aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/SSE
Commit message (Collapse)AuthorAge
...
* Add shift_left<N> and shift_right<N> coefficient-wise unary Array functionsGravatar Joel Holdsworth2020-03-19
|
* Bug #1785: Introduce numext::rint.Gravatar Ilya Tokar2020-01-07
| | | | | | This provides a new op that matches std::rint and previous behavior of pround. Also adds corresponding unsupported/../Tensor op. Performance is the same as e. g. floor (tested SSE/AVX).
* Improve accuracy of fast approximate tanh and the logistic functions in ↵Gravatar Rasmus Munk Larsen2019-12-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function). This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in https://gitlab.com/libeigen/eigen/commit/66f07efeaed39d6a67005343d7e0caf7d9eeacdb), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9. This change also contains a few improvements to speed up the original float specialization of logistic: - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case). - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup). The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set. The benchmarks below repeated calls u = v.logistic() (u = v.tanh(), respectively) where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1]. Benchmark numbers for logistic: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 4467 4468 155835 model_time: 4827 AVX BM_eigen_logistic_float 2347 2347 299135 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1467 1467 476143 model_time: 2926 AVX512 BM_eigen_logistic_float 805 805 858696 model_time: 1463 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_logistic_float 2589 2590 270264 model_time: 4827 AVX BM_eigen_logistic_float 1428 1428 489265 model_time: 2926 AVX+FMA BM_eigen_logistic_float 1059 1059 662255 model_time: 2926 AVX512 BM_eigen_logistic_float 673 673 1000000 model_time: 1463 Benchmark numbers for tanh: Before: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2391 2391 292624 model_time: 4242 AVX BM_eigen_tanh_float 1256 1256 554662 model_time: 2633 AVX+FMA BM_eigen_tanh_float 823 823 866267 model_time: 1609 AVX512 BM_eigen_tanh_float 443 443 1578999 model_time: 805 After: Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- SSE BM_eigen_tanh_float 2588 2588 273531 model_time: 4242 AVX BM_eigen_tanh_float 1536 1536 452321 model_time: 2633 AVX+FMA BM_eigen_tanh_float 1007 1007 694681 model_time: 1609 AVX512 BM_eigen_tanh_float 471 471 1472178 model_time: 805
* Bug 1785: fix pround on x86 to use the same rounding mode as std::round.Gravatar Ilya Tokar2019-12-12
| | | | | | This also adds pset1frombits helper to Packet[24]d. Makes round ~45% slower for SSE: 1.65µs ± 1% before vs 2.45µs ± 2% after, stil an order of magnitude faster than scalar version: 33.8µs ± 2%.
* Update old links to bitbucket to point to gitlab.comGravatar Gael Guennebaud2019-12-04
|
* 1. Fix a bug in psqrt and make it return 0 for +inf arguments.Gravatar Rasmus Munk Larsen2019-11-15
| | | | | | | | | | | | | | | | 2. Simplify handling of special cases by taking advantage of the fact that the builtin vrsqrt approximation handles negative, zero and +inf arguments correctly. This speeds up the SSE and AVX implementations by ~20%. 3. Make the Newton-Raphson formula used for rsqrt more numerically robust: Before: y = y * (1.5 - x/2 * y^2) After: y = y * (1.5 - y * (x/2) * y) Forming y^2 can overflow for very large or very small (denormalized) values of x, while x*y ~= 1. For AVX512, this makes it possible to compute accurate results for denormal inputs down to ~1e-42 in single precision. 4. Add a faster double precision implementation for Knights Landing using the vrsqrt28 instruction and a single Newton-Raphson iteration. Benchmark results: https://bitbucket.org/snippets/rmlarsen/5LBq9o
* Move implementation of vectorized error function erf() to ↵Gravatar Rasmus Munk Larsen2019-09-27
| | | | SpecialFunctionsImpl.h.
* Add generic PacketMath implementation of the Error Function (erf).Gravatar Rasmus Munk Larsen2019-09-19
|
* Add Bessel functions to SpecialFunctions.Gravatar Srinivas Vasudevan2019-09-14
| | | | | | | | | - Split SpecialFunctions files in to a separate BesselFunctions file. In particular add: - Modified bessel functions of the second kind k0, k1, k0e, k1e - Bessel functions of the first kind j0, j1 - Bessel functions of the second kind y0, y1
* Add packetized versions of i0e and i1e special functions.Gravatar Srinivas Vasudevan2019-09-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - In particular refactor the i0e and i1e code so scalar and vectorized path share code. - Move chebevl to GenericPacketMathFunctions. A brief benchmark with building Eigen with FMA, AVX and AVX2 flags Before: CPU: Intel Haswell with HyperThreading (6 cores) Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- BM_eigen_i0e_double/1 57.3 57.3 10000000 BM_eigen_i0e_double/8 398 398 1748554 BM_eigen_i0e_double/64 3184 3184 218961 BM_eigen_i0e_double/512 25579 25579 27330 BM_eigen_i0e_double/4k 205043 205042 3418 BM_eigen_i0e_double/32k 1646038 1646176 422 BM_eigen_i0e_double/256k 13180959 13182613 53 BM_eigen_i0e_double/1M 52684617 52706132 10 BM_eigen_i0e_float/1 28.4 28.4 24636711 BM_eigen_i0e_float/8 75.7 75.7 9207634 BM_eigen_i0e_float/64 512 512 1000000 BM_eigen_i0e_float/512 4194 4194 166359 BM_eigen_i0e_float/4k 32756 32761 21373 BM_eigen_i0e_float/32k 261133 261153 2678 BM_eigen_i0e_float/256k 2087938 2088231 333 BM_eigen_i0e_float/1M 8380409 8381234 84 BM_eigen_i1e_double/1 56.3 56.3 10000000 BM_eigen_i1e_double/8 397 397 1772376 BM_eigen_i1e_double/64 3114 3115 223881 BM_eigen_i1e_double/512 25358 25361 27761 BM_eigen_i1e_double/4k 203543 203593 3462 BM_eigen_i1e_double/32k 1613649 1613803 428 BM_eigen_i1e_double/256k 12910625 12910374 54 BM_eigen_i1e_double/1M 51723824 51723991 10 BM_eigen_i1e_float/1 28.3 28.3 24683049 BM_eigen_i1e_float/8 74.8 74.9 9366216 BM_eigen_i1e_float/64 505 505 1000000 BM_eigen_i1e_float/512 4068 4068 171690 BM_eigen_i1e_float/4k 31803 31806 21948 BM_eigen_i1e_float/32k 253637 253692 2763 BM_eigen_i1e_float/256k 2019711 2019918 346 BM_eigen_i1e_float/1M 8238681 8238713 86 After: CPU: Intel Haswell with HyperThreading (6 cores) Benchmark Time(ns) CPU(ns) Iterations ----------------------------------------------------------------- BM_eigen_i0e_double/1 15.8 15.8 44097476 BM_eigen_i0e_double/8 99.3 99.3 7014884 BM_eigen_i0e_double/64 777 777 886612 BM_eigen_i0e_double/512 6180 6181 100000 BM_eigen_i0e_double/4k 48136 48140 14678 BM_eigen_i0e_double/32k 385936 385943 1801 BM_eigen_i0e_double/256k 3293324 3293551 228 BM_eigen_i0e_double/1M 12423600 12424458 57 BM_eigen_i0e_float/1 16.3 16.3 43038042 BM_eigen_i0e_float/8 30.1 30.1 23456931 BM_eigen_i0e_float/64 169 169 4132875 BM_eigen_i0e_float/512 1338 1339 516860 BM_eigen_i0e_float/4k 10191 10191 68513 BM_eigen_i0e_float/32k 81338 81337 8531 BM_eigen_i0e_float/256k 651807 651984 1000 BM_eigen_i0e_float/1M 2633821 2634187 268 BM_eigen_i1e_double/1 16.2 16.2 42352499 BM_eigen_i1e_double/8 110 110 6316524 BM_eigen_i1e_double/64 822 822 851065 BM_eigen_i1e_double/512 6480 6481 100000 BM_eigen_i1e_double/4k 51843 51843 10000 BM_eigen_i1e_double/32k 414854 414852 1680 BM_eigen_i1e_double/256k 3320001 3320568 212 BM_eigen_i1e_double/1M 13442795 13442391 53 BM_eigen_i1e_float/1 17.6 17.6 41025735 BM_eigen_i1e_float/8 35.5 35.5 19597891 BM_eigen_i1e_float/64 240 240 2924237 BM_eigen_i1e_float/512 1424 1424 485953 BM_eigen_i1e_float/4k 10722 10723 65162 BM_eigen_i1e_float/32k 86286 86297 8048 BM_eigen_i1e_float/256k 691821 691868 1000 BM_eigen_i1e_float/1M 2777336 2777747 256 This shows anywhere from a 50% to 75% improvement on these operations. I've also benchmarked without any of these flags turned on, and got similar performance to before (if not better). Also tested packetmath.cpp + special_functions to ensure no regressions.
* Merged eigen/eigen into defaultGravatar Srinivas Vasudevan2019-09-11
|\
| * Fix compilation without vector engine available (e.g., x86 with SSE disabled):Gravatar Gael Guennebaud2019-09-05
| | | | | | | | -> ppolevl is required by ndtri even for the scalar path
* | Merged eigen/eigenGravatar Srinivas Vasudevan2019-09-04
|\|
* | Merging from eigen/eigen.Gravatar Srinivas Vasudevan2019-09-03
|\ \
* | | Add ndtri function, the inverse of the normal distribution function.Gravatar Srinivas Vasudevan2019-08-12
| | |
| | * PR 681: Add ndtri function, the inverse of the normal distribution function.Gravatar Srinivas Vasudevan2019-08-12
| |/
| * Clean up float16 a.k.a. Eigen::half support in Eigen. Move the definition of ↵Gravatar Rasmus Munk Larsen2019-08-27
| | | | | | | | half to Core/arch/Default and move arch-specific packet ops to their respective sub-directories.
| * Implement vectorized versions of log1p and expm1 in Eigen using Kahan's ↵Gravatar Rasmus Munk Larsen2019-08-12
|/ | | | | | | | | | | | formulas, and change the scalar implementations to properly handle infinite arguments. Depending on instruction set, significant speedups are observed for the vectorized path: log1p wall time is reduced 60-93% (2.5x - 15x speedup) expm1 wall time is reduced 0-85% (1x - 7x speedup) The scalar path is slower by 20-30% due to the extra branch needed to handle +infinity correctly. Full benchmarks measured on Intel(R) Xeon(R) Gold 6154 here: https://bitbucket.org/snippets/rmlarsen/MXBkpM
* Various fixes for packet ops.Gravatar Rasmus Munk Larsen2019-06-20
| | | | | | 1. Fix buggy pcmp_eq and unit test for half types. 2. Add unit test for pselect and add specializations for SSE 4.1, AVX512, and half types. 3. Get rid of FIXME: Implement faster pnegate for half by XOR'ing with a sign bit mask.
* Add masked_store_available to unpacket_traitsGravatar Eugene Zhulenev2019-05-02
|
* Fix regression in changeset ae33e866c750c6c24ada5c6f7f3ec15815d0e683Gravatar Gael Guennebaud2019-05-02
|
* Fix compilation with PGI version 19Gravatar Andy May2019-04-25
|
* Adding lowlevel APIs for optimized RHS packet load in TensorFlowGravatar Anuj Rawat2019-04-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | SpatialConvolution Low-level APIs are added in order to optimized packet load in gemm_pack_rhs in TensorFlow SpatialConvolution. The optimization is for scenario when a packet is split across 2 adjacent columns. In this case we read it as two 'partial' packets and then merge these into 1. Currently this only works for Packet16f (AVX512) and Packet8f (AVX2). We plan to add this for other packet types (such as Packet8d) also. This optimization shows significant speedup in SpatialConvolution with certain parameters. Some examples are below. Benchmark parameters are specified as: Batch size, Input dim, Depth, Num of filters, Filter dim Speedup numbers are specified for number of threads 1, 2, 4, 8, 16. AVX512: Parameters | Speedup (Num of threads: 1, 2, 4, 8, 16) ----------------------------|------------------------------------------ 128, 24x24, 3, 64, 5x5 |2.18X, 2.13X, 1.73X, 1.64X, 1.66X 128, 24x24, 1, 64, 8x8 |2.00X, 1.98X, 1.93X, 1.91X, 1.91X 32, 24x24, 3, 64, 5x5 |2.26X, 2.14X, 2.17X, 2.22X, 2.33X 128, 24x24, 3, 64, 3x3 |1.51X, 1.45X, 1.45X, 1.67X, 1.57X 32, 14x14, 24, 64, 5x5 |1.21X, 1.19X, 1.16X, 1.70X, 1.17X 128, 128x128, 3, 96, 11x11 |2.17X, 2.18X, 2.19X, 2.20X, 2.18X AVX2: Parameters | Speedup (Num of threads: 1, 2, 4, 8, 16) ----------------------------|------------------------------------------ 128, 24x24, 3, 64, 5x5 | 1.66X, 1.65X, 1.61X, 1.56X, 1.49X 32, 24x24, 3, 64, 5x5 | 1.71X, 1.63X, 1.77X, 1.58X, 1.68X 128, 24x24, 1, 64, 5x5 | 1.44X, 1.40X, 1.38X, 1.37X, 1.33X 128, 24x24, 3, 64, 3x3 | 1.68X, 1.63X, 1.58X, 1.56X, 1.62X 128, 128x128, 3, 96, 11x11 | 1.36X, 1.36X, 1.37X, 1.37X, 1.37X In the higher level benchmark cifar10, we observe a runtime improvement of around 6% for AVX512 on Intel Skylake server (8 cores). On lower level PackRhs micro-benchmarks specified in TensorFlow tensorflow/core/kernels/eigen_spatial_convolutions_test.cc, we observe the following runtime numbers: AVX512: Parameters | Runtime without patch (ns) | Runtime with patch (ns) | Speedup ---------------------------------------------------------------|----------------------------|-------------------------|--------- BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56) | 41350 | 15073 | 2.74X BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56) | 7277 | 7341 | 0.99X BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56) | 8675 | 8681 | 1.00X BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56) | 24155 | 16079 | 1.50X BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56) | 25052 | 17152 | 1.46X BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) | 18269 | 18345 | 1.00X BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) | 19468 | 19872 | 0.98X BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432) | 156060 | 42432 | 3.68X BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432) | 132701 | 36944 | 3.59X AVX2: Parameters | Runtime without patch (ns) | Runtime with patch (ns) | Speedup ---------------------------------------------------------------|----------------------------|-------------------------|--------- BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56) | 26233 | 12393 | 2.12X BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56) | 6091 | 6062 | 1.00X BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56) | 7427 | 7408 | 1.00X BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56) | 23453 | 20826 | 1.13X BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56) | 23167 | 22091 | 1.09X BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) | 23422 | 23682 | 0.99X BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) | 23165 | 23663 | 0.98X BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432) | 72689 | 44969 | 1.62X BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432) | 61732 | 39779 | 1.55X All benchmarks on Intel Skylake server with 8 cores.
* Fix conflicts and mergeGravatar Gael Guennebaud2019-01-30
|\
* | Fix compilation error for logical packet ops with older compilers.Gravatar Rasmus Munk Larsen2019-01-16
| |
* | Rename pones -> ptrue. Use _CMP_TRUE_UQ where appropriate.Gravatar Rasmus Munk Larsen2019-01-09
|\ \
* | | Collapsed revisionGravatar Rasmus Munk Larsen2019-01-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | * Collapsed revision * Add packet up "pones". Write pnot(a) as pxor(pones(a), a). * Collapsed revision * Simplify a bit. * Undo useless diffs. * Fix typo.
| * | Undo useless diffs.Gravatar Rasmus Munk Larsen2019-01-09
| | |
| * | Simplify a bit.Gravatar Rasmus Munk Larsen2019-01-09
| | |
| * | Add packet up "pones". Write pnot(a) as pxor(pones(a), a).Gravatar Rasmus Munk Larsen2019-01-09
|/ /
* | Merged eigen/eigen into defaultGravatar Rasmus Larsen2019-01-09
|\ \
| * | bug #1652: implements a much more accurate version of vectorized sin/cos. ↵Gravatar Gael Guennebaud2019-01-09
| | | | | | | | | | | | | | | | | | | | | This new version achieve same speed for SSE/AVX, and is slightly faster with FMA. Guarantees are as follows: - no FMA: 1ULP up to 3pi, 2ULP up to sin(25966) and cos(18838), fallback to std::sin/cos for larger inputs - FMA: 1ULP up to sin(117435.992) and cos(71476.0625), fallback to std::sin/cos for larger inputs
* | | Add support for pcmp_eq and pnot, including for complex types.Gravatar Rasmus Munk Larsen2019-01-07
|/ /
| * Introducing "vectorized" byte on unpacket_traits structsGravatar Gustavo Lima Chaves2018-12-19
|/ | | | | | | | | | | | | | | | | | | | | This is a preparation to a change on gebp_traits, where a new template argument will be introduced to dictate the packet size, so it won't be bound to the current/max packet size only anymore. By having packet types defined early on gebp_traits, one has now to act on packet types, not scalars anymore, for the enum values defined on that class. One approach for reaching the vectorizable/size properties one needs there could be getting the packet's scalar again with unpacket_traits<>, then the size/Vectorizable enum entries from packet_traits<>. It turns out guards like "#ifndef EIGEN_VECTORIZE_AVX512" at AVX/PacketMath.h will hide smaller packet variations of packet_traits<> for some types (and it makes sense to keep that). In other words, one can't go back to the scalar and create a new PacketType, as this will always lead to the maximum packet type for the architecture. The less costly/invasive solution for that, thus, is to add the vectorizable info on every unpacket_traits struct as well.
* Properly set the number of registers for AVX512Gravatar Gael Guennebaud2018-12-11
|
* bug #1641: fix testing of pandnot and fix pandnot for complex on SSE/AVX/AVX512Gravatar Gael Guennebaud2018-12-08
|
* Enable FMA with MSVC (through /arch:AVX2). To make this possible, I also has ↵Gravatar Gael Guennebaud2018-12-07
| | | | to turn the #warning regarding AVX512-FMA to a #error.
* AVX512f includes FMA but GCC does not define __FMA__ with -mavx512f onlyGravatar Gael Guennebaud2018-12-06
|
* Implement AVX512 vectorization of std::complex<float/double>Gravatar Gael Guennebaud2018-12-06
|
* Extend the generic psin_float code to handle cosine and make SSE and AVX use ↵Gravatar Gael Guennebaud2018-11-30
| | | | it (-> this adds pcos for AVX)
* same for pmaxGravatar Gael Guennebaud2018-11-28
|
* pmin/pmax o SSE: make sure to use AVX instruction with AVX enabled, and ↵Gravatar Gael Guennebaud2018-11-28
| | | | disable gcc workaround for fixed gcc versions
* Use explicit packet type in SSE/PacketMath pldexpGravatar Eugene Zhulenev2018-11-27
|
* bug #1631: fix compilation with ARM NEON and clang, and cleanup the weird ↵Gravatar Gael Guennebaud2018-11-27
| | | | pshiftright_and_cast and pcast_and_shiftleft functions.
* Update pshiftleft to pass the shift as a true compile-time integer.Gravatar Gael Guennebaud2018-11-27
|
* Unify SSE/AVX psin functions.Gravatar Gael Guennebaud2018-11-27
| | | | | | | | It is based on the SSE version which is much more accurate, though very slightly slower. This changeset also includes the following required changes: - add packet-float to packet-int type traits - add packet float<->int reinterpret casts - add faster pselect for AVX based on blendv
* cleanupGravatar Gael Guennebaud2018-11-26
|
* Unify SSE and AVX pexp for double.Gravatar Gael Guennebaud2018-11-26
|
* Unify SSE and AVX implementation of pexpGravatar Gael Guennebaud2018-11-26
|
* First step toward a unification of packet log implementation, currently only ↵Gravatar Gael Guennebaud2018-11-26
| | | | | | SSE and AVX are unified. To this end, I added the following functions: pzero, pcmp_*, pfrexp, pset1frombits functions.