aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseCore/CompressedStorage.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/SparseCore/CompressedStorage.h')
-rw-r--r--Eigen/src/SparseCore/CompressedStorage.h239
1 files changed, 239 insertions, 0 deletions
diff --git a/Eigen/src/SparseCore/CompressedStorage.h b/Eigen/src/SparseCore/CompressedStorage.h
new file mode 100644
index 000000000..9d2fb7231
--- /dev/null
+++ b/Eigen/src/SparseCore/CompressedStorage.h
@@ -0,0 +1,239 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_COMPRESSED_STORAGE_H
+#define EIGEN_COMPRESSED_STORAGE_H
+
+/** Stores a sparse set of values as a list of values and a list of indices.
+ *
+ */
+template<typename _Scalar,typename _Index>
+class CompressedStorage
+{
+ public:
+
+ typedef _Scalar Scalar;
+ typedef _Index Index;
+
+ protected:
+
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ public:
+
+ CompressedStorage()
+ : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
+ {}
+
+ CompressedStorage(size_t size)
+ : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
+ {
+ resize(size);
+ }
+
+ CompressedStorage(const CompressedStorage& other)
+ : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0)
+ {
+ *this = other;
+ }
+
+ CompressedStorage& operator=(const CompressedStorage& other)
+ {
+ resize(other.size());
+ memcpy(m_values, other.m_values, m_size * sizeof(Scalar));
+ memcpy(m_indices, other.m_indices, m_size * sizeof(Index));
+ return *this;
+ }
+
+ void swap(CompressedStorage& other)
+ {
+ std::swap(m_values, other.m_values);
+ std::swap(m_indices, other.m_indices);
+ std::swap(m_size, other.m_size);
+ std::swap(m_allocatedSize, other.m_allocatedSize);
+ }
+
+ ~CompressedStorage()
+ {
+ delete[] m_values;
+ delete[] m_indices;
+ }
+
+ void reserve(size_t size)
+ {
+ size_t newAllocatedSize = m_size + size;
+ if (newAllocatedSize > m_allocatedSize)
+ reallocate(newAllocatedSize);
+ }
+
+ void squeeze()
+ {
+ if (m_allocatedSize>m_size)
+ reallocate(m_size);
+ }
+
+ void resize(size_t size, float reserveSizeFactor = 0)
+ {
+ if (m_allocatedSize<size)
+ reallocate(size + size_t(reserveSizeFactor*size));
+ m_size = size;
+ }
+
+ void append(const Scalar& v, Index i)
+ {
+ Index id = static_cast<Index>(m_size);
+ resize(m_size+1, 1);
+ m_values[id] = v;
+ m_indices[id] = i;
+ }
+
+ inline size_t size() const { return m_size; }
+ inline size_t allocatedSize() const { return m_allocatedSize; }
+ inline void clear() { m_size = 0; }
+
+ inline Scalar& value(size_t i) { return m_values[i]; }
+ inline const Scalar& value(size_t i) const { return m_values[i]; }
+
+ inline Index& index(size_t i) { return m_indices[i]; }
+ inline const Index& index(size_t i) const { return m_indices[i]; }
+
+ static CompressedStorage Map(Index* indices, Scalar* values, size_t size)
+ {
+ CompressedStorage res;
+ res.m_indices = indices;
+ res.m_values = values;
+ res.m_allocatedSize = res.m_size = size;
+ return res;
+ }
+
+ /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */
+ inline Index searchLowerIndex(Index key) const
+ {
+ return searchLowerIndex(0, m_size, key);
+ }
+
+ /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */
+ inline Index searchLowerIndex(size_t start, size_t end, Index key) const
+ {
+ while(end>start)
+ {
+ size_t mid = (end+start)>>1;
+ if (m_indices[mid]<key)
+ start = mid+1;
+ else
+ end = mid;
+ }
+ return static_cast<Index>(start);
+ }
+
+ /** \returns the stored value at index \a key
+ * If the value does not exist, then the value \a defaultValue is returned without any insertion. */
+ inline Scalar at(Index key, Scalar defaultValue = Scalar(0)) const
+ {
+ if (m_size==0)
+ return defaultValue;
+ else if (key==m_indices[m_size-1])
+ return m_values[m_size-1];
+ // ^^ optimization: let's first check if it is the last coefficient
+ // (very common in high level algorithms)
+ const size_t id = searchLowerIndex(0,m_size-1,key);
+ return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
+ }
+
+ /** Like at(), but the search is performed in the range [start,end) */
+ inline Scalar atInRange(size_t start, size_t end, Index key, Scalar defaultValue = Scalar(0)) const
+ {
+ if (start>=end)
+ return Scalar(0);
+ else if (end>start && key==m_indices[end-1])
+ return m_values[end-1];
+ // ^^ optimization: let's first check if it is the last coefficient
+ // (very common in high level algorithms)
+ const size_t id = searchLowerIndex(start,end-1,key);
+ return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue;
+ }
+
+ /** \returns a reference to the value at index \a key
+ * If the value does not exist, then the value \a defaultValue is inserted
+ * such that the keys are sorted. */
+ inline Scalar& atWithInsertion(Index key, Scalar defaultValue = Scalar(0))
+ {
+ size_t id = searchLowerIndex(0,m_size,key);
+ if (id>=m_size || m_indices[id]!=key)
+ {
+ resize(m_size+1,1);
+ for (size_t j=m_size-1; j>id; --j)
+ {
+ m_indices[j] = m_indices[j-1];
+ m_values[j] = m_values[j-1];
+ }
+ m_indices[id] = key;
+ m_values[id] = defaultValue;
+ }
+ return m_values[id];
+ }
+
+ void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
+ {
+ size_t k = 0;
+ size_t n = size();
+ for (size_t i=0; i<n; ++i)
+ {
+ if (!internal::isMuchSmallerThan(value(i), reference, epsilon))
+ {
+ value(k) = value(i);
+ index(k) = index(i);
+ ++k;
+ }
+ }
+ resize(k,0);
+ }
+
+ protected:
+
+ inline void reallocate(size_t size)
+ {
+ Scalar* newValues = new Scalar[size];
+ Index* newIndices = new Index[size];
+ size_t copySize = (std::min)(size, m_size);
+ // copy
+ internal::smart_copy(m_values, m_values+copySize, newValues);
+ internal::smart_copy(m_indices, m_indices+copySize, newIndices);
+ // delete old stuff
+ delete[] m_values;
+ delete[] m_indices;
+ m_values = newValues;
+ m_indices = newIndices;
+ m_allocatedSize = size;
+ }
+
+ protected:
+ Scalar* m_values;
+ Index* m_indices;
+ size_t m_size;
+ size_t m_allocatedSize;
+
+};
+
+#endif // EIGEN_COMPRESSED_STORAGE_H