aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h138
1 files changed, 67 insertions, 71 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
index 5846a5e1b..333ca91e6 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
@@ -172,67 +172,69 @@ struct ThreadPoolDevice {
pool_->Schedule(func);
}
- // parallelFor executes f with [0, size) arguments in parallel and waits for
- // completion. Block size is choosen between min_block_size and
- // 2 * min_block_size to achieve the best parallel efficiency.
- // If min_block_size == -1, parallelFor uses block size of 1.
- // If hard_align > 0, block size is aligned to hard_align.
- // If soft_align > hard_align, block size is aligned to soft_align provided
- // that it does not increase block size too much.
- void parallelFor(Index size, Index min_block_size, Index hard_align,
- Index soft_align,
+ // parallelFor executes f with [0, n) arguments in parallel and waits for
+ // completion. F accepts a half-open interval [first, last).
+ // Block size is choosen based on the iteration cost and resulting parallel
+ // efficiency. If block_align is not nullptr, it is called to round up the
+ // block size.
+ void parallelFor(Index n, const TensorOpCost& cost,
+ std::function<Index(Index)> block_align,
std::function<void(Index, Index)> f) const {
- if (size <= 1 || (min_block_size != -1 && size < min_block_size) ||
- numThreads() == 1) {
- f(0, size);
+ typedef TensorCostModel<ThreadPoolDevice> CostModel;
+ if (n <= 1 || numThreads() == 1 ||
+ CostModel::numThreads(n, cost, numThreads()) == 1) {
+ f(0, n);
return;
}
- Index block_size = 1;
- Index block_count = size;
- if (min_block_size != -1) {
- // Calculate block size based on (1) estimated cost and (2) parallel
- // efficiency. We want blocks to be not too small to mitigate
- // parallelization overheads; not too large to mitigate tail effect and
- // potential load imbalance and we also want number of blocks to be evenly
- // dividable across threads.
- min_block_size = numext::maxi<Index>(min_block_size, 1);
- block_size = numext::mini(min_block_size, size);
- // Upper bound on block size:
- const Index max_block_size = numext::mini(min_block_size * 2, size);
- block_size = numext::mini(
- alignBlockSize(block_size, hard_align, soft_align), size);
- block_count = divup(size, block_size);
- // Calculate parallel efficiency as fraction of total CPU time used for
- // computations:
- double max_efficiency =
- static_cast<double>(block_count) /
- (divup<int>(block_count, numThreads()) * numThreads());
- // Now try to increase block size up to max_block_size as long as it
- // doesn't decrease parallel efficiency.
- for (Index prev_block_count = block_count; prev_block_count > 1;) {
- // This is the next block size that divides size into a smaller number
- // of blocks than the current block_size.
- Index coarser_block_size = divup(size, prev_block_count - 1);
- coarser_block_size =
- alignBlockSize(coarser_block_size, hard_align, soft_align);
- if (coarser_block_size > max_block_size) {
- break; // Reached max block size. Stop.
- }
- // Recalculate parallel efficiency.
- const Index coarser_block_count = divup(size, coarser_block_size);
- eigen_assert(coarser_block_count < prev_block_count);
- prev_block_count = coarser_block_count;
- const double coarser_efficiency =
- static_cast<double>(coarser_block_count) /
- (divup<int>(coarser_block_count, numThreads()) * numThreads());
- if (coarser_efficiency + 0.01 >= max_efficiency) {
- // Taking it.
- block_size = coarser_block_size;
- block_count = coarser_block_count;
- if (max_efficiency < coarser_efficiency) {
- max_efficiency = coarser_efficiency;
- }
+ // Calculate block size based on (1) the iteration cost and (2) parallel
+ // efficiency. We want blocks to be not too small to mitigate
+ // parallelization overheads; not too large to mitigate tail
+ // effect and potential load imbalance and we also want number
+ // of blocks to be evenly dividable across threads.
+
+ double block_size_f = 1.0 / CostModel::taskSize(1, cost);
+ Index block_size = numext::mini(n, numext::maxi<Index>(1, block_size_f));
+ const Index max_block_size =
+ numext::mini(n, numext::maxi<Index>(1, 2 * block_size_f));
+ if (block_align) {
+ Index new_block_size = block_align(block_size);
+ eigen_assert(new_block_size >= block_size);
+ block_size = numext::mini(n, new_block_size);
+ }
+ Index block_count = divup(n, block_size);
+ // Calculate parallel efficiency as fraction of total CPU time used for
+ // computations:
+ double max_efficiency =
+ static_cast<double>(block_count) /
+ (divup<int>(block_count, numThreads()) * numThreads());
+ // Now try to increase block size up to max_block_size as long as it
+ // doesn't decrease parallel efficiency.
+ for (Index prev_block_count = block_count; prev_block_count > 1;) {
+ // This is the next block size that divides size into a smaller number
+ // of blocks than the current block_size.
+ Index coarser_block_size = divup(n, prev_block_count - 1);
+ if (block_align) {
+ Index new_block_size = block_align(coarser_block_size);
+ eigen_assert(new_block_size >= coarser_block_size);
+ coarser_block_size = numext::mini(n, new_block_size);
+ }
+ if (coarser_block_size > max_block_size) {
+ break; // Reached max block size. Stop.
+ }
+ // Recalculate parallel efficiency.
+ const Index coarser_block_count = divup(n, coarser_block_size);
+ eigen_assert(coarser_block_count < prev_block_count);
+ prev_block_count = coarser_block_count;
+ const double coarser_efficiency =
+ static_cast<double>(coarser_block_count) /
+ (divup<int>(coarser_block_count, numThreads()) * numThreads());
+ if (coarser_efficiency + 0.01 >= max_efficiency) {
+ // Taking it.
+ block_size = coarser_block_size;
+ block_count = coarser_block_count;
+ if (max_efficiency < coarser_efficiency) {
+ max_efficiency = coarser_efficiency;
}
}
}
@@ -251,26 +253,20 @@ struct ThreadPoolDevice {
}
// Split into halves and submit to the pool.
Index mid = first + divup((last - first) / 2, block_size) * block_size;
- pool_->Schedule([=, &handleRange]() { handleRange(mid, last); });
- pool_->Schedule([=, &handleRange]() { handleRange(first, mid); });
+ enqueue_func([=, &handleRange]() { handleRange(mid, last); });
+ enqueue_func([=, &handleRange]() { handleRange(first, mid); });
};
- handleRange(0, size);
+ handleRange(0, n);
barrier.Wait();
}
- private:
- static Index alignBlockSize(Index size, Index hard_align, Index soft_align) {
- if (soft_align > hard_align && size >= 4 * soft_align) {
- // Align to soft_align, if it won't increase size by more than 25%.
- return (size + soft_align - 1) & ~(soft_align - 1);
- }
- if (hard_align > 0) {
- return (size + hard_align - 1) & ~(hard_align - 1);
- }
- return size;
+ // Convenience wrapper for parallelFor that does not align blocks.
+ void parallelFor(Index n, const TensorOpCost& cost,
+ std::function<void(Index, Index)> f) const {
+ parallelFor(n, cost, nullptr, std::move(f));
}
-
+ private:
ThreadPoolInterface* pool_;
size_t num_threads_;
};