aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/LU/FullPivLU.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/LU/FullPivLU.h')
-rw-r--r--Eigen/src/LU/FullPivLU.h753
1 files changed, 753 insertions, 0 deletions
diff --git a/Eigen/src/LU/FullPivLU.h b/Eigen/src/LU/FullPivLU.h
new file mode 100644
index 000000000..8743dac92
--- /dev/null
+++ b/Eigen/src/LU/FullPivLU.h
@@ -0,0 +1,753 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_LU_H
+#define EIGEN_LU_H
+
+template<typename MatrixType, typename Rhs> struct ei_lu_solve_impl;
+template<typename MatrixType> struct ei_lu_kernel_impl;
+template<typename MatrixType> struct ei_lu_image_impl;
+
+/** \ingroup LU_Module
+ *
+ * \class FullPivLU
+ *
+ * \brief LU decomposition of a matrix with complete pivoting, and related features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the LU decomposition
+ *
+ * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
+ * is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
+ * are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
+ * coefficients) of U are sorted in such a way that any zeros are at the end.
+ *
+ * This decomposition provides the generic approach to solving systems of linear equations, computing
+ * the rank, invertibility, inverse, kernel, and determinant.
+ *
+ * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
+ * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
+ * working with the SVD allows to select the smallest singular values of the matrix, something that
+ * the LU decomposition doesn't see.
+ *
+ * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
+ * permutationP(), permutationQ().
+ *
+ * As an exemple, here is how the original matrix can be retrieved:
+ * \include class_FullPivLU.cpp
+ * Output: \verbinclude class_FullPivLU.out
+ *
+ * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
+ */
+template<typename MatrixType> class FullPivLU
+{
+ public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
+ typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
+ typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
+
+ enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN(
+ MatrixType::MaxColsAtCompileTime,
+ MatrixType::MaxRowsAtCompileTime)
+ };
+
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via LU::compute(const MatrixType&).
+ */
+ FullPivLU();
+
+ /** Constructor.
+ *
+ * \param matrix the matrix of which to compute the LU decomposition.
+ * It is required to be nonzero.
+ */
+ FullPivLU(const MatrixType& matrix);
+
+ /** Computes the LU decomposition of the given matrix.
+ *
+ * \param matrix the matrix of which to compute the LU decomposition.
+ * It is required to be nonzero.
+ *
+ * \returns a reference to *this
+ */
+ FullPivLU& compute(const MatrixType& matrix);
+
+ /** \returns the LU decomposition matrix: the upper-triangular part is U, the
+ * unit-lower-triangular part is L (at least for square matrices; in the non-square
+ * case, special care is needed, see the documentation of class FullPivLU).
+ *
+ * \sa matrixL(), matrixU()
+ */
+ inline const MatrixType& matrixLU() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return m_lu;
+ }
+
+ /** \returns the number of nonzero pivots in the LU decomposition.
+ * Here nonzero is meant in the exact sense, not in a fuzzy sense.
+ * So that notion isn't really intrinsically interesting, but it is
+ * still useful when implementing algorithms.
+ *
+ * \sa rank()
+ */
+ inline int nonzeroPivots() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return m_nonzero_pivots;
+ }
+
+ /** \returns the absolute value of the biggest pivot, i.e. the biggest
+ * diagonal coefficient of U.
+ */
+ RealScalar maxPivot() const { return m_maxpivot; }
+
+ /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
+ * representing the P permutation i.e. the permutation of the rows. For its precise meaning,
+ * see the examples given in the documentation of class FullPivLU.
+ *
+ * \sa permutationQ()
+ */
+ inline const IntColVectorType& permutationP() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return m_p;
+ }
+
+ /** \returns a vector of integers, whose size is the number of columns of the matrix being
+ * decomposed, representing the Q permutation i.e. the permutation of the columns.
+ * For its precise meaning, see the examples given in the documentation of class FullPivLU.
+ *
+ * \sa permutationP()
+ */
+ inline const IntRowVectorType& permutationQ() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return m_q;
+ }
+
+ /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
+ * will form a basis of the kernel.
+ *
+ * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ *
+ * Example: \include FullPivLU_kernel.cpp
+ * Output: \verbinclude FullPivLU_kernel.out
+ *
+ * \sa image()
+ */
+ inline const ei_lu_kernel_impl<MatrixType> kernel() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return ei_lu_kernel_impl<MatrixType>(*this);
+ }
+
+ /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
+ * will form a basis of the kernel.
+ *
+ * \param originalMatrix the original matrix, of which *this is the LU decomposition.
+ * The reason why it is needed to pass it here, is that this allows
+ * a large optimization, as otherwise this method would need to reconstruct it
+ * from the LU decomposition.
+ *
+ * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ *
+ * Example: \include FullPivLU_image.cpp
+ * Output: \verbinclude FullPivLU_image.out
+ *
+ * \sa kernel()
+ */
+ template<typename OriginalMatrixType>
+ inline const ei_lu_image_impl<MatrixType>
+ image(const MatrixBase<OriginalMatrixType>& originalMatrix) const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return ei_lu_image_impl<MatrixType>(*this, originalMatrix.derived());
+ }
+
+ /** This method returns a solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the LU decomposition.
+ *
+ * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
+ * the only requirement in order for the equation to make sense is that
+ * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
+ *
+ * \returns a solution.
+ *
+ * \note_about_checking_solutions
+ *
+ * \note_about_arbitrary_choice_of_solution
+ * \note_about_using_kernel_to_study_multiple_solutions
+ *
+ * Example: \include FullPivLU_solve.cpp
+ * Output: \verbinclude FullPivLU_solve.out
+ *
+ * \sa TriangularView::solve(), kernel(), inverse()
+ */
+ template<typename Rhs>
+ inline const ei_lu_solve_impl<MatrixType, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return ei_lu_solve_impl<MatrixType, Rhs>(*this, b.derived());
+ }
+
+ /** \returns the determinant of the matrix of which
+ * *this is the LU decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the LU decomposition has already been computed.
+ *
+ * \note This is only for square matrices.
+ *
+ * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
+ * optimized paths.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ *
+ * \sa MatrixBase::determinant()
+ */
+ typename ei_traits<MatrixType>::Scalar determinant() const;
+
+ /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
+ * who need to determine when pivots are to be considered nonzero. This is not used for the
+ * LU decomposition itself.
+ *
+ * When it needs to get the threshold value, Eigen calls threshold(). By default, this calls
+ * defaultThreshold(). Once you have called the present method setThreshold(const RealScalar&),
+ * your value is used instead.
+ *
+ * \param threshold The new value to use as the threshold.
+ *
+ * A pivot will be considered nonzero if its absolute value is strictly greater than
+ * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
+ * where maxpivot is the biggest pivot.
+ *
+ * If you want to come back to the default behavior, call setThreshold(Default_t)
+ */
+ FullPivLU& setThreshold(const RealScalar& threshold)
+ {
+ m_usePrescribedThreshold = true;
+ m_prescribedThreshold = threshold;
+ }
+
+ /** Allows to come back to the default behavior, letting Eigen use its default formula for
+ * determining the threshold.
+ *
+ * You should pass the special object Eigen::Default as parameter here.
+ * \code lu.setThreshold(Eigen::Default); \endcode
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ FullPivLU& setThreshold(Default_t)
+ {
+ m_usePrescribedThreshold = false;
+ }
+
+ /** Returns the threshold that will be used by certain methods such as rank().
+ *
+ * See the documentation of setThreshold(const RealScalar&).
+ */
+ RealScalar threshold() const
+ {
+ ei_assert(m_isInitialized || m_usePrescribedThreshold);
+ return m_usePrescribedThreshold ? m_prescribedThreshold
+ // this formula comes from experimenting (see "LU precision tuning" thread on the list)
+ // and turns out to be identical to Higham's formula used already in LDLt.
+ : epsilon<Scalar>() * m_lu.diagonalSize();
+ }
+
+ /** \returns the rank of the matrix of which *this is the LU decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline int rank() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ RealScalar premultiplied_threshold = ei_abs(m_maxpivot) * threshold();
+ int result = 0;
+ for(int i = 0; i < m_nonzero_pivots; ++i)
+ result += (ei_abs(m_lu.coeff(i,i)) > premultiplied_threshold);
+ return result;
+ }
+
+ /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline int dimensionOfKernel() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return m_lu.cols() - rank();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition represents an injective
+ * linear map, i.e. has trivial kernel; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInjective() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return rank() == m_lu.cols();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
+ * linear map; false otherwise.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isSurjective() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return rank() == m_lu.rows();
+ }
+
+ /** \returns true if the matrix of which *this is the LU decomposition is invertible.
+ *
+ * \note This method has to determine which pivots should be considered nonzero.
+ * For that, it uses the threshold value that you can control by calling
+ * setThreshold(const RealScalar&).
+ */
+ inline bool isInvertible() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ return isInjective() && (m_lu.rows() == m_lu.cols());
+ }
+
+ /** \returns the inverse of the matrix of which *this is the LU decomposition.
+ *
+ * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
+ * Use isInvertible() to first determine whether this matrix is invertible.
+ *
+ * \sa MatrixBase::inverse()
+ */
+ inline const ei_lu_solve_impl<MatrixType,NestByValue<typename MatrixType::IdentityReturnType> > inverse() const
+ {
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
+ return ei_lu_solve_impl<MatrixType,NestByValue<typename MatrixType::IdentityReturnType> >
+ (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()).nestByValue());
+ }
+
+ protected:
+ MatrixType m_lu;
+ IntColVectorType m_p;
+ IntRowVectorType m_q;
+ int m_det_pq, m_nonzero_pivots;
+ RealScalar m_maxpivot, m_prescribedThreshold;
+ bool m_isInitialized, m_usePrescribedThreshold;
+};
+
+template<typename MatrixType>
+FullPivLU<MatrixType>::FullPivLU()
+ : m_isInitialized(false), m_usePrescribedThreshold(false)
+{
+}
+
+template<typename MatrixType>
+FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
+ : m_isInitialized(false), m_usePrescribedThreshold(false)
+{
+ compute(matrix);
+}
+
+template<typename MatrixType>
+FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
+{
+ m_isInitialized = true;
+ m_lu = matrix;
+ m_p.resize(matrix.rows());
+ m_q.resize(matrix.cols());
+
+ const int size = matrix.diagonalSize();
+ const int rows = matrix.rows();
+ const int cols = matrix.cols();
+
+ // will store the transpositions, before we accumulate them at the end.
+ // can't accumulate on-the-fly because that will be done in reverse order for the rows.
+ IntColVectorType rows_transpositions(matrix.rows());
+ IntRowVectorType cols_transpositions(matrix.cols());
+ int number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. rows_transpositions[i]!=i
+
+ m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
+ m_maxpivot = RealScalar(0);
+ for(int k = 0; k < size; ++k)
+ {
+ // First, we need to find the pivot.
+
+ // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
+ int row_of_biggest_in_corner, col_of_biggest_in_corner;
+ RealScalar biggest_in_corner;
+ biggest_in_corner = m_lu.corner(Eigen::BottomRight, rows-k, cols-k)
+ .cwise().abs()
+ .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
+ row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
+ col_of_biggest_in_corner += k; // need to add k to them.
+
+ // if the pivot (hence the corner) is exactly zero, terminate to avoid generating nan/inf values
+ if(biggest_in_corner == RealScalar(0))
+ {
+ // before exiting, make sure to initialize the still uninitialized row_transpositions
+ // in a sane state without destroying what we already have.
+ m_nonzero_pivots = k;
+ for(int i = k; i < size; i++)
+ {
+ rows_transpositions.coeffRef(i) = i;
+ cols_transpositions.coeffRef(i) = i;
+ }
+ break;
+ }
+
+ if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
+
+ // Now that we've found the pivot, we need to apply the row/col swaps to
+ // bring it to the location (k,k).
+
+ rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
+ cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
+ if(k != row_of_biggest_in_corner) {
+ m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+ if(k != col_of_biggest_in_corner) {
+ m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
+ ++number_of_transpositions;
+ }
+
+ // Now that the pivot is at the right location, we update the remaining
+ // bottom-right corner by Gaussian elimination.
+
+ if(k<rows-1)
+ m_lu.col(k).end(rows-k-1) /= m_lu.coeff(k,k);
+ if(k<size-1)
+ m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).end(rows-k-1) * m_lu.row(k).end(cols-k-1);
+ }
+
+ // the main loop is over, we still have to accumulate the transpositions to find the
+ // permutations P and Q
+
+ for(int k = 0; k < matrix.rows(); ++k) m_p.coeffRef(k) = k;
+ for(int k = size-1; k >= 0; --k)
+ std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
+
+ for(int k = 0; k < matrix.cols(); ++k) m_q.coeffRef(k) = k;
+ for(int k = 0; k < size; ++k)
+ std::swap(m_q.coeffRef(k), m_q.coeffRef(cols_transpositions.coeff(k)));
+
+ m_det_pq = (number_of_transpositions%2) ? -1 : 1;
+ return *this;
+}
+
+template<typename MatrixType>
+typename ei_traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
+{
+ ei_assert(m_isInitialized && "LU is not initialized.");
+ ei_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
+ return Scalar(m_det_pq) * m_lu.diagonal().prod();
+}
+
+/********* Implementation of kernel() **************************************************/
+
+template<typename MatrixType>
+struct ei_traits<ei_lu_kernel_impl<MatrixType> >
+{
+ typedef Matrix<
+ typename MatrixType::Scalar,
+ MatrixType::ColsAtCompileTime, // the number of rows in the "kernel matrix"
+ // is the number of cols of the original matrix
+ // so that the product "matrix * kernel = zero" makes sense
+ Dynamic, // we don't know at compile-time the dimension of the kernel
+ MatrixType::Options,
+ MatrixType::MaxColsAtCompileTime, // see explanation for 2nd template parameter
+ MatrixType::MaxColsAtCompileTime // the kernel is a subspace of the domain space,
+ // whose dimension is the number of columns of the original matrix
+ > ReturnMatrixType;
+};
+
+template<typename MatrixType>
+struct ei_lu_kernel_impl : public ReturnByValue<ei_lu_kernel_impl<MatrixType> >
+{
+ typedef FullPivLU<MatrixType> LUType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ const LUType& m_lu;
+ int m_rank, m_cols;
+
+ ei_lu_kernel_impl(const LUType& lu)
+ : m_lu(lu),
+ m_rank(lu.rank()),
+ m_cols(m_rank==lu.matrixLU().cols() ? 1 : lu.matrixLU().cols() - m_rank){}
+
+ inline int rows() const { return m_lu.matrixLU().cols(); }
+ inline int cols() const { return m_cols; }
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ const int cols = m_lu.matrixLU().cols(), dimker = cols - m_rank;
+ if(dimker == 0)
+ {
+ // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
+ // just return a single column vector filled with zeros.
+ dst.setZero();
+ return;
+ }
+
+ /* Let us use the following lemma:
+ *
+ * Lemma: If the matrix A has the LU decomposition PAQ = LU,
+ * then Ker A = Q(Ker U).
+ *
+ * Proof: trivial: just keep in mind that P, Q, L are invertible.
+ */
+
+ /* Thus, all we need to do is to compute Ker U, and then apply Q.
+ *
+ * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
+ * Thus, the diagonal of U ends with exactly
+ * m_dimKer zero's. Let us use that to construct dimKer linearly
+ * independent vectors in Ker U.
+ */
+
+ Matrix<int, Dynamic, 1, 0, LUType::MaxSmallDimAtCompileTime, 1> pivots(m_rank);
+ RealScalar premultiplied_threshold = m_lu.maxPivot() * m_lu.threshold();
+ int p = 0;
+ for(int i = 0; i < m_lu.nonzeroPivots(); ++i)
+ if(ei_abs(m_lu.matrixLU().coeff(i,i)) > premultiplied_threshold)
+ pivots.coeffRef(p++) = i;
+ ei_assert(p == m_rank && "You hit a bug in Eigen! Please report (backtrace and matrix)!");
+
+ // we construct a temporaty trapezoid matrix m, by taking the U matrix and
+ // permuting the rows and cols to bring the nonnegligible pivots to the top of
+ // the main diagonal. We need that to be able to apply our triangular solvers.
+ // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
+ Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
+ LUType::MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
+ m(m_lu.matrixLU().block(0, 0, m_rank, cols));
+ for(int i = 0; i < m_rank; ++i)
+ {
+ if(i) m.row(i).start(i).setZero();
+ m.row(i).end(cols-i) = m_lu.matrixLU().row(pivots.coeff(i)).end(cols-i);
+ }
+ m.block(0, 0, m_rank, m_rank).template triangularView<StrictlyLowerTriangular>().setZero();
+ for(int i = 0; i < m_rank; ++i)
+ m.col(i).swap(m.col(pivots.coeff(i)));
+
+ // ok, we have our trapezoid matrix, we can apply the triangular solver.
+ // notice that the math behind this suggests that we should apply this to the
+ // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
+ m.corner(TopLeft, m_rank, m_rank)
+ .template triangularView<UpperTriangular>().solveInPlace(
+ m.corner(TopRight, m_rank, dimker)
+ );
+
+ // now we must undo the column permutation that we had applied!
+ for(int i = m_rank-1; i >= 0; --i)
+ m.col(i).swap(m.col(pivots.coeff(i)));
+
+ // see the negative sign in the next line, that's what we were talking about above.
+ for(int i = 0; i < m_rank; ++i) dst.row(m_lu.permutationQ().coeff(i)) = -m.row(i).end(dimker);
+ for(int i = m_rank; i < cols; ++i) dst.row(m_lu.permutationQ().coeff(i)).setZero();
+ for(int k = 0; k < dimker; ++k) dst.coeffRef(m_lu.permutationQ().coeff(m_rank+k), k) = Scalar(1);
+ }
+};
+
+/***** Implementation of image() *****************************************************/
+
+template<typename MatrixType>
+struct ei_traits<ei_lu_image_impl<MatrixType> >
+{
+ typedef Matrix<
+ typename MatrixType::Scalar,
+ MatrixType::RowsAtCompileTime, // the image is a subspace of the destination space, whose
+ // dimension is the number of rows of the original matrix
+ Dynamic, // we don't know at compile time the dimension of the image (the rank)
+ MatrixType::Options,
+ MatrixType::MaxRowsAtCompileTime, // the image matrix will consist of columns from the original matrix,
+ MatrixType::MaxColsAtCompileTime // so it has the same number of rows and at most as many columns.
+ > ReturnMatrixType;
+};
+
+template<typename MatrixType>
+struct ei_lu_image_impl : public ReturnByValue<ei_lu_image_impl<MatrixType> >
+{
+ typedef FullPivLU<MatrixType> LUType;
+ typedef typename MatrixType::RealScalar RealScalar;
+ const LUType& m_lu;
+ int m_rank, m_cols;
+ const MatrixType& m_originalMatrix;
+
+ ei_lu_image_impl(const LUType& lu, const MatrixType& originalMatrix)
+ : m_lu(lu), m_rank(lu.rank()),
+ m_cols(m_rank == 0 ? 1 : m_rank),
+ m_originalMatrix(originalMatrix) {}
+
+ inline int rows() const { return m_lu.matrixLU().rows(); }
+ inline int cols() const { return m_cols; }
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ if(m_rank == 0)
+ {
+ // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
+ // avoid crashing/asserting as that depends on floating point calculations. Let's
+ // just return a single column vector filled with zeros.
+ dst.setZero();
+ return;
+ }
+
+ Matrix<int, Dynamic, 1, 0, LUType::MaxSmallDimAtCompileTime, 1> pivots(m_rank);
+ RealScalar premultiplied_threshold = m_lu.maxPivot() * m_lu.threshold();
+ int p = 0;
+ for(int i = 0; i < m_lu.nonzeroPivots(); ++i)
+ if(ei_abs(m_lu.matrixLU().coeff(i,i)) > premultiplied_threshold)
+ pivots.coeffRef(p++) = i;
+ ei_assert(p == m_rank && "You hit a bug in Eigen! Please report (backtrace and matrix)!");
+
+ for(int i = 0; i < m_rank; ++i)
+ dst.col(i) = m_originalMatrix.col(m_lu.permutationQ().coeff(pivots.coeff(i)));
+ }
+};
+
+/***** Implementation of solve() *****************************************************/
+
+template<typename MatrixType,typename Rhs>
+struct ei_traits<ei_lu_solve_impl<MatrixType,Rhs> >
+{
+ typedef Matrix<typename Rhs::Scalar,
+ MatrixType::ColsAtCompileTime,
+ Rhs::ColsAtCompileTime,
+ Rhs::PlainMatrixType::Options,
+ MatrixType::MaxColsAtCompileTime,
+ Rhs::MaxColsAtCompileTime> ReturnMatrixType;
+};
+
+template<typename MatrixType, typename Rhs>
+struct ei_lu_solve_impl : public ReturnByValue<ei_lu_solve_impl<MatrixType, Rhs> >
+{
+ typedef typename ei_cleantype<typename Rhs::Nested>::type RhsNested;
+ typedef FullPivLU<MatrixType> LUType;
+ const LUType& m_lu;
+ const typename Rhs::Nested m_rhs;
+
+ ei_lu_solve_impl(const LUType& lu, const Rhs& rhs)
+ : m_lu(lu), m_rhs(rhs)
+ {}
+
+ inline int rows() const { return m_lu.matrixLU().cols(); }
+ inline int cols() const { return m_rhs.cols(); }
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
+ * So we proceed as follows:
+ * Step 1: compute c = P * rhs.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. May or may not exist.
+ * Step 4: result = Q * c;
+ */
+
+ const int rows = m_lu.matrixLU().rows(),
+ cols = m_lu.matrixLU().cols(),
+ nonzero_pivots = m_lu.nonzeroPivots();
+ ei_assert(m_rhs.rows() == rows);
+ const int smalldim = std::min(rows, cols);
+
+ if(nonzero_pivots == 0)
+ {
+ dst.setZero();
+ return;
+ }
+
+ typename Rhs::PlainMatrixType c(m_rhs.rows(), m_rhs.cols());
+
+ // Step 1
+ for(int i = 0; i < rows; ++i)
+ c.row(m_lu.permutationP().coeff(i)) = m_rhs.row(i);
+
+ // Step 2
+ m_lu.matrixLU()
+ .corner(Eigen::TopLeft,smalldim,smalldim)
+ .template triangularView<UnitLowerTriangular>()
+ .solveInPlace(c.corner(Eigen::TopLeft, smalldim, c.cols()));
+ if(rows>cols)
+ {
+ c.corner(Eigen::BottomLeft, rows-cols, c.cols())
+ -= m_lu.matrixLU().corner(Eigen::BottomLeft, rows-cols, cols)
+ * c.corner(Eigen::TopLeft, cols, c.cols());
+ }
+
+ // Step 3
+ m_lu.matrixLU()
+ .corner(TopLeft, nonzero_pivots, nonzero_pivots)
+ .template triangularView<UpperTriangular>()
+ .solveInPlace(c.corner(TopLeft, nonzero_pivots, c.cols()));
+
+ // Step 4
+ for(int i = 0; i < nonzero_pivots; ++i)
+ dst.row(m_lu.permutationQ().coeff(i)) = c.row(i);
+ for(int i = nonzero_pivots; i < m_lu.matrixLU().cols(); ++i)
+ dst.row(m_lu.permutationQ().coeff(i)).setZero();
+ }
+};
+
+/******* MatrixBase methods *****************************************************************/
+
+/** \lu_module
+ *
+ * \return the full-pivoting LU decomposition of \c *this.
+ *
+ * \sa class FullPivLU
+ */
+template<typename Derived>
+inline const FullPivLU<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::fullPivLu() const
+{
+ return FullPivLU<PlainMatrixType>(eval());
+}
+
+#endif // EIGEN_LU_H