src/SVD/JacobiSquareSVD.h | 169 ++++++++++++++++++++++++++++++++++++ 6 files changed, 303 insertions(+) create mode 100644 Eigen/Jacobi create mode 100644 Eigen/src/Jacobi/Jacobi.h create mode 100644 Eigen/src/SVD/JacobiSquareSVD.h diff --git a/Eigen/Jacobi b/Eigen/Jacobi new file mode 100644 index 000000000..33a6b757e --- /dev/null +++ b/Eigen/Jacobi @@ -0,0 +1,24 @@ +#ifndef EIGEN_JACOBI_MODULE_H +#define EIGEN_JACOBI_MODULE_H + +#include "Core" + +#include "src/Core/util/DisableMSVCWarnings.h" + +namespace Eigen { + +/** \defgroup Jacobi_Module Jacobi module + * This module provides Jacobi rotations. + * + * \code + * #include + * \endcode + */ + +#include "src/Jacobi/Jacobi.h" + +} // namespace Eigen + +#include "src/Core/util/EnableMSVCWarnings.h" + +#endif // EIGEN_JACOBI_MODULE_H diff --git a/Eigen/SVD b/Eigen/SVD index eef05564b..3aab35118 100644 --- a/Eigen/SVD +++ b/Eigen/SVD @@ -2,6 +2,8 @@ #define EIGEN_SVD_MODULE_H #include "Core" +#include "Householder" +#include "Jacobi" #include "src/Core/util/DisableMSVCWarnings.h" @@ -20,7 +22,9 @@ namespace Eigen { * \endcode */ +#include "src/SVD/Bidiagonalization.h" #include "src/SVD/SVD.h" +#include "src/SVD/JacobiSquareSVD.h" } // namespace Eigen diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h index 6ec7ddbb7..688b7c4d0 100644 --- a/Eigen/src/Core/MatrixBase.h +++ b/Eigen/src/Core/MatrixBase.h @@ -778,6 +778,12 @@ template class MatrixBase void applyHouseholderOnTheRight(const EssentialPart& essential, const RealScalar& beta); +///////// Jacobi module ///////// + + void applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s); + void applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s); + bool makeJacobi(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s); + bool makeJacobiForAtA(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s); #ifdef EIGEN_MATRIXBASE_PLUGIN #include EIGEN_MATRIXBASE_PLUGIN diff --git a/Eigen/src/Householder/Householder.h b/Eigen/src/Householder/Householder.h index 8972806de..2a4b1395c 100644 --- a/Eigen/src/Householder/Householder.h +++ b/Eigen/src/Householder/Householder.h @@ -32,6 +32,15 @@ template struct ei_decrement_size }; }; +template +void makeTrivialHouseholder( + EssentialPart *essential, + typename EssentialPart::RealScalar *beta) +{ + *beta = typename EssentialPart::RealScalar(0); + essential->setZero(); +} + template template void MatrixBase::makeHouseholder( diff --git a/Eigen/src/Jacobi/Jacobi.h b/Eigen/src/Jacobi/Jacobi.h new file mode 100644 index 000000000..993a723ab --- /dev/null +++ b/Eigen/src/Jacobi/Jacobi.h @@ -0,0 +1,91 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see . + +#ifndef EIGEN_JACOBI_H +#define EIGEN_JACOBI_H + +template +void MatrixBase::applyJacobiOnTheLeft(int p, int q, Scalar c, Scalar s) +{ + for(int i = 0; i < cols(); ++i) + { + Scalar tmp = coeff(p,i); + coeffRef(p,i) = c * tmp - s * coeff(q,i); + coeffRef(q,i) = s * tmp + c * coeff(q,i); + } +} + +template +void MatrixBase::applyJacobiOnTheRight(int p, int q, Scalar c, Scalar s) +{ + for(int i = 0; i < rows(); ++i) + { + Scalar tmp = coeff(i,p); + coeffRef(i,p) = c * tmp - s * coeff(i,q); + coeffRef(i,q) = s * tmp + c * coeff(i,q); + } +} + +template +bool ei_makeJacobi(Scalar x, Scalar y, Scalar z, Scalar max_coeff, Scalar *c, Scalar *s) +{ + if(ei_abs(y) < max_coeff * 0.5 * machine_epsilon()) + { + *c = Scalar(1); + *s = Scalar(0); + return true; + } + else + { + Scalar tau = (z - x) / (2 * y); + Scalar w = ei_sqrt(1 + ei_abs2(tau)); + Scalar t; + if(tau>0) + t = Scalar(1) / (tau + w); + else + t = Scalar(1) / (tau - w); + *c = Scalar(1) / ei_sqrt(1 + ei_abs2(t)); + *s = *c * t; + return false; + } +} + +template +inline bool MatrixBase::makeJacobi(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s) +{ + return ei_makeJacobi(coeff(p,p), coeff(p,q), coeff(q,q), max_coeff, c, s); +} + +template +inline bool MatrixBase::makeJacobiForAtA(int p, int q, Scalar max_coeff, Scalar *c, Scalar *s) +{ + return ei_makeJacobi(col(p).squaredNorm(), + col(p).dot(col(q)), + col(q).squaredNorm(), + max_coeff, + c,s); +} + + +#endif // EIGEN_JACOBI_H diff --git a/Eigen/src/SVD/JacobiSquareSVD.h b/Eigen/src/SVD/JacobiSquareSVD.h new file mode 100644 index 000000000..e9ecc89ac --- /dev/null +++ b/Eigen/src/SVD/JacobiSquareSVD.h @@ -0,0 +1,169 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Benoit Jacob +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see . + +#ifndef EIGEN_JACOBISQUARESVD_H +#define EIGEN_JACOBISQUARESVD_H + +/** \ingroup SVD_Module + * \nonstableyet + * + * \class JacobiSquareSVD + * + * \brief Jacobi SVD decomposition of a square matrix + * + * \param MatrixType the type of the matrix of which we are computing the SVD decomposition + * \param ComputeU whether the U matrix should be computed + * \param ComputeV whether the V matrix should be computed + * + * \sa MatrixBase::jacobiSvd() + */ +template class JacobiSquareSVD +{ + private: + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits::Real RealScalar; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + Options = MatrixType::Options + }; + + typedef Matrix DummyMatrixType; + typedef typename ei_meta_if, + DummyMatrixType>::ret MatrixUType; + typedef typename Diagonal::PlainMatrixType SingularValuesType; + typedef Matrix RowType; + typedef Matrix ColType; + + public: + + JacobiSquareSVD() : m_isInitialized(false) {} + + JacobiSquareSVD(const MatrixType& matrix) + { + compute(matrix); + } + + void compute(const MatrixType& matrix); + + const MatrixUType& matrixU() const + { + ei_assert(m_isInitialized && "SVD is not initialized."); + return m_matrixU; + } + + const SingularValuesType& singularValues() const + { + ei_assert(m_isInitialized && "SVD is not initialized."); + return m_singularValues; + } + + const MatrixUType& matrixV() const + { + ei_assert(m_isInitialized && "SVD is not initialized."); + return m_matrixV; + } + + protected: + MatrixUType m_matrixU; + MatrixUType m_matrixV; + SingularValuesType m_singularValues; + bool m_isInitialized; +}; + +template +void JacobiSquareSVD::compute(const MatrixType& matrix) +{ + MatrixType work_matrix(matrix); + int size = matrix.rows(); + if(ComputeU) m_matrixU = MatrixUType::Identity(size,size); + if(ComputeV) m_matrixV = MatrixUType::Identity(size,size); + m_singularValues.resize(size); + RealScalar max_coeff = work_matrix.cwise().abs().maxCoeff(); + for(int k = 1; k < 40; ++k) { + bool finished = true; + for(int p = 1; p < size; ++p) + { + for(int q = 0; q < p; ++q) + { + Scalar c, s; + finished &= work_matrix.makeJacobiForAtA(p,q,max_coeff,&c,&s); + work_matrix.applyJacobiOnTheRight(p,q,c,s); + if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c,s); + } + } + if(finished) break; + } + + for(int i = 0; i < size; ++i) + { + m_singularValues.coeffRef(i) = work_matrix.col(i).norm(); + } + + int first_zero = size; + RealScalar biggest = m_singularValues.maxCoeff(); + for(int i = 0; i < size; i++) + { + int pos; + RealScalar biggest_remaining = m_singularValues.end(size-i).maxCoeff(&pos); + if(first_zero == size && ei_isMuchSmallerThan(biggest_remaining, biggest)) first_zero = pos + i; + if(pos) + { + pos += i; + std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); + if(ComputeU) work_matrix.col(pos).swap(work_matrix.col(i)); + if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i)); + } + } + + if(ComputeU) + { + for(int i = 0; i < first_zero; ++i) + { + m_matrixU.col(i) = work_matrix.col(i) / m_singularValues.coeff(i); + } + if(first_zero < size) + { + for(int i = first_zero; i < size; ++i) + { + for(int j = 0; j < size; ++j) + { + m_matrixU.col(i).setZero(); + m_matrixU.coeffRef(j,i) = Scalar(1); + for(int k = 0; k < first_zero; ++k) + m_matrixU.col(i) -= m_matrixU.col(i).dot(m_matrixU.col(k)) * m_matrixU.col(k); + RealScalar n = m_matrixU.col(i).norm(); + if(!ei_isMuchSmallerThan(n, biggest)) + { + m_matrixU.col(i) /= n; + break; + } + } + } + } + } +} +#endif // EIGEN_JACOBISQUARESVD_H -- cgit v1.2.3