aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/arch/CUDA/Complex.h
Commit message (Collapse)AuthorAge
* Better CUDA complex division.Gravatar Antonio Sanchez2021-04-29
| | | | | | The original produced NaNs when dividing 0/b for subnormal b. The `complex_divide_stable` was changed to use the more common Smith's algorithm.
* Fix NVCC+ICC issues.Gravatar Antonio Sanchez2021-03-15
| | | | | | | | | | | | | | | | | | | | | | | | NVCC does not understand `__forceinline`, so we need to use `inline` when compiling for GPU. ICC specializes `std::complex` operators for `float` and `double` by default, which cannot be used on device and conflict with Eigen's workaround in CUDA/Complex.h. This can be prevented by defining `_OVERRIDE_COMPLEX_SPECIALIZATION_` before including `<complex>`. Added this define to the tests and to `Eigen/Core`, but this will not work if the user includes `<complex>` before `<Eigen/Core>`. ICC also seems to generate a duplicate `Map` symbol in `PlainObjectBase`: ``` error: "Map" has already been declared in the current scope static ConstMapType Map(const Scalar *data) ``` I tracked this down to `friend class Eigen::Map`. Putting the `friend` statements at the bottom of the class seems to resolve this issue. Fixes #2180
* Specialize std::complex operators for use on GPU device.Gravatar Antonio Sanchez2021-01-22
| | | | | | | | | | | | | | | | | | NVCC and older versions of clang do not fully support `std::complex` on device, leading to either compile errors (Cannot call `__host__` function) or worse, runtime errors (Illegal instruction). For most functions, we can implement specialized `numext` versions. Here we specialize the standard operators (with the exception of stream operators and member function operators with a scalar that are already specialized in `<complex>`) so they can be used in device code as well. To import these operators into the current scope, use `EIGEN_USING_STD_COMPLEX_OPERATORS`. By default, these are imported into the `Eigen`, `Eigen:internal`, and `Eigen::numext` namespaces. This allow us to remove specializations of the sum/difference/product/quotient ops, and allow us to treat complex numbers like most other scalars (e.g. in tests).
* Improved std::complex sqrt and rsqrt.Gravatar Antonio Sanchez2021-01-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously `complex_sqrt` was only used for CUDA and MSVC), and implements custom `complex_rsqrt`. Also introduces `numext::rsqrt` to simplify implementation, and modified `numext::hypot` to adhere to IEEE IEC 6059 for special cases. The `complex_sqrt` and `complex_rsqrt` implementations were found to be significantly faster than `std::sqrt<std::complex<T>>` and `1/numext::sqrt<std::complex<T>>`. Benchmark file attached. ``` GCC 10, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 9.21 ns 9.21 ns 73225448 BM_StdSqrt<std::complex<float>> 17.1 ns 17.1 ns 40966545 BM_Sqrt<std::complex<double>> 8.53 ns 8.53 ns 81111062 BM_StdSqrt<std::complex<double>> 21.5 ns 21.5 ns 32757248 BM_Rsqrt<std::complex<float>> 10.3 ns 10.3 ns 68047474 BM_DivSqrt<std::complex<float>> 16.3 ns 16.3 ns 42770127 BM_Rsqrt<std::complex<double>> 11.3 ns 11.3 ns 61322028 BM_DivSqrt<std::complex<double>> 16.5 ns 16.5 ns 42200711 Clang 11, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 7.46 ns 7.45 ns 90742042 BM_StdSqrt<std::complex<float>> 16.6 ns 16.6 ns 42369878 BM_Sqrt<std::complex<double>> 8.49 ns 8.49 ns 81629030 BM_StdSqrt<std::complex<double>> 21.8 ns 21.7 ns 31809588 BM_Rsqrt<std::complex<float>> 8.39 ns 8.39 ns 82933666 BM_DivSqrt<std::complex<float>> 14.4 ns 14.4 ns 48638676 BM_Rsqrt<std::complex<double>> 9.83 ns 9.82 ns 70068956 BM_DivSqrt<std::complex<double>> 15.7 ns 15.7 ns 44487798 Clang 9, Pixel 2, aarch64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 24.2 ns 24.1 ns 28616031 BM_StdSqrt<std::complex<float>> 104 ns 103 ns 6826926 BM_Sqrt<std::complex<double>> 31.8 ns 31.8 ns 22157591 BM_StdSqrt<std::complex<double>> 128 ns 128 ns 5437375 BM_Rsqrt<std::complex<float>> 31.9 ns 31.8 ns 22384383 BM_DivSqrt<std::complex<float>> 99.2 ns 98.9 ns 7250438 BM_Rsqrt<std::complex<double>> 46.0 ns 45.8 ns 15338689 BM_DivSqrt<std::complex<double>> 119 ns 119 ns 5898944 ```
* Only specialize complex `sqrt_impl` for CUDA if not MSVC.Gravatar Antonio Sanchez2021-01-11
| | | | | We already specialize `sqrt_impl` on windows due to MSVC's mishandling of `inf` (!355).
* Fix MSVC complex sqrt and packetmath test.Gravatar Antonio Sanchez2021-01-08
| | | | | | | | | MSVC incorrectly handles `inf` cases for `std::sqrt<std::complex<T>>`. Here we replace it with a custom version (currently used on GPU). Also fixed the `packetmath` test, which previously skipped several corner cases since `CHECK_CWISE1` only tests the first `PacketSize` elements.
* Add CUDA complex sqrt.Gravatar Antonio Sanchez2020-12-22
| | | | | | | | | | | | | | | This is to support scalar `sqrt` of complex numbers `std::complex<T>` on device, requested by Tensorflow folks. Technically `std::complex` is not supported by NVCC on device (though it is by clang), so the default `sqrt(std::complex<T>)` function only works on the host. Here we create an overload to add back the functionality. Also modified the CMake file to add `--relaxed-constexpr` (or equivalent) flag for NVCC to allow calling constexpr functions from device functions, and added support for specifying compute architecture for NVCC (was already available for clang).
* Add a EIGEN_NO_CUDA option, and introduce EIGEN_CUDACC and EIGEN_CUDA_ARCH ↵Gravatar Gael Guennebaud2017-07-17
| | | | aliases
* Fixed nested angle barckets >> issue when compiling with cuda 8Gravatar Abhijit Kundu2017-04-27
|
* Added support for constand std::complex numbers on GPUGravatar Benoit Steiner2016-10-03
|
* Added missing typedefsGravatar Benoit Steiner2016-09-20
|
* Add CUDA-specific std::complex<T> specializations for scalar_sum_op, ↵Gravatar RJ Ryan2016-09-20
scalar_difference_op, scalar_product_op, and scalar_quotient_op.