aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SVD/SVD.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/SVD/SVD.h')
-rw-r--r--Eigen/src/SVD/SVD.h59
1 files changed, 38 insertions, 21 deletions
diff --git a/Eigen/src/SVD/SVD.h b/Eigen/src/SVD/SVD.h
index ed0e69f91..a9e22dfd4 100644
--- a/Eigen/src/SVD/SVD.h
+++ b/Eigen/src/SVD/SVD.h
@@ -73,11 +73,25 @@ template<typename _MatrixType> class SVD
*/
SVD() : m_matU(), m_matV(), m_sigma(), m_isInitialized(false) {}
- SVD(const MatrixType& matrix)
- : m_matU(matrix.rows(), matrix.rows()),
- m_matV(matrix.cols(),matrix.cols()),
- m_sigma(matrix.cols()),
- m_isInitialized(false)
+ /** \brief Default Constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa JacobiSVD()
+ */
+ SVD(int rows, int cols) : m_matU(rows, rows),
+ m_matV(cols,cols),
+ m_sigma(std::min(rows, cols)),
+ m_workMatrix(rows, cols),
+ m_rv1(cols),
+ m_isInitialized(false) {}
+
+ SVD(const MatrixType& matrix) : m_matU(matrix.rows(), matrix.rows()),
+ m_matV(matrix.cols(),matrix.cols()),
+ m_sigma(std::min(matrix.rows(), matrix.cols())),
+ m_workMatrix(matrix.rows(), matrix.cols()),
+ m_rv1(matrix.cols()),
+ m_isInitialized(false)
{
compute(matrix);
}
@@ -165,6 +179,8 @@ template<typename _MatrixType> class SVD
MatrixVType m_matV;
/** \internal */
SingularValuesType m_sigma;
+ MatrixType m_workMatrix;
+ RowVector m_rv1;
bool m_isInitialized;
int m_rows, m_cols;
};
@@ -185,11 +201,12 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
m_matU.setZero();
m_sigma.resize(n);
m_matV.resize(n,n);
+ m_workMatrix = matrix;
int max_iters = 30;
MatrixVType& V = m_matV;
- MatrixType A = matrix;
+ MatrixType& A = m_workMatrix;
SingularValuesType& W = m_sigma;
bool flag;
@@ -198,14 +215,14 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
bool convergence = true;
Scalar eps = NumTraits<Scalar>::dummy_precision();
- RowVector rv1(n);
+ m_rv1.resize(n);
g = scale = anorm = 0;
// Householder reduction to bidiagonal form.
for (i=0; i<n; i++)
{
l = i+2;
- rv1[i] = scale*g;
+ m_rv1[i] = scale*g;
g = s = scale = 0.0;
if (i < m)
{
@@ -246,16 +263,16 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
g = -sign(ei_sqrt(s),f);
h = f*g - s;
A(i,l-1) = f-g;
- rv1.tail(n-l+1) = A.row(i).tail(n-l+1)/h;
+ m_rv1.tail(n-l+1) = A.row(i).tail(n-l+1)/h;
for (j=l-1; j<m; j++)
{
s = A.row(i).tail(n-l+1).dot(A.row(j).tail(n-l+1));
- A.row(j).tail(n-l+1) += s*rv1.tail(n-l+1).transpose();
+ A.row(j).tail(n-l+1) += s*m_rv1.tail(n-l+1).transpose();
}
A.row(i).tail(n-l+1) *= scale;
}
}
- anorm = std::max( anorm, (ei_abs(W[i])+ei_abs(rv1[i])) );
+ anorm = std::max( anorm, (ei_abs(W[i])+ei_abs(m_rv1[i])) );
}
// Accumulation of right-hand transformations.
for (i=n-1; i>=0; i--)
@@ -277,7 +294,7 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
V.col(i).tail(n-l).setZero();
}
V(i, i) = 1.0;
- g = rv1[i];
+ g = m_rv1[i];
l = i;
}
// Accumulation of left-hand transformations.
@@ -318,7 +335,7 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
nm = l-1;
// Note that rv1[1] is always zero.
//if ((double)(ei_abs(rv1[l])+anorm) == anorm)
- if (l==0 || ei_abs(rv1[l]) <= eps*anorm)
+ if (l==0 || ei_abs(m_rv1[l]) <= eps*anorm)
{
flag = false;
break;
@@ -333,8 +350,8 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
s = 1.0;
for (i=l ;i<k+1; i++)
{
- f = s*rv1[i];
- rv1[i] = c*rv1[i];
+ f = s*m_rv1[i];
+ m_rv1[i] = c*m_rv1[i];
//if ((double)(ei_abs(f)+anorm) == anorm)
if (ei_abs(f) <= eps*anorm)
break;
@@ -363,8 +380,8 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
x = W[l]; // Shift from bottom 2-by-2 minor.
nm = k-1;
y = W[nm];
- g = rv1[nm];
- h = rv1[k];
+ g = m_rv1[nm];
+ h = m_rv1[k];
f = ((y-z)*(y+z) + (g-h)*(g+h))/(Scalar(2.0)*h*y);
g = pythag(f,1.0);
f = ((x-z)*(x+z) + h*((y/(f+sign(g,f)))-h))/x;
@@ -373,13 +390,13 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
for (j=l; j<=nm; j++)
{
i = j+1;
- g = rv1[i];
+ g = m_rv1[i];
y = W[i];
h = s*g;
g = c*g;
z = pythag(f,h);
- rv1[j] = z;
+ m_rv1[j] = z;
c = f/z;
s = h/z;
f = x*c + g*s;
@@ -401,8 +418,8 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
x = c*y - s*g;
A.applyOnTheRight(i,j,PlanarRotation<Scalar>(c,s));
}
- rv1[l] = 0.0;
- rv1[k] = f;
+ m_rv1[l] = 0.0;
+ m_rv1[k] = f;
W[k] = x;
}
}