diff options
Diffstat (limited to 'unsupported/test/cxx11_tensor_patch_sycl.cpp')
-rw-r--r-- | unsupported/test/cxx11_tensor_patch_sycl.cpp | 249 |
1 files changed, 249 insertions, 0 deletions
diff --git a/unsupported/test/cxx11_tensor_patch_sycl.cpp b/unsupported/test/cxx11_tensor_patch_sycl.cpp new file mode 100644 index 000000000..88a29cb31 --- /dev/null +++ b/unsupported/test/cxx11_tensor_patch_sycl.cpp @@ -0,0 +1,249 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2016 +// Mehdi Goli Codeplay Software Ltd. +// Ralph Potter Codeplay Software Ltd. +// Luke Iwanski Codeplay Software Ltd. +// Contact: <eigen@codeplay.com> +// Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#define EIGEN_TEST_NO_LONGDOUBLE +#define EIGEN_TEST_NO_COMPLEX +#define EIGEN_TEST_FUNC cxx11_tensor_patch_sycl +#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t +#define EIGEN_USE_SYCL + +#include "main.h" + +#include <Eigen/CXX11/Tensor> + +using Eigen::Tensor; + +template <typename DataType, int DataLayout, typename IndexType> +static void test_simple_patch_sycl(const Eigen::SyclDevice& sycl_device){ + + IndexType sizeDim1 = 2; + IndexType sizeDim2 = 3; + IndexType sizeDim3 = 5; + IndexType sizeDim4 = 7; + array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}}; + array<IndexType, 5> patchTensorRange; + if (DataLayout == ColMajor) { + patchTensorRange = {{1, 1, 1, 1, sizeDim1*sizeDim2*sizeDim3*sizeDim4}}; + }else{ + patchTensorRange = {{sizeDim1*sizeDim2*sizeDim3*sizeDim4,1, 1, 1, 1}}; + } + + Tensor<DataType, 4, DataLayout,IndexType> tensor(tensorRange); + Tensor<DataType, 5, DataLayout,IndexType> no_patch(patchTensorRange); + + tensor.setRandom(); + + array<ptrdiff_t, 4> patch_dims; + patch_dims[0] = 1; + patch_dims[1] = 1; + patch_dims[2] = 1; + patch_dims[3] = 1; + + const size_t tensorBuffSize =tensor.size()*sizeof(DataType); + size_t patchTensorBuffSize =no_patch.size()*sizeof(DataType); + DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize)); + DataType* gpu_data_no_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); + + TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange); + TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_no_patch(gpu_data_no_patch, patchTensorRange); + + sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize); + gpu_no_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); + sycl_device.memcpyDeviceToHost(no_patch.data(), gpu_data_no_patch, patchTensorBuffSize); + + if (DataLayout == ColMajor) { + VERIFY_IS_EQUAL(no_patch.dimension(0), 1); + VERIFY_IS_EQUAL(no_patch.dimension(1), 1); + VERIFY_IS_EQUAL(no_patch.dimension(2), 1); + VERIFY_IS_EQUAL(no_patch.dimension(3), 1); + VERIFY_IS_EQUAL(no_patch.dimension(4), tensor.size()); + } else { + VERIFY_IS_EQUAL(no_patch.dimension(0), tensor.size()); + VERIFY_IS_EQUAL(no_patch.dimension(1), 1); + VERIFY_IS_EQUAL(no_patch.dimension(2), 1); + VERIFY_IS_EQUAL(no_patch.dimension(3), 1); + VERIFY_IS_EQUAL(no_patch.dimension(4), 1); + } + + for (int i = 0; i < tensor.size(); ++i) { + VERIFY_IS_EQUAL(tensor.data()[i], no_patch.data()[i]); + } + + patch_dims[0] = 2; + patch_dims[1] = 3; + patch_dims[2] = 5; + patch_dims[3] = 7; + + if (DataLayout == ColMajor) { + patchTensorRange = {{sizeDim1,sizeDim2,sizeDim3,sizeDim4,1}}; + }else{ + patchTensorRange = {{1,sizeDim1,sizeDim2,sizeDim3,sizeDim4}}; + } + Tensor<DataType, 5, DataLayout,IndexType> single_patch(patchTensorRange); + patchTensorBuffSize =single_patch.size()*sizeof(DataType); + DataType* gpu_data_single_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); + TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_single_patch(gpu_data_single_patch, patchTensorRange); + + gpu_single_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); + sycl_device.memcpyDeviceToHost(single_patch.data(), gpu_data_single_patch, patchTensorBuffSize); + + if (DataLayout == ColMajor) { + VERIFY_IS_EQUAL(single_patch.dimension(0), 2); + VERIFY_IS_EQUAL(single_patch.dimension(1), 3); + VERIFY_IS_EQUAL(single_patch.dimension(2), 5); + VERIFY_IS_EQUAL(single_patch.dimension(3), 7); + VERIFY_IS_EQUAL(single_patch.dimension(4), 1); + } else { + VERIFY_IS_EQUAL(single_patch.dimension(0), 1); + VERIFY_IS_EQUAL(single_patch.dimension(1), 2); + VERIFY_IS_EQUAL(single_patch.dimension(2), 3); + VERIFY_IS_EQUAL(single_patch.dimension(3), 5); + VERIFY_IS_EQUAL(single_patch.dimension(4), 7); + } + + for (int i = 0; i < tensor.size(); ++i) { + VERIFY_IS_EQUAL(tensor.data()[i], single_patch.data()[i]); + } + patch_dims[0] = 1; + patch_dims[1] = 2; + patch_dims[2] = 2; + patch_dims[3] = 1; + + if (DataLayout == ColMajor) { + patchTensorRange = {{1,2,2,1,2*2*4*7}}; + }else{ + patchTensorRange = {{2*2*4*7, 1, 2,2,1}}; + } + Tensor<DataType, 5, DataLayout,IndexType> twod_patch(patchTensorRange); + patchTensorBuffSize =twod_patch.size()*sizeof(DataType); + DataType* gpu_data_twod_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); + TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_twod_patch(gpu_data_twod_patch, patchTensorRange); + + gpu_twod_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); + sycl_device.memcpyDeviceToHost(twod_patch.data(), gpu_data_twod_patch, patchTensorBuffSize); + + if (DataLayout == ColMajor) { + VERIFY_IS_EQUAL(twod_patch.dimension(0), 1); + VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); + VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); + VERIFY_IS_EQUAL(twod_patch.dimension(3), 1); + VERIFY_IS_EQUAL(twod_patch.dimension(4), 2*2*4*7); + } else { + VERIFY_IS_EQUAL(twod_patch.dimension(0), 2*2*4*7); + VERIFY_IS_EQUAL(twod_patch.dimension(1), 1); + VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); + VERIFY_IS_EQUAL(twod_patch.dimension(3), 2); + VERIFY_IS_EQUAL(twod_patch.dimension(4), 1); + } + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 2; ++j) { + for (int k = 0; k < 4; ++k) { + for (int l = 0; l < 7; ++l) { + int patch_loc; + if (DataLayout == ColMajor) { + patch_loc = i + 2 * (j + 2 * (k + 4 * l)); + } else { + patch_loc = l + 7 * (k + 4 * (j + 2 * i)); + } + for (int x = 0; x < 2; ++x) { + for (int y = 0; y < 2; ++y) { + if (DataLayout == ColMajor) { + VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(0,x,y,0,patch_loc)); + } else { + VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(patch_loc,0,x,y,0)); + } + } + } + } + } + } + } + + patch_dims[0] = 1; + patch_dims[1] = 2; + patch_dims[2] = 3; + patch_dims[3] = 5; + + if (DataLayout == ColMajor) { + patchTensorRange = {{1,2,3,5,2*2*3*3}}; + }else{ + patchTensorRange = {{2*2*3*3, 1, 2,3,5}}; + } + Tensor<DataType, 5, DataLayout,IndexType> threed_patch(patchTensorRange); + patchTensorBuffSize =threed_patch.size()*sizeof(DataType); + DataType* gpu_data_threed_patch = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize)); + TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_threed_patch(gpu_data_threed_patch, patchTensorRange); + + gpu_threed_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims); + sycl_device.memcpyDeviceToHost(threed_patch.data(), gpu_data_threed_patch, patchTensorBuffSize); + + if (DataLayout == ColMajor) { + VERIFY_IS_EQUAL(threed_patch.dimension(0), 1); + VERIFY_IS_EQUAL(threed_patch.dimension(1), 2); + VERIFY_IS_EQUAL(threed_patch.dimension(2), 3); + VERIFY_IS_EQUAL(threed_patch.dimension(3), 5); + VERIFY_IS_EQUAL(threed_patch.dimension(4), 2*2*3*3); + } else { + VERIFY_IS_EQUAL(threed_patch.dimension(0), 2*2*3*3); + VERIFY_IS_EQUAL(threed_patch.dimension(1), 1); + VERIFY_IS_EQUAL(threed_patch.dimension(2), 2); + VERIFY_IS_EQUAL(threed_patch.dimension(3), 3); + VERIFY_IS_EQUAL(threed_patch.dimension(4), 5); + } + + for (int i = 0; i < 2; ++i) { + for (int j = 0; j < 2; ++j) { + for (int k = 0; k < 3; ++k) { + for (int l = 0; l < 3; ++l) { + int patch_loc; + if (DataLayout == ColMajor) { + patch_loc = i + 2 * (j + 2 * (k + 3 * l)); + } else { + patch_loc = l + 3 * (k + 3 * (j + 2 * i)); + } + for (int x = 0; x < 2; ++x) { + for (int y = 0; y < 3; ++y) { + for (int z = 0; z < 5; ++z) { + if (DataLayout == ColMajor) { + VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(0,x,y,z,patch_loc)); + } else { + VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(patch_loc,0,x,y,z)); + } + } + } + } + } + } + } + } + sycl_device.deallocate(gpu_data_tensor); + sycl_device.deallocate(gpu_data_no_patch); + sycl_device.deallocate(gpu_data_single_patch); + sycl_device.deallocate(gpu_data_twod_patch); + sycl_device.deallocate(gpu_data_threed_patch); +} + +template<typename DataType, typename dev_Selector> void sycl_tensor_patch_test_per_device(dev_Selector s){ + QueueInterface queueInterface(s); + auto sycl_device = Eigen::SyclDevice(&queueInterface); + test_simple_patch_sycl<DataType, RowMajor, int64_t>(sycl_device); + test_simple_patch_sycl<DataType, ColMajor, int64_t>(sycl_device); +} +void test_cxx11_tensor_patch_sycl() +{ + for (const auto& device :Eigen::get_sycl_supported_devices()) { + CALL_SUBTEST(sycl_tensor_patch_test_per_device<float>(device)); + } +} |