aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Eigenvalues/RealSchur.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Eigenvalues/RealSchur.h')
-rw-r--r--Eigen/src/Eigenvalues/RealSchur.h388
1 files changed, 388 insertions, 0 deletions
diff --git a/Eigen/src/Eigenvalues/RealSchur.h b/Eigen/src/Eigenvalues/RealSchur.h
new file mode 100644
index 000000000..395b80089
--- /dev/null
+++ b/Eigen/src/Eigenvalues/RealSchur.h
@@ -0,0 +1,388 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_REAL_SCHUR_H
+#define EIGEN_REAL_SCHUR_H
+
+#include "./HessenbergDecomposition.h"
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ * \nonstableyet
+ *
+ * \class RealSchur
+ *
+ * \brief Performs a real Schur decomposition of a square matrix
+ */
+template<typename _MatrixType> class RealSchur
+{
+ public:
+ typedef _MatrixType MatrixType;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+ typedef typename MatrixType::Scalar Scalar;
+ typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> EigenvalueType;
+
+ /** \brief Constructor; computes Schur decomposition of given matrix. */
+ RealSchur(const MatrixType& matrix)
+ : m_matT(matrix.rows(),matrix.cols()),
+ m_matU(matrix.rows(),matrix.cols()),
+ m_eivalues(matrix.rows()),
+ m_isInitialized(false)
+ {
+ compute(matrix);
+ }
+
+ /** \brief Returns the orthogonal matrix in the Schur decomposition. */
+ const MatrixType& matrixU() const
+ {
+ ei_assert(m_isInitialized && "RealSchur is not initialized.");
+ return m_matU;
+ }
+
+ /** \brief Returns the quasi-triangular matrix in the Schur decomposition. */
+ const MatrixType& matrixT() const
+ {
+ ei_assert(m_isInitialized && "RealSchur is not initialized.");
+ return m_matT;
+ }
+
+ /** \brief Returns vector of eigenvalues.
+ *
+ * This function will likely be removed. */
+ const EigenvalueType& eigenvalues() const
+ {
+ ei_assert(m_isInitialized && "RealSchur is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes Schur decomposition of given matrix. */
+ void compute(const MatrixType& matrix);
+
+ private:
+
+ MatrixType m_matT;
+ MatrixType m_matU;
+ EigenvalueType m_eivalues;
+ bool m_isInitialized;
+
+ void hqr2();
+};
+
+
+template<typename MatrixType>
+void RealSchur<MatrixType>::compute(const MatrixType& matrix)
+{
+ assert(matrix.cols() == matrix.rows());
+
+ // Reduce to Hessenberg form
+ // TODO skip Q if skipU = true
+ HessenbergDecomposition<MatrixType> hess(matrix);
+ m_matT = hess.matrixH();
+ m_matU = hess.matrixQ();
+
+ // Reduce to Real Schur form
+ hqr2();
+
+ m_isInitialized = true;
+}
+
+
+template<typename MatrixType>
+void RealSchur<MatrixType>::hqr2()
+{
+ // This is derived from the Algol procedure hqr2,
+ // by Martin and Wilkinson, Handbook for Auto. Comp.,
+ // Vol.ii-Linear Algebra, and the corresponding
+ // Fortran subroutine in EISPACK.
+
+ // Initialize
+ const int size = m_matU.cols();
+ int n = size-1;
+ const int low = 0;
+ const int high = size-1;
+ Scalar exshift = 0.0;
+ Scalar p=0,q=0,r=0,s=0,z=0,w,x,y;
+
+ // Compute matrix norm
+ // FIXME to be efficient the following would requires a triangular reduxion code
+ // Scalar norm = m_matT.upper().cwiseAbs().sum() + m_matT.corner(BottomLeft,n,n).diagonal().cwiseAbs().sum();
+ Scalar norm = 0.0;
+ for (int j = 0; j < size; ++j)
+ {
+ norm += m_matT.row(j).segment(std::max(j-1,0), size-std::max(j-1,0)).cwiseAbs().sum();
+ }
+
+ // Outer loop over eigenvalue index
+ int iter = 0;
+ while (n >= low)
+ {
+ // Look for single small sub-diagonal element
+ int l = n;
+ while (l > low)
+ {
+ s = ei_abs(m_matT.coeff(l-1,l-1)) + ei_abs(m_matT.coeff(l,l));
+ if (s == 0.0)
+ s = norm;
+ if (ei_abs(m_matT.coeff(l,l-1)) < NumTraits<Scalar>::epsilon() * s)
+ break;
+ l--;
+ }
+
+ // Check for convergence
+ // One root found
+ if (l == n)
+ {
+ m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
+ m_eivalues.coeffRef(n) = ComplexScalar(m_matT.coeff(n,n), 0.0);
+ n--;
+ iter = 0;
+ }
+ else if (l == n-1) // Two roots found
+ {
+ w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
+ p = (m_matT.coeff(n-1,n-1) - m_matT.coeff(n,n)) * Scalar(0.5);
+ q = p * p + w;
+ z = ei_sqrt(ei_abs(q));
+ m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
+ m_matT.coeffRef(n-1,n-1) = m_matT.coeff(n-1,n-1) + exshift;
+ x = m_matT.coeff(n,n);
+
+ // Scalar pair
+ if (q >= 0)
+ {
+ if (p >= 0)
+ z = p + z;
+ else
+ z = p - z;
+
+ m_eivalues.coeffRef(n-1) = ComplexScalar(x + z, 0.0);
+ m_eivalues.coeffRef(n) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
+
+ x = m_matT.coeff(n,n-1);
+ s = ei_abs(x) + ei_abs(z);
+ p = x / s;
+ q = z / s;
+ r = ei_sqrt(p * p+q * q);
+ p = p / r;
+ q = q / r;
+
+ // Row modification
+ for (int j = n-1; j < size; ++j)
+ {
+ z = m_matT.coeff(n-1,j);
+ m_matT.coeffRef(n-1,j) = q * z + p * m_matT.coeff(n,j);
+ m_matT.coeffRef(n,j) = q * m_matT.coeff(n,j) - p * z;
+ }
+
+ // Column modification
+ for (int i = 0; i <= n; ++i)
+ {
+ z = m_matT.coeff(i,n-1);
+ m_matT.coeffRef(i,n-1) = q * z + p * m_matT.coeff(i,n);
+ m_matT.coeffRef(i,n) = q * m_matT.coeff(i,n) - p * z;
+ }
+
+ // Accumulate transformations
+ for (int i = low; i <= high; ++i)
+ {
+ z = m_matU.coeff(i,n-1);
+ m_matU.coeffRef(i,n-1) = q * z + p * m_matU.coeff(i,n);
+ m_matU.coeffRef(i,n) = q * m_matU.coeff(i,n) - p * z;
+ }
+ }
+ else // Complex pair
+ {
+ m_eivalues.coeffRef(n-1) = ComplexScalar(x + p, z);
+ m_eivalues.coeffRef(n) = ComplexScalar(x + p, -z);
+ }
+ n = n - 2;
+ iter = 0;
+ }
+ else // No convergence yet
+ {
+ // Form shift
+ x = m_matT.coeff(n,n);
+ y = 0.0;
+ w = 0.0;
+ if (l < n)
+ {
+ y = m_matT.coeff(n-1,n-1);
+ w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
+ }
+
+ // Wilkinson's original ad hoc shift
+ if (iter == 10)
+ {
+ exshift += x;
+ for (int i = low; i <= n; ++i)
+ m_matT.coeffRef(i,i) -= x;
+ s = ei_abs(m_matT.coeff(n,n-1)) + ei_abs(m_matT.coeff(n-1,n-2));
+ x = y = Scalar(0.75) * s;
+ w = Scalar(-0.4375) * s * s;
+ }
+
+ // MATLAB's new ad hoc shift
+ if (iter == 30)
+ {
+ s = Scalar((y - x) / 2.0);
+ s = s * s + w;
+ if (s > 0)
+ {
+ s = ei_sqrt(s);
+ if (y < x)
+ s = -s;
+ s = Scalar(x - w / ((y - x) / 2.0 + s));
+ for (int i = low; i <= n; ++i)
+ m_matT.coeffRef(i,i) -= s;
+ exshift += s;
+ x = y = w = Scalar(0.964);
+ }
+ }
+
+ iter = iter + 1; // (Could check iteration count here.)
+
+ // Look for two consecutive small sub-diagonal elements
+ int m = n-2;
+ while (m >= l)
+ {
+ z = m_matT.coeff(m,m);
+ r = x - z;
+ s = y - z;
+ p = (r * s - w) / m_matT.coeff(m+1,m) + m_matT.coeff(m,m+1);
+ q = m_matT.coeff(m+1,m+1) - z - r - s;
+ r = m_matT.coeff(m+2,m+1);
+ s = ei_abs(p) + ei_abs(q) + ei_abs(r);
+ p = p / s;
+ q = q / s;
+ r = r / s;
+ if (m == l) {
+ break;
+ }
+ if (ei_abs(m_matT.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
+ NumTraits<Scalar>::epsilon() * (ei_abs(p) * (ei_abs(m_matT.coeff(m-1,m-1)) + ei_abs(z) +
+ ei_abs(m_matT.coeff(m+1,m+1)))))
+ {
+ break;
+ }
+ m--;
+ }
+
+ for (int i = m+2; i <= n; ++i)
+ {
+ m_matT.coeffRef(i,i-2) = 0.0;
+ if (i > m+2)
+ m_matT.coeffRef(i,i-3) = 0.0;
+ }
+
+ // Double QR step involving rows l:n and columns m:n
+ for (int k = m; k <= n-1; ++k)
+ {
+ int notlast = (k != n-1);
+ if (k != m) {
+ p = m_matT.coeff(k,k-1);
+ q = m_matT.coeff(k+1,k-1);
+ r = notlast ? m_matT.coeff(k+2,k-1) : Scalar(0);
+ x = ei_abs(p) + ei_abs(q) + ei_abs(r);
+ if (x != 0.0)
+ {
+ p = p / x;
+ q = q / x;
+ r = r / x;
+ }
+ }
+
+ if (x == 0.0)
+ break;
+
+ s = ei_sqrt(p * p + q * q + r * r);
+
+ if (p < 0)
+ s = -s;
+
+ if (s != 0)
+ {
+ if (k != m)
+ m_matT.coeffRef(k,k-1) = -s * x;
+ else if (l != m)
+ m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
+
+ p = p + s;
+ x = p / s;
+ y = q / s;
+ z = r / s;
+ q = q / p;
+ r = r / p;
+
+ // Row modification
+ for (int j = k; j < size; ++j)
+ {
+ p = m_matT.coeff(k,j) + q * m_matT.coeff(k+1,j);
+ if (notlast)
+ {
+ p = p + r * m_matT.coeff(k+2,j);
+ m_matT.coeffRef(k+2,j) = m_matT.coeff(k+2,j) - p * z;
+ }
+ m_matT.coeffRef(k,j) = m_matT.coeff(k,j) - p * x;
+ m_matT.coeffRef(k+1,j) = m_matT.coeff(k+1,j) - p * y;
+ }
+
+ // Column modification
+ for (int i = 0; i <= std::min(n,k+3); ++i)
+ {
+ p = x * m_matT.coeff(i,k) + y * m_matT.coeff(i,k+1);
+ if (notlast)
+ {
+ p = p + z * m_matT.coeff(i,k+2);
+ m_matT.coeffRef(i,k+2) = m_matT.coeff(i,k+2) - p * r;
+ }
+ m_matT.coeffRef(i,k) = m_matT.coeff(i,k) - p;
+ m_matT.coeffRef(i,k+1) = m_matT.coeff(i,k+1) - p * q;
+ }
+
+ // Accumulate transformations
+ for (int i = low; i <= high; ++i)
+ {
+ p = x * m_matU.coeff(i,k) + y * m_matU.coeff(i,k+1);
+ if (notlast)
+ {
+ p = p + z * m_matU.coeff(i,k+2);
+ m_matU.coeffRef(i,k+2) = m_matU.coeff(i,k+2) - p * r;
+ }
+ m_matU.coeffRef(i,k) = m_matU.coeff(i,k) - p;
+ m_matU.coeffRef(i,k+1) = m_matU.coeff(i,k+1) - p * q;
+ }
+ } // (s != 0)
+ } // k loop
+ } // check convergence
+ } // while (n >= low)
+}
+
+#endif // EIGEN_REAL_SCHUR_H