aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/QR
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/QR')
-rwxr-xr-xEigen/src/QR/HessenbergDecomposition.h15
-rw-r--r--Eigen/src/QR/QR.h4
-rw-r--r--Eigen/src/QR/QrInstantiations.cpp (renamed from Eigen/src/QR/QrInstanciations.cpp)8
-rw-r--r--Eigen/src/QR/SelfAdjointEigenSolver.h2
-rwxr-xr-xEigen/src/QR/Tridiagonalization.h91
5 files changed, 67 insertions, 53 deletions
diff --git a/Eigen/src/QR/HessenbergDecomposition.h b/Eigen/src/QR/HessenbergDecomposition.h
index 0cfd61832..8f4710993 100755
--- a/Eigen/src/QR/HessenbergDecomposition.h
+++ b/Eigen/src/QR/HessenbergDecomposition.h
@@ -60,11 +60,11 @@ template<typename _MatrixType> class HessenbergDecomposition
NestByValue<Block<
MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
- HessenbergDecomposition()
- {}
-
- HessenbergDecomposition(int rows, int cols)
- : m_matrix(rows,cols), m_hCoeffs(rows-1)
+ /** This constructor initializes a HessenbergDecomposition object for
+ * further use with HessenbergDecomposition::compute()
+ */
+ HessenbergDecomposition(int size = Size==Dynamic ? 2 : Size)
+ : m_matrix(size,size), m_hCoeffs(size-1)
{}
HessenbergDecomposition(const MatrixType& matrix)
@@ -121,6 +121,7 @@ template<typename _MatrixType> class HessenbergDecomposition
CoeffVectorType m_hCoeffs;
};
+#ifndef EIGEN_HIDE_HEAVY_CODE
/** \internal
* Performs a tridiagonal decomposition of \a matA in place.
@@ -223,6 +224,8 @@ HessenbergDecomposition<MatrixType>::matrixQ(void) const
return matQ;
}
+#endif // EIGEN_HIDE_HEAVY_CODE
+
/** constructs and returns the matrix H.
* Note that the matrix H is equivalent to the upper part of the packed matrix
* (including the lower sub-diagonal). Therefore, it might be often sufficient
@@ -233,7 +236,7 @@ typename HessenbergDecomposition<MatrixType>::MatrixType
HessenbergDecomposition<MatrixType>::matrixH(void) const
{
// FIXME should this function (and other similar) rather take a matrix as argument
- // and fill it (avoids temporaries)
+ // and fill it (to avoid temporaries)
int n = m_matrix.rows();
MatrixType matH = m_matrix;
matH.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
diff --git a/Eigen/src/QR/QR.h b/Eigen/src/QR/QR.h
index 2bf6c72b2..4f5b4feee 100644
--- a/Eigen/src/QR/QR.h
+++ b/Eigen/src/QR/QR.h
@@ -75,6 +75,8 @@ template<typename MatrixType> class QR
VectorType m_hCoeffs;
};
+#ifndef EIGEN_HIDE_HEAVY_CODE
+
template<typename MatrixType>
void QR<MatrixType>::_compute(const MatrixType& matrix)
{
@@ -157,6 +159,8 @@ MatrixType QR<MatrixType>::matrixQ(void) const
return res;
}
+#endif // EIGEN_HIDE_HEAVY_CODE
+
/** \return the QR decomposition of \c *this.
*
* \sa class QR
diff --git a/Eigen/src/QR/QrInstanciations.cpp b/Eigen/src/QR/QrInstantiations.cpp
index 0c2d66853..dacb05d3d 100644
--- a/Eigen/src/QR/QrInstanciations.cpp
+++ b/Eigen/src/QR/QrInstantiations.cpp
@@ -22,9 +22,11 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
-#ifdef EIGEN_EXTERN_INSTANCIATIONS
-#undef EIGEN_EXTERN_INSTANCIATIONS
+#ifndef EIGEN_EXTERN_INSTANTIATIONS
+#define EIGEN_EXTERN_INSTANTIATIONS
#endif
+#include "../../Core"
+#undef EIGEN_EXTERN_INSTANTIATIONS
#include "../../QR"
@@ -36,4 +38,6 @@ template static void ei_tridiagonal_qr_step(double* , double* , int, int, double
template static void ei_tridiagonal_qr_step(float* , float* , int, int, std::complex<float>* , int);
template static void ei_tridiagonal_qr_step(double* , double* , int, int, std::complex<double>* , int);
+EIGEN_QR_MODULE_INSTANTIATE();
+
}
diff --git a/Eigen/src/QR/SelfAdjointEigenSolver.h b/Eigen/src/QR/SelfAdjointEigenSolver.h
index 011ca0c01..262eba4bf 100644
--- a/Eigen/src/QR/SelfAdjointEigenSolver.h
+++ b/Eigen/src/QR/SelfAdjointEigenSolver.h
@@ -223,7 +223,7 @@ MatrixBase<Derived>::matrixNorm() const
::matrixNorm(derived());
}
-#ifndef EIGEN_EXTERN_INSTANCIATIONS
+#ifndef EIGEN_EXTERN_INSTANTIATIONS
template<typename RealScalar, typename Scalar>
static void ei_tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, int start, int end, Scalar* matrixQ, int n)
{
diff --git a/Eigen/src/QR/Tridiagonalization.h b/Eigen/src/QR/Tridiagonalization.h
index e76fbad96..1473b5bfa 100755
--- a/Eigen/src/QR/Tridiagonalization.h
+++ b/Eigen/src/QR/Tridiagonalization.h
@@ -60,11 +60,11 @@ template<typename _MatrixType> class Tridiagonalization
NestByValue<Block<
MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalReturnType;
- Tridiagonalization()
- {}
-
- Tridiagonalization(int rows, int cols)
- : m_matrix(rows,cols), m_hCoeffs(rows-1)
+ /** This constructor initializes a Tridiagonalization object for
+ * further use with Tridiagonalization::compute()
+ */
+ Tridiagonalization(int size = Size==Dynamic ? 2 : Size)
+ : m_matrix(size,size), m_hCoeffs(size-1)
{}
Tridiagonalization(const MatrixType& matrix)
@@ -90,7 +90,7 @@ template<typename _MatrixType> class Tridiagonalization
*
* \sa packedMatrix()
*/
- CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
+ inline CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }
/** \returns the internal result of the decomposition.
*
@@ -108,7 +108,7 @@ template<typename _MatrixType> class Tridiagonalization
*
* See LAPACK for further details on this packed storage.
*/
- const MatrixType& packedMatrix(void) const { return m_matrix; }
+ inline const MatrixType& packedMatrix(void) const { return m_matrix; }
MatrixType matrixQ(void) const;
MatrixType matrixT(void) const;
@@ -128,6 +128,44 @@ template<typename _MatrixType> class Tridiagonalization
CoeffVectorType m_hCoeffs;
};
+/** \returns an expression of the diagonal vector */
+template<typename MatrixType>
+const typename Tridiagonalization<MatrixType>::DiagonalReturnType
+Tridiagonalization<MatrixType>::diagonal(void) const
+{
+ return m_matrix.diagonal().nestByValue().real();
+}
+
+/** \returns an expression of the sub-diagonal vector */
+template<typename MatrixType>
+const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
+Tridiagonalization<MatrixType>::subDiagonal(void) const
+{
+ int n = m_matrix.rows();
+ return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
+ .nestByValue().diagonal().nestByValue().real();
+}
+
+/** constructs and returns the tridiagonal matrix T.
+ * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
+ * Therefore, it might be often sufficient to directly use the packed matrix, or the vector
+ * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
+ */
+template<typename MatrixType>
+typename Tridiagonalization<MatrixType>::MatrixType
+Tridiagonalization<MatrixType>::matrixT(void) const
+{
+ // FIXME should this function (and other similar) rather take a matrix as argument
+ // and fill it (avoids temporaries)
+ int n = m_matrix.rows();
+ MatrixType matT = m_matrix;
+ matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().conjugate();
+ matT.corner(TopRight,n-2, n-2).template part<Upper>().setZero();
+ matT.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
+ return matT;
+}
+
+#ifndef EIGEN_HIDE_HEAVY_CODE
/** \internal
* Performs a tridiagonal decomposition of \a matA in place.
@@ -235,43 +273,6 @@ Tridiagonalization<MatrixType>::matrixQ(void) const
return matQ;
}
-/** \returns an expression of the diagonal vector */
-template<typename MatrixType>
-const typename Tridiagonalization<MatrixType>::DiagonalReturnType
-Tridiagonalization<MatrixType>::diagonal(void) const
-{
- return m_matrix.diagonal().nestByValue().real();
-}
-
-/** \returns an expression of the sub-diagonal vector */
-template<typename MatrixType>
-const typename Tridiagonalization<MatrixType>::SubDiagonalReturnType
-Tridiagonalization<MatrixType>::subDiagonal(void) const
-{
- int n = m_matrix.rows();
- return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
- .nestByValue().diagonal().nestByValue().real();
-}
-
-/** constructs and returns the tridiagonal matrix T.
- * Note that the matrix T is equivalent to the diagonal and sub-diagonal of the packed matrix.
- * Therefore, it might be often sufficient to directly use the packed matrix, or the vector
- * expressions returned by diagonal() and subDiagonal() instead of creating a new matrix.
- */
-template<typename MatrixType>
-typename Tridiagonalization<MatrixType>::MatrixType
-Tridiagonalization<MatrixType>::matrixT(void) const
-{
- // FIXME should this function (and other similar) rather take a matrix as argument
- // and fill it (avoids temporaries)
- int n = m_matrix.rows();
- MatrixType matT = m_matrix;
- matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().conjugate();
- matT.corner(TopRight,n-2, n-2).template part<Upper>().setZero();
- matT.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
- return matT;
-}
-
/** Performs a full decomposition in place */
template<typename MatrixType>
void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
@@ -337,4 +338,6 @@ void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, Diago
}
}
+#endif // EIGEN_HIDE_HEAVY_CODE
+
#endif // EIGEN_TRIDIAGONALIZATION_H