aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core')
-rw-r--r--Eigen/src/Core/Array.h25
-rw-r--r--Eigen/src/Core/ArrayBase.h28
-rw-r--r--Eigen/src/Core/ArrayWrapper.h6
-rw-r--r--Eigen/src/Core/Assign.h558
-rw-r--r--Eigen/src/Core/AssignEvaluator.h464
-rw-r--r--Eigen/src/Core/BandMatrix.h25
-rw-r--r--Eigen/src/Core/Block.h34
-rw-r--r--Eigen/src/Core/BooleanRedux.h32
-rw-r--r--Eigen/src/Core/CoreEvaluators.h878
-rw-r--r--Eigen/src/Core/CoreIterators.h143
-rw-r--r--Eigen/src/Core/CwiseBinaryOp.h112
-rw-r--r--Eigen/src/Core/CwiseNullaryOp.h10
-rw-r--r--Eigen/src/Core/CwiseUnaryOp.h54
-rw-r--r--Eigen/src/Core/CwiseUnaryView.h44
-rw-r--r--Eigen/src/Core/DenseBase.h54
-rw-r--r--Eigen/src/Core/DenseCoeffsBase.h169
-rw-r--r--Eigen/src/Core/DenseStorage.h16
-rw-r--r--Eigen/src/Core/Diagonal.h39
-rw-r--r--Eigen/src/Core/DiagonalMatrix.h88
-rw-r--r--Eigen/src/Core/DiagonalProduct.h106
-rw-r--r--Eigen/src/Core/Dot.h7
-rw-r--r--Eigen/src/Core/EigenBase.h6
-rw-r--r--Eigen/src/Core/Flagged.h30
-rw-r--r--Eigen/src/Core/ForceAlignedAccess.h24
-rw-r--r--Eigen/src/Core/Fuzzy.h7
-rw-r--r--Eigen/src/Core/GeneralProduct.h422
-rw-r--r--Eigen/src/Core/GenericPacketMath.h8
-rw-r--r--Eigen/src/Core/GlobalFunctions.h4
-rw-r--r--Eigen/src/Core/Inverse.h129
-rw-r--r--Eigen/src/Core/Map.h17
-rw-r--r--Eigen/src/Core/MapBase.h19
-rw-r--r--Eigen/src/Core/MathFunctions.h78
-rw-r--r--Eigen/src/Core/Matrix.h14
-rw-r--r--Eigen/src/Core/MatrixBase.h48
-rw-r--r--Eigen/src/Core/NestByValue.h20
-rw-r--r--Eigen/src/Core/NoAlias.h59
-rw-r--r--Eigen/src/Core/PermutationMatrix.h133
-rw-r--r--Eigen/src/Core/PlainObjectBase.h90
-rw-r--r--Eigen/src/Core/Product.h180
-rw-r--r--Eigen/src/Core/ProductBase.h247
-rw-r--r--Eigen/src/Core/ProductEvaluators.h879
-rw-r--r--Eigen/src/Core/Redux.h120
-rw-r--r--Eigen/src/Core/Ref.h44
-rw-r--r--Eigen/src/Core/Replicate.h6
-rw-r--r--Eigen/src/Core/ReturnByValue.h36
-rw-r--r--Eigen/src/Core/Reverse.h36
-rw-r--r--Eigen/src/Core/Select.h22
-rw-r--r--Eigen/src/Core/SelfAdjointView.h175
-rw-r--r--Eigen/src/Core/SelfCwiseBinaryOp.h179
-rw-r--r--Eigen/src/Core/Solve.h152
-rw-r--r--Eigen/src/Core/SolveTriangular.h10
-rw-r--r--Eigen/src/Core/StableNorm.h10
-rw-r--r--Eigen/src/Core/Stride.h8
-rw-r--r--Eigen/src/Core/Swap.h161
-rw-r--r--Eigen/src/Core/Transpose.h122
-rw-r--r--Eigen/src/Core/Transpositions.h6
-rw-r--r--Eigen/src/Core/TriangularMatrix.h883
-rw-r--r--Eigen/src/Core/VectorwiseOp.h112
-rw-r--r--Eigen/src/Core/Visitor.h44
-rw-r--r--Eigen/src/Core/arch/AVX/PacketMath.h10
-rw-r--r--Eigen/src/Core/arch/AltiVec/Complex.h230
-rwxr-xr-xEigen/src/Core/arch/AltiVec/PacketMath.h433
-rw-r--r--Eigen/src/Core/arch/NEON/Complex.h194
-rw-r--r--Eigen/src/Core/arch/NEON/PacketMath.h233
-rw-r--r--Eigen/src/Core/arch/SSE/MathFunctions.h6
-rwxr-xr-xEigen/src/Core/arch/SSE/PacketMath.h26
-rw-r--r--Eigen/src/Core/functors/AssignmentFunctors.h33
-rw-r--r--Eigen/src/Core/functors/BinaryFunctors.h6
-rw-r--r--Eigen/src/Core/products/CoeffBasedProduct.h452
-rw-r--r--Eigen/src/Core/products/GeneralBlockPanelKernel.h194
-rw-r--r--Eigen/src/Core/products/GeneralMatrixMatrix.h142
-rw-r--r--Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h14
-rw-r--r--Eigen/src/Core/products/Parallelizer.h4
-rw-r--r--Eigen/src/Core/products/SelfadjointMatrixMatrix.h55
-rw-r--r--Eigen/src/Core/products/SelfadjointMatrixVector.h81
-rw-r--r--Eigen/src/Core/products/SelfadjointRank2Update.h8
-rw-r--r--Eigen/src/Core/products/TriangularMatrixMatrix.h43
-rw-r--r--Eigen/src/Core/products/TriangularMatrixVector.h130
-rw-r--r--Eigen/src/Core/util/BlasUtil.h2
-rw-r--r--Eigen/src/Core/util/Constants.h49
-rw-r--r--Eigen/src/Core/util/ForwardDeclarations.h47
-rw-r--r--Eigen/src/Core/util/Macros.h356
-rw-r--r--Eigen/src/Core/util/Memory.h97
-rw-r--r--Eigen/src/Core/util/Meta.h12
-rw-r--r--Eigen/src/Core/util/StaticAssert.h11
-rw-r--r--Eigen/src/Core/util/XprHelper.h169
86 files changed, 5605 insertions, 4864 deletions
diff --git a/Eigen/src/Core/Array.h b/Eigen/src/Core/Array.h
index 28d6f1443..337086615 100644
--- a/Eigen/src/Core/Array.h
+++ b/Eigen/src/Core/Array.h
@@ -74,6 +74,21 @@ class Array
{
return Base::operator=(other);
}
+
+ /** Set all the entries to \a value.
+ * \sa DenseBase::setConstant(), DenseBase::fill()
+ */
+ /* This overload is needed because the usage of
+ * using Base::operator=;
+ * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
+ * the usage of 'using'. This should be done only for operator=.
+ */
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE Array& operator=(const Scalar &value)
+ {
+ Base::setConstant(value);
+ return *this;
+ }
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
@@ -99,7 +114,7 @@ class Array
{
return Base::_set(other);
}
-
+
/** Default constructor.
*
* For fixed-size matrices, does nothing.
@@ -144,7 +159,6 @@ class Array
}
#endif
-
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T>
EIGEN_DEVICE_FUNC
@@ -244,13 +258,6 @@ class Array
*this = other;
}
- /** Override MatrixBase::swap() since for dynamic-sized matrices of same type it is enough to swap the
- * data pointers.
- */
- template<typename OtherDerived>
- void swap(ArrayBase<OtherDerived> const & other)
- { this->_swap(other.derived()); }
-
EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
diff --git a/Eigen/src/Core/ArrayBase.h b/Eigen/src/Core/ArrayBase.h
index 2c9ace4a7..d42693d4b 100644
--- a/Eigen/src/Core/ArrayBase.h
+++ b/Eigen/src/Core/ArrayBase.h
@@ -64,8 +64,7 @@ template<typename Derived> class ArrayBase
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
- using Base::CoeffReadCost;
-
+
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
@@ -121,8 +120,15 @@ template<typename Derived> class ArrayBase
EIGEN_DEVICE_FUNC
Derived& operator=(const ArrayBase& other)
{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
+
+ /** Set all the entries to \a value.
+ * \sa DenseBase::setConstant(), DenseBase::fill() */
+ EIGEN_DEVICE_FUNC
+ Derived& operator=(const Scalar &value)
+ { Base::setConstant(value); return derived(); }
EIGEN_DEVICE_FUNC
Derived& operator+=(const Scalar& scalar);
@@ -153,9 +159,9 @@ template<typename Derived> class ArrayBase
/** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array
* \sa MatrixBase::array() */
EIGEN_DEVICE_FUNC
- MatrixWrapper<Derived> matrix() { return derived(); }
+ MatrixWrapper<Derived> matrix() { return MatrixWrapper<Derived>(derived()); }
EIGEN_DEVICE_FUNC
- const MatrixWrapper<const Derived> matrix() const { return derived(); }
+ const MatrixWrapper<const Derived> matrix() const { return MatrixWrapper<const Derived>(derived()); }
// template<typename Dest>
// inline void evalTo(Dest& dst) const { dst = matrix(); }
@@ -186,8 +192,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
{
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
@@ -200,8 +205,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
@@ -214,8 +218,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::mul_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
@@ -228,8 +231,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::div_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/ArrayWrapper.h b/Eigen/src/Core/ArrayWrapper.h
index 28d7b7bd5..0b89c58cb 100644
--- a/Eigen/src/Core/ArrayWrapper.h
+++ b/Eigen/src/Core/ArrayWrapper.h
@@ -44,6 +44,7 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
typedef ArrayBase<ArrayWrapper> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
+ typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
@@ -54,7 +55,7 @@ class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
+ explicit EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
@@ -186,6 +187,7 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
+ typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
@@ -196,7 +198,7 @@ class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
typedef typename internal::nested<ExpressionType>::type NestedExpressionType;
EIGEN_DEVICE_FUNC
- inline MatrixWrapper(ExpressionType& a_matrix) : m_expression(a_matrix) {}
+ explicit inline MatrixWrapper(ExpressionType& a_matrix) : m_expression(a_matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
diff --git a/Eigen/src/Core/Assign.h b/Eigen/src/Core/Assign.h
index 07da2fe31..53806ba33 100644
--- a/Eigen/src/Core/Assign.h
+++ b/Eigen/src/Core/Assign.h
@@ -14,485 +14,6 @@
namespace Eigen {
-namespace internal {
-
-/***************************************************************************
-* Part 1 : the logic deciding a strategy for traversal and unrolling *
-***************************************************************************/
-
-template <typename Derived, typename OtherDerived>
-struct assign_traits
-{
-public:
- enum {
- DstIsAligned = Derived::Flags & AlignedBit,
- DstHasDirectAccess = Derived::Flags & DirectAccessBit,
- SrcIsAligned = OtherDerived::Flags & AlignedBit,
- JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
- };
-
-private:
- enum {
- InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
- : int(Derived::RowsAtCompileTime),
- InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
- : int(Derived::MaxRowsAtCompileTime),
- MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
- PacketSize = packet_traits<typename Derived::Scalar>::size
- };
-
- enum {
- StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
- MightVectorize = StorageOrdersAgree
- && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
- MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
- && int(DstIsAligned) && int(SrcIsAligned),
- MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
- MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
- && (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
- /* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
- so it's only good for large enough sizes. */
- MaySliceVectorize = MightVectorize && DstHasDirectAccess
- && (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
- /* slice vectorization can be slow, so we only want it if the slices are big, which is
- indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
- in a fixed-size matrix */
- };
-
-public:
- enum {
- Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
- : int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
- : int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
- : int(MayLinearize) ? int(LinearTraversal)
- : int(DefaultTraversal),
- Vectorized = int(Traversal) == InnerVectorizedTraversal
- || int(Traversal) == LinearVectorizedTraversal
- || int(Traversal) == SliceVectorizedTraversal
- };
-
-private:
- enum {
- UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
- MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
- MayUnrollInner = int(InnerSize) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
- };
-
-public:
- enum {
- Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
- ? (
- int(MayUnrollCompletely) ? int(CompleteUnrolling)
- : int(MayUnrollInner) ? int(InnerUnrolling)
- : int(NoUnrolling)
- )
- : int(Traversal) == int(LinearVectorizedTraversal)
- ? ( bool(MayUnrollCompletely) && bool(DstIsAligned) ? int(CompleteUnrolling) : int(NoUnrolling) )
- : int(Traversal) == int(LinearTraversal)
- ? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling) )
- : int(NoUnrolling)
- };
-
-#ifdef EIGEN_DEBUG_ASSIGN
- static void debug()
- {
- EIGEN_DEBUG_VAR(DstIsAligned)
- EIGEN_DEBUG_VAR(SrcIsAligned)
- EIGEN_DEBUG_VAR(JointAlignment)
- EIGEN_DEBUG_VAR(Derived::SizeAtCompileTime)
- EIGEN_DEBUG_VAR(OtherDerived::CoeffReadCost)
- EIGEN_DEBUG_VAR(InnerSize)
- EIGEN_DEBUG_VAR(InnerMaxSize)
- EIGEN_DEBUG_VAR(PacketSize)
- EIGEN_DEBUG_VAR(StorageOrdersAgree)
- EIGEN_DEBUG_VAR(MightVectorize)
- EIGEN_DEBUG_VAR(MayLinearize)
- EIGEN_DEBUG_VAR(MayInnerVectorize)
- EIGEN_DEBUG_VAR(MayLinearVectorize)
- EIGEN_DEBUG_VAR(MaySliceVectorize)
- EIGEN_DEBUG_VAR(Traversal)
- EIGEN_DEBUG_VAR(UnrollingLimit)
- EIGEN_DEBUG_VAR(MayUnrollCompletely)
- EIGEN_DEBUG_VAR(MayUnrollInner)
- EIGEN_DEBUG_VAR(Unrolling)
- }
-#endif
-};
-
-/***************************************************************************
-* Part 2 : meta-unrollers
-***************************************************************************/
-
-/************************
-*** Default traversal ***
-************************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_DefaultTraversal_CompleteUnrolling
-{
- enum {
- outer = Index / Derived1::InnerSizeAtCompileTime,
- inner = Index % Derived1::InnerSizeAtCompileTime
- };
-
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.copyCoeffByOuterInner(outer, inner, src);
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_DefaultTraversal_InnerUnrolling
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
- {
- dst.copyCoeffByOuterInner(outer, Index, src);
- assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src, outer);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, Stop, Stop>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
-};
-
-/***********************
-*** Linear traversal ***
-***********************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_LinearTraversal_CompleteUnrolling
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.copyCoeff(Index, src);
- assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Index+1, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-/**************************
-*** Inner vectorization ***
-**************************/
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_innervec_CompleteUnrolling
-{
- enum {
- outer = Index / Derived1::InnerSizeAtCompileTime,
- inner = Index % Derived1::InnerSizeAtCompileTime,
- JointAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
-
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- dst.template copyPacketByOuterInner<Derived2, Aligned, JointAlignment>(outer, inner, src);
- assign_innervec_CompleteUnrolling<Derived1, Derived2,
- Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_innervec_CompleteUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, int Index, int Stop>
-struct assign_innervec_InnerUnrolling
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src, typename Derived1::Index outer)
- {
- dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, Index, src);
- assign_innervec_InnerUnrolling<Derived1, Derived2,
- Index+packet_traits<typename Derived1::Scalar>::size, Stop>::run(dst, src, outer);
- }
-};
-
-template<typename Derived1, typename Derived2, int Stop>
-struct assign_innervec_InnerUnrolling<Derived1, Derived2, Stop, Stop>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &, const Derived2 &, typename Derived1::Index) {}
-};
-
-/***************************************************************************
-* Part 3 : implementation of all cases
-***************************************************************************/
-
-template<typename Derived1, typename Derived2,
- int Traversal = assign_traits<Derived1, Derived2>::Traversal,
- int Unrolling = assign_traits<Derived1, Derived2>::Unrolling,
- int Version = Specialized>
-struct assign_impl;
-
-/************************
-*** Default traversal ***
-************************/
-
-template<typename Derived1, typename Derived2, int Unrolling, int Version>
-struct assign_impl<Derived1, Derived2, InvalidTraversal, Unrolling, Version>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) { }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- for(Index inner = 0; inner < innerSize; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, CompleteUnrolling, Version>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, DefaultTraversal, InnerUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- assign_DefaultTraversal_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
- ::run(dst, src, outer);
- }
-};
-
-/***********************
-*** Linear traversal ***
-***********************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index size = dst.size();
- for(Index i = 0; i < size; ++i)
- dst.copyCoeff(i, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearTraversal, CompleteUnrolling, Version>
-{
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_LinearTraversal_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-/**************************
-*** Inner vectorization ***
-**************************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- const Index packetSize = packet_traits<typename Derived1::Scalar>::size;
- for(Index outer = 0; outer < outerSize; ++outer)
- for(Index inner = 0; inner < innerSize; inner+=packetSize)
- dst.template copyPacketByOuterInner<Derived2, Aligned, Aligned>(outer, inner, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, CompleteUnrolling, Version>
-{
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, Derived1::SizeAtCompileTime>
- ::run(dst, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, InnerVectorizedTraversal, InnerUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index outerSize = dst.outerSize();
- for(Index outer = 0; outer < outerSize; ++outer)
- assign_innervec_InnerUnrolling<Derived1, Derived2, 0, Derived1::InnerSizeAtCompileTime>
- ::run(dst, src, outer);
- }
-};
-
-/***************************
-*** Linear vectorization ***
-***************************/
-
-template <bool IsAligned = false>
-struct unaligned_assign_impl
-{
- template <typename Derived, typename OtherDerived>
- static EIGEN_STRONG_INLINE void run(const Derived&, OtherDerived&, typename Derived::Index, typename Derived::Index) {}
-};
-
-template <>
-struct unaligned_assign_impl<false>
-{
- // MSVC must not inline this functions. If it does, it fails to optimize the
- // packet access path.
-#ifdef _MSC_VER
- template <typename Derived, typename OtherDerived>
- static EIGEN_DONT_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
-#else
- template <typename Derived, typename OtherDerived>
- static EIGEN_STRONG_INLINE void run(const Derived& src, OtherDerived& dst, typename Derived::Index start, typename Derived::Index end)
-#endif
- {
- for (typename Derived::Index index = start; index < end; ++index)
- dst.copyCoeff(index, src);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- const Index size = dst.size();
- typedef packet_traits<typename Derived1::Scalar> PacketTraits;
- enum {
- packetSize = PacketTraits::size,
- dstAlignment = PacketTraits::AlignedOnScalar ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
- srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
- const Index alignedStart = assign_traits<Derived1,Derived2>::DstIsAligned ? 0
- : internal::first_aligned(&dst.coeffRef(0), size);
- const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
-
- unaligned_assign_impl<assign_traits<Derived1,Derived2>::DstIsAligned!=0>::run(src,dst,0,alignedStart);
-
- for(Index index = alignedStart; index < alignedEnd; index += packetSize)
- {
- dst.template copyPacket<Derived2, dstAlignment, srcAlignment>(index, src);
- }
-
- unaligned_assign_impl<>::run(src,dst,alignedEnd,size);
- }
-};
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, LinearVectorizedTraversal, CompleteUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static EIGEN_STRONG_INLINE void run(Derived1 &dst, const Derived2 &src)
- {
- enum { size = Derived1::SizeAtCompileTime,
- packetSize = packet_traits<typename Derived1::Scalar>::size,
- alignedSize = (size/packetSize)*packetSize };
-
- assign_innervec_CompleteUnrolling<Derived1, Derived2, 0, alignedSize>::run(dst, src);
- assign_DefaultTraversal_CompleteUnrolling<Derived1, Derived2, alignedSize, size>::run(dst, src);
- }
-};
-
-/**************************
-*** Slice vectorization ***
-***************************/
-
-template<typename Derived1, typename Derived2, int Version>
-struct assign_impl<Derived1, Derived2, SliceVectorizedTraversal, NoUnrolling, Version>
-{
- typedef typename Derived1::Index Index;
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- typedef packet_traits<typename Derived1::Scalar> PacketTraits;
- enum {
- packetSize = PacketTraits::size,
- alignable = PacketTraits::AlignedOnScalar,
- dstAlignment = alignable ? Aligned : int(assign_traits<Derived1,Derived2>::DstIsAligned) ,
- srcAlignment = assign_traits<Derived1,Derived2>::JointAlignment
- };
- const Index packetAlignedMask = packetSize - 1;
- const Index innerSize = dst.innerSize();
- const Index outerSize = dst.outerSize();
- const Index alignedStep = alignable ? (packetSize - dst.outerStride() % packetSize) & packetAlignedMask : 0;
- Index alignedStart = ((!alignable) || assign_traits<Derived1,Derived2>::DstIsAligned) ? 0
- : internal::first_aligned(&dst.coeffRef(0,0), innerSize);
-
- for(Index outer = 0; outer < outerSize; ++outer)
- {
- const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
- // do the non-vectorizable part of the assignment
- for(Index inner = 0; inner<alignedStart ; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
-
- // do the vectorizable part of the assignment
- for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
- dst.template copyPacketByOuterInner<Derived2, dstAlignment, Unaligned>(outer, inner, src);
-
- // do the non-vectorizable part of the assignment
- for(Index inner = alignedEnd; inner<innerSize ; ++inner)
- dst.copyCoeffByOuterInner(outer, inner, src);
-
- alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
- }
- }
-};
-
-} // end namespace internal
-
-/***************************************************************************
-* Part 4 : implementation of DenseBase methods
-***************************************************************************/
-
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
@@ -506,91 +27,35 @@ EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-#ifdef EIGEN_TEST_EVALUATORS
-
-#ifdef EIGEN_DEBUG_ASSIGN
- internal::copy_using_evaluator_traits<Derived, OtherDerived>::debug();
-#endif
- eigen_assert(rows() == other.rows() && cols() == other.cols());
- internal::call_dense_assignment_loop(derived(),other.derived());
-
-#else // EIGEN_TEST_EVALUATORS
-
-#ifdef EIGEN_DEBUG_ASSIGN
- internal::assign_traits<Derived, OtherDerived>::debug();
-#endif
eigen_assert(rows() == other.rows() && cols() == other.cols());
- internal::assign_impl<Derived, OtherDerived, int(SameType) ? int(internal::assign_traits<Derived, OtherDerived>::Traversal)
- : int(InvalidTraversal)>::run(derived(),other.derived());
+ internal::call_assignment_no_alias(derived(),other.derived());
-#endif // EIGEN_TEST_EVALUATORS
-
-#ifndef EIGEN_NO_DEBUG
- checkTransposeAliasing(other.derived());
-#endif
return derived();
}
-namespace internal {
-
-template<typename Derived, typename OtherDerived,
- bool EvalBeforeAssigning = (int(internal::traits<OtherDerived>::Flags) & EvalBeforeAssigningBit) != 0,
- bool NeedToTranspose = ((int(Derived::RowsAtCompileTime) == 1 && int(OtherDerived::ColsAtCompileTime) == 1)
- | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
- // revert to || as soon as not needed anymore.
- (int(Derived::ColsAtCompileTime) == 1 && int(OtherDerived::RowsAtCompileTime) == 1))
- && int(Derived::SizeAtCompileTime) != 1>
-struct assign_selector;
-
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,false,false> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.derived()); }
- template<typename ActualDerived, typename ActualOtherDerived>
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { other.evalTo(dst); return dst; }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,true,false> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.eval()); }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,false,true> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose()); }
- template<typename ActualDerived, typename ActualOtherDerived>
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& evalTo(ActualDerived& dst, const ActualOtherDerived& other) { Transpose<ActualDerived> dstTrans(dst); other.evalTo(dstTrans); return dst; }
-};
-template<typename Derived, typename OtherDerived>
-struct assign_selector<Derived,OtherDerived,true,true> {
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Derived& run(Derived& dst, const OtherDerived& other) { return dst.lazyAssign(other.transpose().eval()); }
-};
-
-} // end namespace internal
-
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
{
- return internal::assign_selector<Derived,Derived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
@@ -598,7 +63,8 @@ template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived>::run(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
@@ -606,7 +72,8 @@ template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename Derived>
@@ -614,7 +81,8 @@ template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
- return internal::assign_selector<Derived,OtherDerived,false>::evalTo(derived(), other.derived());
+ other.derived().evalTo(derived());
+ return derived();
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/AssignEvaluator.h b/Eigen/src/Core/AssignEvaluator.h
index 5451a138f..4db10e697 100644
--- a/Eigen/src/Core/AssignEvaluator.h
+++ b/Eigen/src/Core/AssignEvaluator.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2011-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -24,37 +24,46 @@ namespace internal {
// copy_using_evaluator_traits is based on assign_traits
-template <typename Derived, typename OtherDerived>
+template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc>
struct copy_using_evaluator_traits
{
+ typedef typename DstEvaluator::XprType Dst;
+
+ enum {
+ DstFlags = DstEvaluator::Flags,
+ SrcFlags = SrcEvaluator::Flags
+ };
+
public:
enum {
- DstIsAligned = Derived::Flags & AlignedBit,
- DstHasDirectAccess = Derived::Flags & DirectAccessBit,
- SrcIsAligned = OtherDerived::Flags & AlignedBit,
- JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned,
- SrcEvalBeforeAssign = (evaluator_traits<OtherDerived>::HasEvalTo == 1)
+ DstIsAligned = DstFlags & AlignedBit,
+ DstHasDirectAccess = DstFlags & DirectAccessBit,
+ SrcIsAligned = SrcFlags & AlignedBit,
+ JointAlignment = bool(DstIsAligned) && bool(SrcIsAligned) ? Aligned : Unaligned
};
private:
enum {
- InnerSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::SizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::ColsAtCompileTime)
- : int(Derived::RowsAtCompileTime),
- InnerMaxSize = int(Derived::IsVectorAtCompileTime) ? int(Derived::MaxSizeAtCompileTime)
- : int(Derived::Flags)&RowMajorBit ? int(Derived::MaxColsAtCompileTime)
- : int(Derived::MaxRowsAtCompileTime),
- MaxSizeAtCompileTime = Derived::SizeAtCompileTime,
- PacketSize = packet_traits<typename Derived::Scalar>::size
+ InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
+ : int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
+ : int(Dst::RowsAtCompileTime),
+ InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
+ : int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
+ : int(Dst::MaxRowsAtCompileTime),
+ MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
+ PacketSize = packet_traits<typename Dst::Scalar>::size
};
enum {
- StorageOrdersAgree = (int(Derived::IsRowMajor) == int(OtherDerived::IsRowMajor)),
+ DstIsRowMajor = DstFlags&RowMajorBit,
+ SrcIsRowMajor = SrcFlags&RowMajorBit,
+ StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
MightVectorize = StorageOrdersAgree
- && (int(Derived::Flags) & int(OtherDerived::Flags) & ActualPacketAccessBit),
+ && (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit)
+ && (functor_traits<AssignFunc>::PacketAccess),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(DstIsAligned) && int(SrcIsAligned),
- MayLinearize = StorageOrdersAgree && (int(Derived::Flags) & int(OtherDerived::Flags) & LinearAccessBit),
+ MayLinearize = StorageOrdersAgree && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& (DstIsAligned || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
@@ -68,8 +77,7 @@ private:
public:
enum {
- Traversal = int(SrcEvalBeforeAssign) ? int(AllAtOnceTraversal)
- : int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
+ Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
@@ -82,12 +90,12 @@ public:
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
- MayUnrollCompletely = int(Derived::SizeAtCompileTime) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(Derived::SizeAtCompileTime) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit),
+ MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic
+ && int(SrcEvaluator::CoeffReadCost) != Dynamic
+ && int(Dst::SizeAtCompileTime) * int(SrcEvaluator::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
- && int(OtherDerived::CoeffReadCost) != Dynamic
- && int(InnerSize) * int(OtherDerived::CoeffReadCost) <= int(UnrollingLimit)
+ && int(SrcEvaluator::CoeffReadCost) != Dynamic
+ && int(InnerSize) * int(SrcEvaluator::CoeffReadCost) <= int(UnrollingLimit)
};
public:
@@ -110,6 +118,12 @@ public:
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
+ std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
+ std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
+ std::cerr.setf(std::ios::hex, std::ios::basefield);
+ EIGEN_DEBUG_VAR(DstFlags)
+ EIGEN_DEBUG_VAR(SrcFlags)
+ std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstIsAligned)
EIGEN_DEBUG_VAR(SrcIsAligned)
EIGEN_DEBUG_VAR(JointAlignment)
@@ -127,6 +141,7 @@ public:
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
+ std::cerr << std::endl;
}
#endif
};
@@ -142,6 +157,7 @@ public:
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
+ // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
@@ -150,7 +166,7 @@ struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
inner = Index % DstXprType::InnerSizeAtCompileTime
};
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.assignCoeffByOuterInner(outer, inner);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
@@ -160,13 +176,13 @@ struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
- static EIGEN_STRONG_INLINE void run(Kernel&) { }
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
- static EIGEN_STRONG_INLINE void run(Kernel &kernel, int outer)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, typename Kernel::Index outer)
{
kernel.assignCoeffByOuterInner(outer, Index);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index+1, Stop>::run(kernel, outer);
@@ -176,7 +192,7 @@ struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
{
- static EIGEN_STRONG_INLINE void run(Kernel&, int) { }
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, typename Kernel::Index) { }
};
/***********************
@@ -186,7 +202,7 @@ struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
- static EIGEN_STRONG_INLINE void run(Kernel& kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel)
{
kernel.assignCoeff(Index);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
@@ -196,7 +212,7 @@ struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
template<typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
- static EIGEN_STRONG_INLINE void run(Kernel&) { }
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
/**************************
@@ -206,16 +222,17 @@ struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
+ // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
-
+
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
JointAlignment = Kernel::AssignmentTraits::JointAlignment
};
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.template assignPacketByOuterInner<Aligned, JointAlignment>(outer, inner);
enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
@@ -226,17 +243,16 @@ struct copy_using_evaluator_innervec_CompleteUnrolling
template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
{
- static EIGEN_STRONG_INLINE void run(Kernel&) { }
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling
{
- static EIGEN_STRONG_INLINE void run(Kernel &kernel, int outer)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, typename Kernel::Index outer)
{
kernel.template assignPacketByOuterInner<Aligned, Aligned>(outer, Index);
- typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
- enum { NextIndex = Index + packet_traits<typename DstXprType::Scalar>::size };
+ enum { NextIndex = Index + packet_traits<typename Kernel::Scalar>::size };
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop>::run(kernel, outer);
}
};
@@ -244,7 +260,7 @@ struct copy_using_evaluator_innervec_InnerUnrolling
template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop>
{
- static EIGEN_STRONG_INLINE void run(Kernel &, int) { }
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, typename Kernel::Index) { }
};
/***************************************************************************
@@ -265,7 +281,7 @@ struct dense_assignment_loop;
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
{
- static void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static void run(Kernel &kernel)
{
typedef typename Kernel::Index Index;
@@ -280,7 +296,7 @@ struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling>
{
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
@@ -291,7 +307,7 @@ template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling>
{
typedef typename Kernel::Index Index;
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
@@ -314,7 +330,7 @@ struct unaligned_dense_assignment_loop
{
// if IsAligned = true, then do nothing
template <typename Kernel>
- static EIGEN_STRONG_INLINE void run(Kernel&, typename Kernel::Index, typename Kernel::Index) {}
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, typename Kernel::Index, typename Kernel::Index) {}
};
template <>
@@ -323,14 +339,14 @@ struct unaligned_dense_assignment_loop<false>
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
// FIXME check which version exhibits this issue
-#ifdef _MSC_VER
+#if EIGEN_COMP_MSVC
template <typename Kernel>
static EIGEN_DONT_INLINE void run(Kernel &kernel,
typename Kernel::Index start,
typename Kernel::Index end)
#else
template <typename Kernel>
- static EIGEN_STRONG_INLINE void run(Kernel &kernel,
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel,
typename Kernel::Index start,
typename Kernel::Index end)
#endif
@@ -343,7 +359,7 @@ struct unaligned_dense_assignment_loop<false>
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
{
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::Index Index;
@@ -371,7 +387,7 @@ template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
{
typedef typename Kernel::Index Index;
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
@@ -391,7 +407,7 @@ struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrollin
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
{
- static inline void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel)
{
typedef typename Kernel::Index Index;
@@ -407,7 +423,7 @@ struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling>
{
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
@@ -418,7 +434,7 @@ template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
{
typedef typename Kernel::Index Index;
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
const Index outerSize = kernel.outerSize();
@@ -434,7 +450,7 @@ struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
{
- static inline void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel)
{
typedef typename Kernel::Index Index;
const Index size = kernel.size();
@@ -446,7 +462,7 @@ struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
{
- static EIGEN_STRONG_INLINE void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
@@ -460,7 +476,7 @@ struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
{
- static inline void run(Kernel &kernel)
+ EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel)
{
typedef typename Kernel::Index Index;
typedef packet_traits<typename Kernel::Scalar> PacketTraits;
@@ -496,25 +512,8 @@ struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
}
};
-/****************************
-*** All-at-once traversal ***
-****************************/
-
-// TODO: this 'AllAtOnceTraversal' should be dropped or caught earlier (Gael)
-// Indeed, what to do with the kernel's functor??
-template<typename Kernel>
-struct dense_assignment_loop<Kernel, AllAtOnceTraversal, NoUnrolling>
-{
- static inline void run(Kernel & kernel)
- {
- // Evaluate rhs in temporary to prevent aliasing problems in a = a * a;
- // TODO: Do not pass the xpr object to evalTo() (Jitse)
- kernel.srcEvaluator().evalTo(kernel.dstEvaluator(), kernel.dstExpression());
- }
-};
-
/***************************************************************************
-* Part 4 : Generic Assignment routine
+* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
@@ -523,7 +522,7 @@ struct dense_assignment_loop<Kernel, AllAtOnceTraversal, NoUnrolling>
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
-template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor>
+template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel
{
protected:
@@ -535,35 +534,44 @@ public:
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef typename DstEvaluatorType::Index Index;
- typedef copy_using_evaluator_traits<DstXprType, SrcXprType> AssignmentTraits;
+ typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
- generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
+ EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
- {}
+ {
+ #ifdef EIGEN_DEBUG_ASSIGN
+ AssignmentTraits::debug();
+ #endif
+ }
- Index size() const { return m_dstExpr.size(); }
- Index innerSize() const { return m_dstExpr.innerSize(); }
- Index outerSize() const { return m_dstExpr.outerSize(); }
- Index outerStride() const { return m_dstExpr.outerStride(); }
+ EIGEN_DEVICE_FUNC Index size() const { return m_dstExpr.size(); }
+ EIGEN_DEVICE_FUNC Index innerSize() const { return m_dstExpr.innerSize(); }
+ EIGEN_DEVICE_FUNC Index outerSize() const { return m_dstExpr.outerSize(); }
+ EIGEN_DEVICE_FUNC Index rows() const { return m_dstExpr.rows(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_dstExpr.cols(); }
+ EIGEN_DEVICE_FUNC Index outerStride() const { return m_dstExpr.outerStride(); }
// TODO get rid of this one:
- DstXprType& dstExpression() const { return m_dstExpr; }
+ EIGEN_DEVICE_FUNC DstXprType& dstExpression() const { return m_dstExpr; }
- DstEvaluatorType& dstEvaluator() { return m_dst; }
- const SrcEvaluatorType& srcEvaluator() const { return m_src; }
+ EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() { return m_dst; }
+ EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const { return m_src; }
- void assignCoeff(Index row, Index col)
+ /// Assign src(row,col) to dst(row,col) through the assignment functor.
+ EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
{
m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
}
- void assignCoeff(Index index)
+ /// \sa assignCoeff(Index,Index)
+ EIGEN_DEVICE_FUNC void assignCoeff(Index index)
{
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
- void assignCoeffByOuterInner(Index outer, Index inner)
+ /// \sa assignCoeff(Index,Index)
+ EIGEN_DEVICE_FUNC void assignCoeffByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
@@ -572,40 +580,40 @@ public:
template<int StoreMode, int LoadMode>
- void assignPacket(Index row, Index col)
+ EIGEN_DEVICE_FUNC void assignPacket(Index row, Index col)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row,col), m_src.template packet<LoadMode>(row,col));
}
template<int StoreMode, int LoadMode>
- void assignPacket(Index index)
+ EIGEN_DEVICE_FUNC void assignPacket(Index index)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode>(index));
}
template<int StoreMode, int LoadMode>
- void assignPacketByOuterInner(Index outer, Index inner)
+ EIGEN_DEVICE_FUNC void assignPacketByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignPacket<StoreMode,LoadMode>(row, col);
}
- static Index rowIndexByOuterInner(Index outer, Index inner)
+ EIGEN_DEVICE_FUNC static Index rowIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
- : int(Traits::Flags)&RowMajorBit ? outer
+ : int(DstEvaluatorType::Flags)&RowMajorBit ? outer
: inner;
}
- static Index colIndexByOuterInner(Index outer, Index inner)
+ EIGEN_DEVICE_FUNC static Index colIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
- : int(Traits::Flags)&RowMajorBit ? inner
+ : int(DstEvaluatorType::Flags)&RowMajorBit ? inner
: outer;
}
@@ -617,13 +625,13 @@ protected:
DstXprType& m_dstExpr;
};
+/***************************************************************************
+* Part 5 : Entry point for dense rectangular assignment
+***************************************************************************/
+
template<typename DstXprType, typename SrcXprType, typename Functor>
-void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func)
+EIGEN_DEVICE_FUNC void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func)
{
-#ifdef EIGEN_DEBUG_ASSIGN
- // TODO these traits should be computed from information provided by the evaluators
- internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
-#endif
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
typedef typename evaluator<DstXprType>::type DstEvaluatorType;
@@ -639,201 +647,147 @@ void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src, co
}
template<typename DstXprType, typename SrcXprType>
-void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src)
+EIGEN_DEVICE_FUNC void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src)
{
call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar>());
}
/***************************************************************************
-* Part 5 : Entry points
+* Part 6 : Generic assignment
***************************************************************************/
-// Based on DenseBase::LazyAssign()
-// The following functions are just for testing and they are meant to be moved to operator= and the likes.
-
-template<typename DstXprType, template <typename> class StorageBase, typename SrcXprType>
-EIGEN_STRONG_INLINE
-const DstXprType& copy_using_evaluator(const NoAlias<DstXprType, StorageBase>& dst,
- const EigenBase<SrcXprType>& src)
-{
- return noalias_copy_using_evaluator(dst.expression(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
-}
+// Based on the respective shapes of the destination and source,
+// the class AssignmentKind determine the kind of assignment mechanism.
+// AssignmentKind must define a Kind typedef.
+template<typename DstShape, typename SrcShape> struct AssignmentKind;
-template<typename XprType, int AssumeAliasing = evaluator_traits<XprType>::AssumeAliasing>
-struct AddEvalIfAssumingAliasing;
+// Assignement kind defined in this file:
+struct Dense2Dense {};
+struct EigenBase2EigenBase {};
-template<typename XprType>
-struct AddEvalIfAssumingAliasing<XprType, 0>
-{
- static const XprType& run(const XprType& xpr)
- {
- return xpr;
- }
-};
+template<typename,typename> struct AssignmentKind { typedef EigenBase2EigenBase Kind; };
+template<> struct AssignmentKind<DenseShape,DenseShape> { typedef Dense2Dense Kind; };
+
+// This is the main assignment class
+template< typename DstXprType, typename SrcXprType, typename Functor,
+ typename Kind = typename AssignmentKind< typename evaluator_traits<DstXprType>::Shape , typename evaluator_traits<SrcXprType>::Shape >::Kind,
+ typename Scalar = typename DstXprType::Scalar>
+struct Assignment;
-template<typename XprType>
-struct AddEvalIfAssumingAliasing<XprType, 1>
-{
- static const EvalToTemp<XprType> run(const XprType& xpr)
- {
- return EvalToTemp<XprType>(xpr);
- }
-};
-template<typename DstXprType, typename SrcXprType, typename Functor>
-EIGEN_STRONG_INLINE
-const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
-{
- return noalias_copy_using_evaluator(dst.const_cast_derived(),
- AddEvalIfAssumingAliasing<SrcXprType>::run(src.derived()),
- func
- );
-}
+// The only purpose of this call_assignment() function is to deal with noalias() / AssumeAliasing and automatic transposition.
+// Indeed, I (Gael) think that this concept of AssumeAliasing was a mistake, and it makes thing quite complicated.
+// So this intermediate function removes everything related to AssumeAliasing such that Assignment
+// does not has to bother about these annoying details.
-// this mimics operator=
-template<typename DstXprType, typename SrcXprType>
-EIGEN_STRONG_INLINE
-const DstXprType& copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src)
+template<typename Dst, typename Src>
+EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src)
{
- return copy_using_evaluator(dst.const_cast_derived(), src.derived(), internal::assign_op<typename DstXprType::Scalar>());
+ call_assignment(dst, src, internal::assign_op<typename Dst::Scalar>());
}
-
-template<typename DstXprType, typename SrcXprType, typename Functor>
-EIGEN_STRONG_INLINE
-const DstXprType& noalias_copy_using_evaluator(const PlainObjectBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
+template<typename Dst, typename Src>
+EIGEN_DEVICE_FUNC void call_assignment(const Dst& dst, const Src& src)
{
-#ifdef EIGEN_DEBUG_ASSIGN
- internal::copy_using_evaluator_traits<DstXprType, SrcXprType>::debug();
-#endif
-#ifdef EIGEN_NO_AUTOMATIC_RESIZING
- eigen_assert((dst.size()==0 || (IsVectorAtCompileTime ? (dst.size() == src.size())
- : (dst.rows() == src.rows() && dst.cols() == src.cols())))
- && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined");
-#else
- dst.const_cast_derived().resizeLike(src.derived());
-#endif
- call_dense_assignment_loop(dst.const_cast_derived(), src.derived(), func);
- return dst.derived();
+ call_assignment(dst, src, internal::assign_op<typename Dst::Scalar>());
}
-
-template<typename DstXprType, typename SrcXprType, typename Functor>
-EIGEN_STRONG_INLINE
-const DstXprType& noalias_copy_using_evaluator(const EigenBase<DstXprType>& dst, const EigenBase<SrcXprType>& src, const Functor &func)
+
+// Deal with AssumeAliasing
+template<typename Dst, typename Src, typename Func>
+EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==1, void*>::type = 0)
{
- call_dense_assignment_loop(dst.const_cast_derived(), src.derived(), func);
- return dst.derived();
+ typename plain_matrix_type<Src>::type tmp(src);
+ call_assignment_no_alias(dst, tmp, func);
}
-// Based on DenseBase::swap()
-// TODO: Check whether we need to do something special for swapping two
-// Arrays or Matrices. (Jitse)
-
-// Overload default assignPacket behavior for swapping them
-template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT>
-class swap_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar> >
-{
- typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar> > Base;
- typedef typename DstEvaluatorTypeT::PacketScalar PacketScalar;
- using Base::m_dst;
- using Base::m_src;
- using Base::m_functor;
-
-public:
- typedef typename Base::Scalar Scalar;
- typedef typename Base::Index Index;
- typedef typename Base::DstXprType DstXprType;
-
- swap_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, DstXprType& dstExpr)
- : Base(dst, src, swap_assign_op<Scalar>(), dstExpr)
- {}
-
- template<int StoreMode, int LoadMode>
- void assignPacket(Index row, Index col)
- {
- m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(row,col), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(row,col));
- }
-
- template<int StoreMode, int LoadMode>
- void assignPacket(Index index)
- {
- m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(index), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(index));
- }
-
- // TODO find a simple way not to have to copy/paste this function from generic_dense_assignment_kernel, by simple I mean no CRTP (Gael)
- template<int StoreMode, int LoadMode>
- void assignPacketByOuterInner(Index outer, Index inner)
- {
- Index row = Base::rowIndexByOuterInner(outer, inner);
- Index col = Base::colIndexByOuterInner(outer, inner);
- assignPacket<StoreMode,LoadMode>(row, col);
- }
-};
-
-template<typename DstXprType, typename SrcXprType>
-void swap_using_evaluator(const DstXprType& dst, const SrcXprType& src)
+template<typename Dst, typename Src, typename Func>
+EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==0, void*>::type = 0)
{
- // TODO there is too much redundancy with call_dense_assignment_loop
-
- eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
-
- typedef typename evaluator<DstXprType>::type DstEvaluatorType;
- typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
-
- DstEvaluatorType dstEvaluator(dst);
- SrcEvaluatorType srcEvaluator(src);
-
- typedef swap_kernel<DstEvaluatorType,SrcEvaluatorType> Kernel;
- Kernel kernel(dstEvaluator, srcEvaluator, dst.const_cast_derived());
-
- dense_assignment_loop<Kernel>::run(kernel);
+ call_assignment_no_alias(dst, src, func);
}
-// Based on MatrixBase::operator+= (in CwiseBinaryOp.h)
-template<typename DstXprType, typename SrcXprType>
-void add_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
+// by-pass AssumeAliasing
+// FIXME the const version should probably not be needed
+// When there is no aliasing, we require that 'dst' has been properly resized
+template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
+EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), add_assign_op<Scalar>());
+ call_assignment_no_alias(dst.expression(), src, func);
}
-
-// Based on ArrayBase::operator+=
-template<typename DstXprType, typename SrcXprType>
-void add_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
+template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
+EIGEN_DEVICE_FUNC void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), add_assign_op<Scalar>());
+ call_assignment_no_alias(dst.expression(), src, func);
}
-// TODO: Add add_assign_using_evaluator for EigenBase ? (Jitse)
-template<typename DstXprType, typename SrcXprType>
-void subtract_assign_using_evaluator(const MatrixBase<DstXprType>& dst, const MatrixBase<SrcXprType>& src)
+template<typename Dst, typename Src, typename Func>
+EIGEN_DEVICE_FUNC void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), sub_assign_op<Scalar>());
-}
+ enum {
+ NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1)
+ | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
+ // revert to || as soon as not needed anymore.
+ (int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1))
+ && int(Dst::SizeAtCompileTime) != 1
+ };
-template<typename DstXprType, typename SrcXprType>
-void subtract_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
-{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), sub_assign_op<Scalar>());
+ typename Dst::Index dstRows = NeedToTranspose ? src.cols() : src.rows();
+ typename Dst::Index dstCols = NeedToTranspose ? src.rows() : src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst>::type ActualDstTypeCleaned;
+ typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst&>::type ActualDstType;
+ ActualDstType actualDst(dst);
+
+ // TODO check whether this is the right place to perform these checks:
+ EIGEN_STATIC_ASSERT_LVALUE(Dst)
+ EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src)
+
+ // TODO this line is commented to allow matrix = permutation
+ // Actually, the "Scalar" type for a permutation matrix does not really make sense,
+ // perhaps it could be void, and EIGEN_CHECK_BINARY_COMPATIBILIY could allow micing void with anything...?
+// EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar);
+
+ Assignment<ActualDstTypeCleaned,Src,Func>::run(actualDst, src, func);
}
-
-template<typename DstXprType, typename SrcXprType>
-void multiply_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
+template<typename Dst, typename Src>
+EIGEN_DEVICE_FUNC void call_assignment_no_alias(Dst& dst, const Src& src)
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), mul_assign_op<Scalar>());
+ call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar>());
}
-template<typename DstXprType, typename SrcXprType>
-void divide_assign_using_evaluator(const ArrayBase<DstXprType>& dst, const ArrayBase<SrcXprType>& src)
+// forward declaration
+template<typename Dst, typename Src> void check_for_aliasing(const Dst &dst, const Src &src);
+
+// Generic Dense to Dense assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Scalar>
{
- typedef typename DstXprType::Scalar Scalar;
- copy_using_evaluator(dst.derived(), src.derived(), div_assign_op<Scalar>());
-}
+ EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+#ifndef EIGEN_NO_DEBUG
+ internal::check_for_aliasing(dst, src);
+#endif
+
+ call_dense_assignment_loop(dst, src, func);
+ }
+};
+// Generic assignment through evalTo.
+// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Scalar>
+{
+ EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &/*func*/)
+ {
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+ src.evalTo(dst);
+ }
+};
} // namespace internal
diff --git a/Eigen/src/Core/BandMatrix.h b/Eigen/src/Core/BandMatrix.h
index ffd7fe8b3..e59ee3da9 100644
--- a/Eigen/src/Core/BandMatrix.h
+++ b/Eigen/src/Core/BandMatrix.h
@@ -204,7 +204,7 @@ class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Sub
typedef typename internal::traits<BandMatrix>::Index Index;
typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
- inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
+ explicit inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
: m_coeffs(1+supers+subs,cols),
m_rows(rows), m_supers(supers), m_subs(subs)
{
@@ -266,7 +266,7 @@ class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsT
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
typedef typename internal::traits<BandMatrixWrapper>::Index Index;
- inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
+ explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
: m_coeffs(coeffs),
m_rows(rows), m_supers(supers), m_subs(subs)
{
@@ -314,7 +314,7 @@ class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint
typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
typedef typename Base::Index Index;
public:
- TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
+ explicit TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
inline typename Base::template DiagonalIntReturnType<1>::Type super()
{ return Base::template diagonal<1>(); }
@@ -327,6 +327,25 @@ class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint
protected:
};
+
+struct BandShape {};
+
+template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
+struct evaluator_traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
+ : public evaluator_traits_base<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
+{
+ typedef BandShape Shape;
+};
+
+template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
+struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
+ : public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
+{
+ typedef BandShape Shape;
+};
+
+template<> struct AssignmentKind<DenseShape,BandShape> { typedef EigenBase2EigenBase Kind; };
+
} // end namespace internal
} // end namespace Eigen
diff --git a/Eigen/src/Core/Block.h b/Eigen/src/Core/Block.h
index da193d1a2..9cf9d5432 100644
--- a/Eigen/src/Core/Block.h
+++ b/Eigen/src/Core/Block.h
@@ -68,6 +68,7 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
+
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
@@ -80,18 +81,14 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
- MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
- && (InnerStrideAtCompileTime == 1)
- ? PacketAccessBit : 0,
- MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % EIGEN_ALIGN_BYTES) == 0)) ? AlignedBit : 0,
- FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
+ // IsAligned is needed by MapBase's assertions
+ // We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator
+ IsAligned = 0,
+ // FIXME, this traits is rather specialized for dense object and it needs to be cleaned further
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
- Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
- DirectAccessBit |
- MaskPacketAccessBit |
- MaskAlignedBit),
- Flags = Flags0 | FlagsLinearAccessBit | FlagsLvalueBit | FlagsRowMajorBit
+ Flags = (traits<XprType>::Flags & DirectAccessBit) | FlagsLvalueBit | FlagsRowMajorBit
+ // FIXME DirectAccessBit should not be handled by expressions
};
};
@@ -111,6 +108,8 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class
typedef Impl Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
+
+ typedef typename internal::remove_all<XprType>::type NestedExpression;
/** Column or Row constructor
*/
@@ -179,7 +178,7 @@ template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool H
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
- class InnerIterator;
+ // class InnerIterator; // FIXME apparently never used
/** Column or Row constructor
*/
@@ -333,6 +332,9 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
+ enum {
+ XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0
+ };
public:
typedef MapBase<BlockType> Base;
@@ -343,9 +345,8 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(
- (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0,
- (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0)),
+ : Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor))
+ || ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()),
BlockRows==1 ? 1 : xpr.rows(),
BlockCols==1 ? 1 : xpr.cols()),
m_xpr(xpr)
@@ -357,7 +358,8 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol))), m_xpr(xpr)
+ : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)),
+ m_xpr(xpr)
{
init();
}
@@ -368,7 +370,7 @@ class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
- : Base(internal::const_cast_ptr(&xpr.coeffRef(startRow,startCol)), blockRows, blockCols),
+ : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols),
m_xpr(xpr)
{
init();
diff --git a/Eigen/src/Core/BooleanRedux.h b/Eigen/src/Core/BooleanRedux.h
index be9f48a8c..dac1887e0 100644
--- a/Eigen/src/Core/BooleanRedux.h
+++ b/Eigen/src/Core/BooleanRedux.h
@@ -17,9 +17,10 @@ namespace internal {
template<typename Derived, int UnrollCount>
struct all_unroller
{
+ typedef typename Derived::ExpressionTraits Traits;
enum {
- col = (UnrollCount-1) / Derived::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived::RowsAtCompileTime
+ col = (UnrollCount-1) / Traits::RowsAtCompileTime,
+ row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
@@ -43,11 +44,12 @@ struct all_unroller<Derived, Dynamic>
template<typename Derived, int UnrollCount>
struct any_unroller
{
+ typedef typename Derived::ExpressionTraits Traits;
enum {
- col = (UnrollCount-1) / Derived::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived::RowsAtCompileTime
+ col = (UnrollCount-1) / Traits::RowsAtCompileTime,
+ row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
-
+
static inline bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
@@ -78,19 +80,21 @@ struct any_unroller<Derived, Dynamic>
template<typename Derived>
inline bool DenseBase<Derived>::all() const
{
+ typedef typename internal::evaluator<Derived>::type Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
+ && Evaluator::CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
- && SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
+ && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
+ Evaluator evaluator(derived());
if(unroll)
- return internal::all_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
+ return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
- if (!coeff(i, j)) return false;
+ if (!evaluator.coeff(i, j)) return false;
return true;
}
}
@@ -102,19 +106,21 @@ inline bool DenseBase<Derived>::all() const
template<typename Derived>
inline bool DenseBase<Derived>::any() const
{
+ typedef typename internal::evaluator<Derived>::type Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
+ && Evaluator::CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
- && SizeAtCompileTime * (CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
+ && SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
+ Evaluator evaluator(derived());
if(unroll)
- return internal::any_unroller<Derived, unroll ? int(SizeAtCompileTime) : Dynamic>::run(derived());
+ return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
- if (coeff(i, j)) return true;
+ if (evaluator.coeff(i, j)) return true;
return false;
}
}
diff --git a/Eigen/src/Core/CoreEvaluators.h b/Eigen/src/Core/CoreEvaluators.h
index 3568cb85f..1c7123b85 100644
--- a/Eigen/src/Core/CoreEvaluators.h
+++ b/Eigen/src/Core/CoreEvaluators.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -14,57 +14,85 @@
#define EIGEN_COREEVALUATORS_H
namespace Eigen {
-
+
namespace internal {
-// evaluator_traits<T> contains traits for evaluator_impl<T>
+// This class returns the evaluator kind from the expression storage kind.
+// Default assumes index based accessors
+template<typename StorageKind>
+struct storage_kind_to_evaluator_kind {
+ typedef IndexBased Kind;
+};
-template<typename T>
-struct evaluator_traits
-{
- // 1 if evaluator_impl<T>::evalTo() exists
- // 0 if evaluator_impl<T> allows coefficient-based access
- static const int HasEvalTo = 0;
+// This class returns the evaluator shape from the expression storage kind.
+// It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc.
+template<typename StorageKind> struct storage_kind_to_shape;
- // 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a
- // temporary; 0 if not.
- static const int AssumeAliasing = 0;
-};
-// expression class for evaluating nested expression to a temporary
-
-template<typename ArgType>
-class EvalToTemp;
+template<> struct storage_kind_to_shape<Dense> { typedef DenseShape Shape; };
-// evaluator<T>::type is type of evaluator for T
-// evaluator<T>::nestedType is type of evaluator if T is nested inside another evaluator
-
-template<typename T>
-struct evaluator_impl
-{ };
-
-template<typename T, int Nested = evaluator_traits<T>::HasEvalTo>
-struct evaluator_nested_type;
+
+// FIXME Is this necessary? And why was it not before refactoring???
+template<> struct storage_kind_to_shape<PermutationStorage> { typedef PermutationShape Shape; };
+
+
+// Evaluators have to be specialized with respect to various criteria such as:
+// - storage/structure/shape
+// - scalar type
+// - etc.
+// Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators.
+// We currently distinguish the following kind of evaluators:
+// - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate)
+// - binary_evaluator for expression taking two arguments (CwiseBinaryOp)
+// - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching.
+// - mapbase_evaluator for Map, Block, Ref
+// - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator)
+
+template< typename T,
+ typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind,
+ typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind,
+ typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
+ typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct binary_evaluator;
+
+template< typename T,
+ typename Kind = typename evaluator_traits<typename T::NestedExpression>::Kind,
+ typename Scalar = typename T::Scalar> struct unary_evaluator;
+
+// evaluator_traits<T> contains traits for evaluator<T>
template<typename T>
-struct evaluator_nested_type<T, 0>
+struct evaluator_traits_base
{
- typedef evaluator_impl<T> type;
+ // TODO check whether these two indirections are really needed.
+ // Basically, if nobody overwrite type and nestedType, then, they can be dropped
+// typedef evaluator<T> type;
+// typedef evaluator<T> nestedType;
+
+ // by default, get evaluator kind and shape from storage
+ typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind;
+ typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape;
+
+ // 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a
+ // temporary; 0 if not.
+ static const int AssumeAliasing = 0;
};
+// Default evaluator traits
template<typename T>
-struct evaluator_nested_type<T, 1>
+struct evaluator_traits : public evaluator_traits_base<T>
{
- typedef evaluator_impl<EvalToTemp<T> > type;
};
+
+// By default, we assume a unary expression:
template<typename T>
-struct evaluator
+struct evaluator : public unary_evaluator<T>
{
- typedef evaluator_impl<T> type;
- typedef typename evaluator_nested_type<T>::type nestedType;
+ typedef unary_evaluator<T> Base;
+ EIGEN_DEVICE_FUNC explicit evaluator(const T& xpr) : Base(xpr) {}
};
+
// TODO: Think about const-correctness
template<typename T>
@@ -76,47 +104,59 @@ struct evaluator<const T>
// TODO this class does not seem to be necessary anymore
template<typename ExpressionType>
-struct evaluator_impl_base
+struct evaluator_base
{
- typedef typename ExpressionType::Index Index;
+// typedef typename evaluator_traits<ExpressionType>::type type;
+// typedef typename evaluator_traits<ExpressionType>::nestedType nestedType;
+ typedef evaluator<ExpressionType> type;
+ typedef evaluator<ExpressionType> nestedType;
+
+ typedef typename traits<ExpressionType>::Index Index;
// TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices.
typedef traits<ExpressionType> ExpressionTraits;
-
- evaluator_impl<ExpressionType>& derived()
- {
- return *static_cast<evaluator_impl<ExpressionType>*>(this);
- }
};
// -------------------- Matrix and Array --------------------
//
-// evaluator_impl<PlainObjectBase> is a common base class for the
+// evaluator<PlainObjectBase> is a common base class for the
// Matrix and Array evaluators.
+// Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense,
+// so no need for more sophisticated dispatching.
template<typename Derived>
-struct evaluator_impl<PlainObjectBase<Derived> >
- : evaluator_impl_base<Derived>
+struct evaluator<PlainObjectBase<Derived> >
+ : evaluator_base<Derived>
{
typedef PlainObjectBase<Derived> PlainObjectType;
+ typedef typename PlainObjectType::Index Index;
+ typedef typename PlainObjectType::Scalar Scalar;
+ typedef typename PlainObjectType::CoeffReturnType CoeffReturnType;
+ typedef typename PlainObjectType::PacketScalar PacketScalar;
+ typedef typename PlainObjectType::PacketReturnType PacketReturnType;
enum {
IsRowMajor = PlainObjectType::IsRowMajor,
IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime,
RowsAtCompileTime = PlainObjectType::RowsAtCompileTime,
- ColsAtCompileTime = PlainObjectType::ColsAtCompileTime
+ ColsAtCompileTime = PlainObjectType::ColsAtCompileTime,
+
+ CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ Flags = compute_matrix_evaluator_flags< Scalar,Derived::RowsAtCompileTime,Derived::ColsAtCompileTime,
+ Derived::Options,Derived::MaxRowsAtCompileTime,Derived::MaxColsAtCompileTime>::ret
};
-
- evaluator_impl(const PlainObjectType& m)
+
+ EIGEN_DEVICE_FUNC evaluator()
+ : m_data(0),
+ m_outerStride(IsVectorAtCompileTime ? 0
+ : int(IsRowMajor) ? ColsAtCompileTime
+ : RowsAtCompileTime)
+ {}
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const PlainObjectType& m)
: m_data(m.data()), m_outerStride(IsVectorAtCompileTime ? 0 : m.outerStride())
{ }
- typedef typename PlainObjectType::Index Index;
- typedef typename PlainObjectType::Scalar Scalar;
- typedef typename PlainObjectType::CoeffReturnType CoeffReturnType;
- typedef typename PlainObjectType::PacketScalar PacketScalar;
- typedef typename PlainObjectType::PacketReturnType PacketReturnType;
-
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
if (IsRowMajor)
return m_data[row * m_outerStride.value() + col];
@@ -124,12 +164,12 @@ struct evaluator_impl<PlainObjectBase<Derived> >
return m_data[row + col * m_outerStride.value()];
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_data[index];
}
- Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index col)
{
if (IsRowMajor)
return const_cast<Scalar*>(m_data)[row * m_outerStride.value() + col];
@@ -137,7 +177,7 @@ struct evaluator_impl<PlainObjectBase<Derived> >
return const_cast<Scalar*>(m_data)[row + col * m_outerStride.value()];
}
- Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index index)
{
return const_cast<Scalar*>(m_data)[index];
}
@@ -184,153 +224,45 @@ protected:
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-struct evaluator_impl<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
- : evaluator_impl<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
+struct evaluator<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
+ : evaluator<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
+
+ evaluator() {}
- evaluator_impl(const XprType& m)
- : evaluator_impl<PlainObjectBase<XprType> >(m)
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m)
+ : evaluator<PlainObjectBase<XprType> >(m)
{ }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
-struct evaluator_impl<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
- : evaluator_impl<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
+struct evaluator<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
+ : evaluator<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > >
{
typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType;
- evaluator_impl(const XprType& m)
- : evaluator_impl<PlainObjectBase<XprType> >(m)
- { }
-};
-
-// -------------------- EvalToTemp --------------------
-
-template<typename ArgType>
-struct traits<EvalToTemp<ArgType> >
- : public traits<ArgType>
-{ };
-
-template<typename ArgType>
-class EvalToTemp
- : public dense_xpr_base<EvalToTemp<ArgType> >::type
-{
- public:
-
- typedef typename dense_xpr_base<EvalToTemp>::type Base;
- EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp)
-
- EvalToTemp(const ArgType& arg)
- : m_arg(arg)
- { }
-
- const ArgType& arg() const
- {
- return m_arg;
- }
-
- Index rows() const
- {
- return m_arg.rows();
- }
-
- Index cols() const
- {
- return m_arg.cols();
- }
-
- private:
- const ArgType& m_arg;
-};
-
-template<typename ArgType>
-struct evaluator_impl<EvalToTemp<ArgType> >
-{
- typedef EvalToTemp<ArgType> XprType;
- typedef typename ArgType::PlainObject PlainObject;
-
- evaluator_impl(const XprType& xpr)
- : m_result(xpr.rows(), xpr.cols()), m_resultImpl(m_result)
- {
- // TODO we should simply do m_result(xpr.arg());
- call_dense_assignment_loop(m_result, xpr.arg());
- }
-
- // This constructor is used when nesting an EvalTo evaluator in another evaluator
- evaluator_impl(const ArgType& arg)
- : m_result(arg.rows(), arg.cols()), m_resultImpl(m_result)
- {
- // TODO we should simply do m_result(xpr.arg());
- call_dense_assignment_loop(m_result, arg);
- }
-
- typedef typename PlainObject::Index Index;
- typedef typename PlainObject::Scalar Scalar;
- typedef typename PlainObject::CoeffReturnType CoeffReturnType;
- typedef typename PlainObject::PacketScalar PacketScalar;
- typedef typename PlainObject::PacketReturnType PacketReturnType;
-
- // All other functions are forwarded to m_resultImpl
-
- CoeffReturnType coeff(Index row, Index col) const
- {
- return m_resultImpl.coeff(row, col);
- }
-
- CoeffReturnType coeff(Index index) const
- {
- return m_resultImpl.coeff(index);
- }
+ evaluator() {}
- Scalar& coeffRef(Index row, Index col)
- {
- return m_resultImpl.coeffRef(row, col);
- }
-
- Scalar& coeffRef(Index index)
- {
- return m_resultImpl.coeffRef(index);
- }
-
- template<int LoadMode>
- PacketReturnType packet(Index row, Index col) const
- {
- return m_resultImpl.template packet<LoadMode>(row, col);
- }
-
- template<int LoadMode>
- PacketReturnType packet(Index index) const
- {
- return m_resultImpl.packet<LoadMode>(index);
- }
-
- template<int StoreMode>
- void writePacket(Index row, Index col, const PacketScalar& x)
- {
- m_resultImpl.template writePacket<StoreMode>(row, col, x);
- }
-
- template<int StoreMode>
- void writePacket(Index index, const PacketScalar& x)
- {
- m_resultImpl.template writePacket<StoreMode>(index, x);
- }
-
-protected:
- PlainObject m_result;
- typename evaluator<PlainObject>::nestedType m_resultImpl;
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m)
+ : evaluator<PlainObjectBase<XprType> >(m)
+ { }
};
// -------------------- Transpose --------------------
template<typename ArgType>
-struct evaluator_impl<Transpose<ArgType> >
- : evaluator_impl_base<Transpose<ArgType> >
+struct unary_evaluator<Transpose<ArgType>, IndexBased>
+ : evaluator_base<Transpose<ArgType> >
{
typedef Transpose<ArgType> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = evaluator<ArgType>::Flags ^ RowMajorBit
+ };
- evaluator_impl(const XprType& t) : m_argImpl(t.nestedExpression()) {}
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {}
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
@@ -338,22 +270,22 @@ struct evaluator_impl<Transpose<ArgType> >
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(col, row);
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
- Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(col, row);
}
- typename XprType::Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC typename XprType::Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
@@ -387,13 +319,27 @@ protected:
};
// -------------------- CwiseNullaryOp --------------------
+// Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator.
+// Likewise, there is not need to more sophisticated dispatching here.
template<typename NullaryOp, typename PlainObjectType>
-struct evaluator_impl<CwiseNullaryOp<NullaryOp,PlainObjectType> >
+struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> >
+ : evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> >
{
typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType;
+ typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned;
+
+ enum {
+ CoeffReadCost = internal::functor_traits<NullaryOp>::Cost,
+
+ Flags = (evaluator<PlainObjectTypeCleaned>::Flags
+ & ( HereditaryBits
+ | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
+ | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
+ | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit) // FIXME EvalBeforeNestingBit should be needed anymore
+ };
- evaluator_impl(const XprType& n)
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n)
: m_functor(n.functor())
{ }
@@ -401,12 +347,12 @@ struct evaluator_impl<CwiseNullaryOp<NullaryOp,PlainObjectType> >
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(row, col);
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_functor(index);
}
@@ -430,11 +376,20 @@ protected:
// -------------------- CwiseUnaryOp --------------------
template<typename UnaryOp, typename ArgType>
-struct evaluator_impl<CwiseUnaryOp<UnaryOp, ArgType> >
+struct unary_evaluator<CwiseUnaryOp<UnaryOp, ArgType>, IndexBased >
+ : evaluator_base<CwiseUnaryOp<UnaryOp, ArgType> >
{
typedef CwiseUnaryOp<UnaryOp, ArgType> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
+
+ Flags = evaluator<ArgType>::Flags & (
+ HereditaryBits | LinearAccessBit | AlignedBit
+ | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0))
+ };
- evaluator_impl(const XprType& op)
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
: m_functor(op.functor()),
m_argImpl(op.nestedExpression())
{ }
@@ -443,12 +398,12 @@ struct evaluator_impl<CwiseUnaryOp<UnaryOp, ArgType> >
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_argImpl.coeff(row, col));
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_functor(m_argImpl.coeff(index));
}
@@ -472,12 +427,43 @@ protected:
// -------------------- CwiseBinaryOp --------------------
+// this is a binary expression
template<typename BinaryOp, typename Lhs, typename Rhs>
-struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+struct evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+ : public binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+ typedef binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > Base;
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
+};
- evaluator_impl(const XprType& xpr)
+template<typename BinaryOp, typename Lhs, typename Rhs>
+struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBased>
+ : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
+{
+ typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost,
+
+ LhsFlags = evaluator<Lhs>::Flags,
+ RhsFlags = evaluator<Rhs>::Flags,
+ SameType = is_same<typename Lhs::Scalar,typename Rhs::Scalar>::value,
+ StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit),
+ Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
+ HereditaryBits
+ | (int(LhsFlags) & int(RhsFlags) &
+ ( AlignedBit
+ | (StorageOrdersAgree ? LinearAccessBit : 0)
+ | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
+ )
+ )
+ ),
+ Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit)
+ };
+
+ EIGEN_DEVICE_FUNC explicit binary_evaluator(const XprType& xpr)
: m_functor(xpr.functor()),
m_lhsImpl(xpr.lhs()),
m_rhsImpl(xpr.rhs())
@@ -487,12 +473,12 @@ struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_functor(m_lhsImpl.coeff(row, col), m_rhsImpl.coeff(row, col));
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_functor(m_lhsImpl.coeff(index), m_rhsImpl.coeff(index));
}
@@ -501,14 +487,14 @@ struct evaluator_impl<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
PacketScalar packet(Index row, Index col) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode>(row, col),
- m_rhsImpl.template packet<LoadMode>(row, col));
+ m_rhsImpl.template packet<LoadMode>(row, col));
}
template<int LoadMode>
PacketScalar packet(Index index) const
{
return m_functor.packetOp(m_lhsImpl.template packet<LoadMode>(index),
- m_rhsImpl.template packet<LoadMode>(index));
+ m_rhsImpl.template packet<LoadMode>(index));
}
protected:
@@ -520,12 +506,18 @@ protected:
// -------------------- CwiseUnaryView --------------------
template<typename UnaryOp, typename ArgType>
-struct evaluator_impl<CwiseUnaryView<UnaryOp, ArgType> >
- : evaluator_impl_base<CwiseUnaryView<UnaryOp, ArgType> >
+struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased>
+ : evaluator_base<CwiseUnaryView<UnaryOp, ArgType> >
{
typedef CwiseUnaryView<UnaryOp, ArgType> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost,
+
+ Flags = (evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit))
+ };
- evaluator_impl(const XprType& op)
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
: m_unaryOp(op.functor()),
m_argImpl(op.nestedExpression())
{ }
@@ -534,22 +526,22 @@ struct evaluator_impl<CwiseUnaryView<UnaryOp, ArgType> >
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_unaryOp(m_argImpl.coeff(row, col));
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_unaryOp(m_argImpl.coeff(index));
}
- Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index col)
{
return m_unaryOp(m_argImpl.coeffRef(row, col));
}
- Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index index)
{
return m_unaryOp(m_argImpl.coeffRef(index));
}
@@ -561,13 +553,15 @@ protected:
// -------------------- Map --------------------
-template<typename Derived, int AccessorsType>
-struct evaluator_impl<MapBase<Derived, AccessorsType> >
- : evaluator_impl_base<Derived>
-{
- typedef MapBase<Derived, AccessorsType> MapType;
- typedef Derived XprType;
+// FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ?
+// but that might complicate template specialization
+template<typename Derived, typename PlainObjectType>
+struct mapbase_evaluator;
+template<typename Derived, typename PlainObjectType>
+struct mapbase_evaluator : evaluator_base<Derived>
+{
+ typedef Derived XprType;
typedef typename XprType::PointerType PointerType;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
@@ -575,81 +569,121 @@ struct evaluator_impl<MapBase<Derived, AccessorsType> >
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
- evaluator_impl(const XprType& map)
- : m_data(const_cast<PointerType>(map.data())),
- m_rowStride(map.rowStride()),
- m_colStride(map.colStride())
- { }
-
enum {
- RowsAtCompileTime = XprType::RowsAtCompileTime
+ IsRowMajor = XprType::RowsAtCompileTime,
+ ColsAtCompileTime = XprType::ColsAtCompileTime,
+ CoeffReadCost = NumTraits<Scalar>::ReadCost
};
+
+ EIGEN_DEVICE_FUNC explicit mapbase_evaluator(const XprType& map)
+ : m_data(const_cast<PointerType>(map.data())),
+ m_xpr(map)
+ {
+ EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1),
+ PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
+ }
- CoeffReturnType coeff(Index row, Index col) const
- {
- return m_data[col * m_colStride + row * m_rowStride];
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
+ {
+ return m_data[col * m_xpr.colStride() + row * m_xpr.rowStride()];
}
- CoeffReturnType coeff(Index index) const
- {
- return coeff(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
+ {
+ return m_data[index * m_xpr.innerStride()];
}
- Scalar& coeffRef(Index row, Index col)
- {
- return m_data[col * m_colStride + row * m_rowStride];
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index col)
+ {
+ return m_data[col * m_xpr.colStride() + row * m_xpr.rowStride()];
}
- Scalar& coeffRef(Index index)
- {
- return coeffRef(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index index)
+ {
+ return m_data[index * m_xpr.innerStride()];
}
template<int LoadMode>
PacketReturnType packet(Index row, Index col) const
- {
- PointerType ptr = m_data + row * m_rowStride + col * m_colStride;
+ {
+ PointerType ptr = m_data + row * m_xpr.rowStride() + col * m_xpr.colStride();
return internal::ploadt<PacketScalar, LoadMode>(ptr);
}
template<int LoadMode>
PacketReturnType packet(Index index) const
- {
- return packet<LoadMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ {
+ return internal::ploadt<PacketScalar, LoadMode>(m_data + index * m_xpr.innerStride());
}
template<int StoreMode>
void writePacket(Index row, Index col, const PacketScalar& x)
- {
- PointerType ptr = m_data + row * m_rowStride + col * m_colStride;
+ {
+ PointerType ptr = m_data + row * m_xpr.rowStride() + col * m_xpr.colStride();
return internal::pstoret<Scalar, PacketScalar, StoreMode>(ptr, x);
}
template<int StoreMode>
void writePacket(Index index, const PacketScalar& x)
- {
- return writePacket<StoreMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0,
- x);
+ {
+ internal::pstoret<Scalar, PacketScalar, StoreMode>(m_data + index * m_xpr.innerStride(), x);
}
protected:
PointerType m_data;
- int m_rowStride;
- int m_colStride;
+ const XprType& m_xpr;
};
template<typename PlainObjectType, int MapOptions, typename StrideType>
-struct evaluator_impl<Map<PlainObjectType, MapOptions, StrideType> >
- : public evaluator_impl<MapBase<Map<PlainObjectType, MapOptions, StrideType> > >
+struct evaluator<Map<PlainObjectType, MapOptions, StrideType> >
+ : public mapbase_evaluator<Map<PlainObjectType, MapOptions, StrideType>, PlainObjectType>
{
typedef Map<PlainObjectType, MapOptions, StrideType> XprType;
+ typedef typename XprType::Scalar Scalar;
+
+ enum {
+ InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
+ ? int(PlainObjectType::InnerStrideAtCompileTime)
+ : int(StrideType::InnerStrideAtCompileTime),
+ OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
+ ? int(PlainObjectType::OuterStrideAtCompileTime)
+ : int(StrideType::OuterStrideAtCompileTime),
+ HasNoInnerStride = InnerStrideAtCompileTime == 1,
+ HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
+ HasNoStride = HasNoInnerStride && HasNoOuterStride,
+ IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
+ IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
+ KeepsPacketAccess = bool(HasNoInnerStride)
+ && ( bool(IsDynamicSize)
+ || HasNoOuterStride
+ || ( OuterStrideAtCompileTime!=Dynamic
+ && ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%EIGEN_ALIGN_BYTES)==0 ) ),
+ Flags0 = evaluator<PlainObjectType>::Flags,
+ Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
+ Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
+ ? int(Flags1) : int(Flags1 & ~LinearAccessBit),
+ Flags = KeepsPacketAccess ? int(Flags2) : (int(Flags2) & ~PacketAccessBit)
+ };
- evaluator_impl(const XprType& map)
- : evaluator_impl<MapBase<XprType> >(map)
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map)
+ : mapbase_evaluator<XprType, PlainObjectType>(map)
+ { }
+};
+
+// -------------------- Ref --------------------
+
+template<typename PlainObjectType, int RefOptions, typename StrideType>
+struct evaluator<Ref<PlainObjectType, RefOptions, StrideType> >
+ : public mapbase_evaluator<Ref<PlainObjectType, RefOptions, StrideType>, PlainObjectType>
+{
+ typedef Ref<PlainObjectType, RefOptions, StrideType> XprType;
+
+ enum {
+ Flags = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Flags
+ };
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& ref)
+ : mapbase_evaluator<XprType, PlainObjectType>(ref)
{ }
};
@@ -659,21 +693,68 @@ template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel,
bool HasDirectAccess = internal::has_direct_access<ArgType>::ret> struct block_evaluator;
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
-struct evaluator_impl<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
+struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
: block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
+ typedef typename XprType::Scalar Scalar;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+
+ RowsAtCompileTime = traits<XprType>::RowsAtCompileTime,
+ ColsAtCompileTime = traits<XprType>::ColsAtCompileTime,
+ MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime,
+
+ ArgTypeIsRowMajor = (int(evaluator<ArgType>::Flags)&RowMajorBit) != 0,
+ IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1
+ : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
+ : ArgTypeIsRowMajor,
+ HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor),
+ InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
+ InnerStrideAtCompileTime = HasSameStorageOrderAsArgType
+ ? int(inner_stride_at_compile_time<ArgType>::ret)
+ : int(outer_stride_at_compile_time<ArgType>::ret),
+ OuterStrideAtCompileTime = HasSameStorageOrderAsArgType
+ ? int(outer_stride_at_compile_time<ArgType>::ret)
+ : int(inner_stride_at_compile_time<ArgType>::ret),
+ MaskPacketAccessBit = (InnerSize == Dynamic || (InnerSize % packet_traits<Scalar>::size) == 0)
+ && (InnerStrideAtCompileTime == 1)
+ ? PacketAccessBit : 0,
+
+ MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % EIGEN_ALIGN_BYTES) == 0)) ? AlignedBit : 0,
+ FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
+ FlagsRowMajorBit = XprType::Flags&RowMajorBit,
+ Flags0 = evaluator<ArgType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
+ DirectAccessBit |
+ MaskPacketAccessBit |
+ MaskAlignedBit),
+ Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit
+ };
typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type;
- evaluator_impl(const XprType& block) : block_evaluator_type(block) {}
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& block) : block_evaluator_type(block) {}
};
+// no direct-access => dispatch to a unary evaluator
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAccess*/ false>
- : evaluator_impl_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
+ : unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
+{
+ typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
+
+ EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block)
+ : unary_evaluator<XprType>(block)
+ {}
+};
+
+template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
+struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBased>
+ : evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
- block_evaluator(const XprType& block)
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& block)
: m_argImpl(block.nestedExpression()),
m_startRow(block.startRow()),
m_startCol(block.startCol())
@@ -689,26 +770,24 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAcc
RowsAtCompileTime = XprType::RowsAtCompileTime
};
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col);
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
- return coeff(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
- Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col);
}
- Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index index)
{
- return coeffRef(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0);
}
template<int LoadMode>
@@ -721,7 +800,7 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAcc
PacketReturnType packet(Index index) const
{
return packet<LoadMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0);
+ RowsAtCompileTime == 1 ? index : 0);
}
template<int StoreMode>
@@ -734,8 +813,8 @@ struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAcc
void writePacket(Index index, const PacketScalar& x)
{
return writePacket<StoreMode>(RowsAtCompileTime == 1 ? 0 : index,
- RowsAtCompileTime == 1 ? index : 0,
- x);
+ RowsAtCompileTime == 1 ? index : 0,
+ x);
}
protected:
@@ -749,24 +828,38 @@ protected:
template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel>
struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAccess */ true>
- : evaluator_impl<MapBase<Block<ArgType, BlockRows, BlockCols, InnerPanel> > >
+ : mapbase_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>,
+ typename Block<ArgType, BlockRows, BlockCols, InnerPanel>::PlainObject>
{
typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType;
- block_evaluator(const XprType& block)
- : evaluator_impl<MapBase<XprType> >(block)
- { }
+ EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block)
+ : mapbase_evaluator<XprType, typename XprType::PlainObject>(block)
+ {
+ // FIXME this should be an internal assertion
+ eigen_assert(EIGEN_IMPLIES(evaluator<XprType>::Flags&AlignedBit, (size_t(block.data()) % EIGEN_ALIGN_BYTES) == 0) && "data is not aligned");
+ }
};
// -------------------- Select --------------------
+// TODO shall we introduce a ternary_evaluator?
+// TODO enable vectorization for Select
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
-struct evaluator_impl<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
+struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
+ : evaluator_base<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
{
typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType;
+ enum {
+ CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost
+ + EIGEN_SIZE_MAX(evaluator<ThenMatrixType>::CoeffReadCost,
+ evaluator<ElseMatrixType>::CoeffReadCost),
+
+ Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits
+ };
- evaluator_impl(const XprType& select)
+ inline EIGEN_DEVICE_FUNC explicit evaluator(const XprType& select)
: m_conditionImpl(select.conditionMatrix()),
m_thenImpl(select.thenMatrix()),
m_elseImpl(select.elseMatrix())
@@ -775,7 +868,7 @@ struct evaluator_impl<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
- CoeffReturnType coeff(Index row, Index col) const
+ inline EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
if (m_conditionImpl.coeff(row, col))
return m_thenImpl.coeff(row, col);
@@ -783,7 +876,7 @@ struct evaluator_impl<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType
return m_elseImpl.coeff(row, col);
}
- CoeffReturnType coeff(Index index) const
+ inline EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
if (m_conditionImpl.coeff(index))
return m_thenImpl.coeff(index);
@@ -801,21 +894,33 @@ protected:
// -------------------- Replicate --------------------
template<typename ArgType, int RowFactor, int ColFactor>
-struct evaluator_impl<Replicate<ArgType, RowFactor, ColFactor> >
+struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> >
+ : evaluator_base<Replicate<ArgType, RowFactor, ColFactor> >
{
typedef Replicate<ArgType, RowFactor, ColFactor> XprType;
-
- evaluator_impl(const XprType& replicate)
- : m_argImpl(replicate.nestedExpression()),
- m_rows(replicate.nestedExpression().rows()),
- m_cols(replicate.nestedExpression().cols())
- { }
-
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
+ enum {
+ Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor
+ };
+ typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested;
+ typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned;
+
+ enum {
+ CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost,
+
+ Flags = (evaluator<ArgTypeNestedCleaned>::Flags & HereditaryBits & ~RowMajorBit) | (traits<XprType>::Flags & RowMajorBit)
+ };
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& replicate)
+ : m_arg(replicate.nestedExpression()),
+ m_argImpl(m_arg),
+ m_rows(replicate.nestedExpression().rows()),
+ m_cols(replicate.nestedExpression().cols())
+ {}
+
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
// try to avoid using modulo; this is a pure optimization strategy
const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0
@@ -842,9 +947,10 @@ struct evaluator_impl<Replicate<ArgType, RowFactor, ColFactor> >
}
protected:
- typename evaluator<ArgType>::nestedType m_argImpl;
- const variable_if_dynamic<Index, XprType::RowsAtCompileTime> m_rows;
- const variable_if_dynamic<Index, XprType::ColsAtCompileTime> m_cols;
+ const ArgTypeNested m_arg; // FIXME is it OK to store both the argument and its evaluator?? (we have the same situation in evaluator_product)
+ typename evaluator<ArgTypeNestedCleaned>::nestedType m_argImpl;
+ const variable_if_dynamic<Index, ArgType::RowsAtCompileTime> m_rows;
+ const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols;
};
@@ -855,23 +961,35 @@ protected:
// the row() and col() member functions.
template< typename ArgType, typename MemberOp, int Direction>
-struct evaluator_impl<PartialReduxExpr<ArgType, MemberOp, Direction> >
+struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> >
+ : evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> >
{
typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType;
+ typedef typename XprType::Scalar InputScalar;
+ enum {
+ TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(XprType::ColsAtCompileTime)
+ };
+ typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
+ enum {
+ CoeffReadCost = TraversalSize==Dynamic ? Dynamic
+ : TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value),
+
+ Flags = (traits<XprType>::Flags&RowMajorBit) | (evaluator<ArgType>::Flags&HereditaryBits)
+ };
- evaluator_impl(const XprType expr)
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType expr)
: m_expr(expr)
- { }
+ {}
typedef typename XprType::Index Index;
typedef typename XprType::CoeffReturnType CoeffReturnType;
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_expr.coeff(row, col);
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_expr.coeff(index);
}
@@ -883,16 +1001,20 @@ protected:
// -------------------- MatrixWrapper and ArrayWrapper --------------------
//
-// evaluator_impl_wrapper_base<T> is a common base class for the
+// evaluator_wrapper_base<T> is a common base class for the
// MatrixWrapper and ArrayWrapper evaluators.
template<typename XprType>
-struct evaluator_impl_wrapper_base
- : evaluator_impl_base<XprType>
+struct evaluator_wrapper_base
+ : evaluator_base<XprType>
{
typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType;
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+ Flags = evaluator<ArgType>::Flags
+ };
- evaluator_impl_wrapper_base(const ArgType& arg) : m_argImpl(arg) {}
+ EIGEN_DEVICE_FUNC explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {}
typedef typename ArgType::Index Index;
typedef typename ArgType::Scalar Scalar;
@@ -900,22 +1022,22 @@ struct evaluator_impl_wrapper_base
typedef typename ArgType::PacketScalar PacketScalar;
typedef typename ArgType::PacketReturnType PacketReturnType;
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(row, col);
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index);
}
- Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(row, col);
}
- Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index);
}
@@ -949,24 +1071,24 @@ protected:
};
template<typename TArgType>
-struct evaluator_impl<MatrixWrapper<TArgType> >
- : evaluator_impl_wrapper_base<MatrixWrapper<TArgType> >
+struct unary_evaluator<MatrixWrapper<TArgType> >
+ : evaluator_wrapper_base<MatrixWrapper<TArgType> >
{
typedef MatrixWrapper<TArgType> XprType;
- evaluator_impl(const XprType& wrapper)
- : evaluator_impl_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression())
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper)
+ : evaluator_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
template<typename TArgType>
-struct evaluator_impl<ArrayWrapper<TArgType> >
- : evaluator_impl_wrapper_base<ArrayWrapper<TArgType> >
+struct unary_evaluator<ArrayWrapper<TArgType> >
+ : evaluator_wrapper_base<ArrayWrapper<TArgType> >
{
typedef ArrayWrapper<TArgType> XprType;
- evaluator_impl(const XprType& wrapper)
- : evaluator_impl_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression())
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper)
+ : evaluator_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression())
{ }
};
@@ -977,8 +1099,8 @@ struct evaluator_impl<ArrayWrapper<TArgType> >
template<typename PacketScalar, bool ReversePacket> struct reverse_packet_cond;
template<typename ArgType, int Direction>
-struct evaluator_impl<Reverse<ArgType, Direction> >
- : evaluator_impl_base<Reverse<ArgType, Direction> >
+struct unary_evaluator<Reverse<ArgType, Direction> >
+ : evaluator_base<Reverse<ArgType, Direction> >
{
typedef Reverse<ArgType, Direction> XprType;
typedef typename XprType::Index Index;
@@ -997,34 +1119,44 @@ struct evaluator_impl<Reverse<ArgType, Direction> >
OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1,
ReversePacket = (Direction == BothDirections)
|| ((Direction == Vertical) && IsColMajor)
- || ((Direction == Horizontal) && IsRowMajor)
+ || ((Direction == Horizontal) && IsRowMajor),
+
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+
+ // let's enable LinearAccess only with vectorization because of the product overhead
+ // FIXME enable DirectAccess with negative strides?
+ Flags0 = evaluator<ArgType>::Flags,
+ LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) )
+ ? LinearAccessBit : 0,
+
+ Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess)
};
typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
- evaluator_impl(const XprType& reverse)
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& reverse)
: m_argImpl(reverse.nestedExpression()),
m_rows(ReverseRow ? reverse.nestedExpression().rows() : 0),
m_cols(ReverseCol ? reverse.nestedExpression().cols() : 0)
{ }
- CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index col) const
{
return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row,
- ReverseCol ? m_cols.value() - col - 1 : col);
+ ReverseCol ? m_cols.value() - col - 1 : col);
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1);
}
- Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index col)
{
return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row,
- ReverseCol ? m_cols.value() - col - 1 : col);
+ ReverseCol ? m_cols.value() - col - 1 : col);
}
- Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1);
}
@@ -1071,36 +1203,44 @@ protected:
// -------------------- Diagonal --------------------
template<typename ArgType, int DiagIndex>
-struct evaluator_impl<Diagonal<ArgType, DiagIndex> >
- : evaluator_impl_base<Diagonal<ArgType, DiagIndex> >
+struct evaluator<Diagonal<ArgType, DiagIndex> >
+ : evaluator_base<Diagonal<ArgType, DiagIndex> >
{
typedef Diagonal<ArgType, DiagIndex> XprType;
+
+ enum {
+ CoeffReadCost = evaluator<ArgType>::CoeffReadCost,
+
+ Flags = (unsigned int)evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit) & ~RowMajorBit
+ };
- evaluator_impl(const XprType& diagonal)
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& diagonal)
: m_argImpl(diagonal.nestedExpression()),
m_index(diagonal.index())
{ }
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
- typedef typename XprType::CoeffReturnType CoeffReturnType;
+ // FIXME having to check whether ArgType is sparse here i not very nice.
+ typedef typename internal::conditional<!internal::is_same<typename ArgType::StorageKind,Sparse>::value,
+ typename XprType::CoeffReturnType,Scalar>::type CoeffReturnType;
- CoeffReturnType coeff(Index row, Index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index row, Index) const
{
return m_argImpl.coeff(row + rowOffset(), row + colOffset());
}
- CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
{
return m_argImpl.coeff(index + rowOffset(), index + colOffset());
}
- Scalar& coeffRef(Index row, Index)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index row, Index)
{
return m_argImpl.coeffRef(row + rowOffset(), row + colOffset());
}
- Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC Scalar& coeffRef(Index index)
{
return m_argImpl.coeffRef(index + rowOffset(), index + colOffset());
}
@@ -1110,8 +1250,88 @@ protected:
const internal::variable_if_dynamicindex<Index, XprType::DiagIndex> m_index;
private:
- EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); }
- EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; }
+};
+
+
+//----------------------------------------------------------------------
+// deprecated code
+//----------------------------------------------------------------------
+
+// -------------------- EvalToTemp --------------------
+
+// expression class for evaluating nested expression to a temporary
+
+template<typename ArgType> class EvalToTemp;
+
+template<typename ArgType>
+struct traits<EvalToTemp<ArgType> >
+ : public traits<ArgType>
+{ };
+
+template<typename ArgType>
+class EvalToTemp
+ : public dense_xpr_base<EvalToTemp<ArgType> >::type
+{
+ public:
+
+ typedef typename dense_xpr_base<EvalToTemp>::type Base;
+ EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp)
+
+ explicit EvalToTemp(const ArgType& arg)
+ : m_arg(arg)
+ { }
+
+ const ArgType& arg() const
+ {
+ return m_arg;
+ }
+
+ Index rows() const
+ {
+ return m_arg.rows();
+ }
+
+ Index cols() const
+ {
+ return m_arg.cols();
+ }
+
+ private:
+ const ArgType& m_arg;
+};
+
+template<typename ArgType>
+struct evaluator<EvalToTemp<ArgType> >
+ : public evaluator<typename ArgType::PlainObject>::type
+{
+ typedef EvalToTemp<ArgType> XprType;
+ typedef typename ArgType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ // TODO we should simply do m_result(xpr.arg());
+ call_dense_assignment_loop(m_result, xpr.arg());
+ }
+
+ // This constructor is used when nesting an EvalTo evaluator in another evaluator
+ EIGEN_DEVICE_FUNC evaluator(const ArgType& arg)
+ : m_result(arg.rows(), arg.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ // TODO we should simply do m_result(xpr.arg());
+ call_dense_assignment_loop(m_result, arg);
+ }
+
+protected:
+ PlainObject m_result;
};
} // namespace internal
diff --git a/Eigen/src/Core/CoreIterators.h b/Eigen/src/Core/CoreIterators.h
index 6da4683d2..7feebc4e4 100644
--- a/Eigen/src/Core/CoreIterators.h
+++ b/Eigen/src/Core/CoreIterators.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -15,47 +15,116 @@ namespace Eigen {
/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
*/
-/** \ingroup SparseCore_Module
- * \class InnerIterator
- * \brief An InnerIterator allows to loop over the element of a sparse (or dense) matrix or expression
- *
- * todo
+namespace internal {
+
+template<typename XprType, typename EvaluatorKind>
+class inner_iterator_selector;
+
+}
+
+/** \class InnerIterator
+ * \brief An InnerIterator allows to loop over the element of any matrix expression.
+ *
+ * \warning To be used with care because an evaluator is constructed every time an InnerIterator iterator is constructed.
+ *
+ * TODO: add a usage example
*/
+template<typename XprType>
+class InnerIterator
+{
+protected:
+ typedef internal::inner_iterator_selector<XprType, typename internal::evaluator_traits<XprType>::Kind> IteratorType;
+ typedef typename internal::evaluator<XprType>::type EvaluatorType;
+ typedef typename internal::traits<XprType>::Scalar Scalar;
+ typedef typename internal::traits<XprType>::Index Index;
+public:
+ /** Construct an iterator over the \a outerId -th row or column of \a xpr */
+ InnerIterator(const XprType &xpr, const Index &outerId)
+ : m_eval(xpr), m_iter(m_eval, outerId, xpr.innerSize())
+ {}
+
+ /// \returns the value of the current coefficient.
+ EIGEN_STRONG_INLINE Scalar value() const { return m_iter.value(); }
+ /** Increment the iterator \c *this to the next non-zero coefficient.
+ * Explicit zeros are not skipped over. To skip explicit zeros, see class SparseView
+ */
+ EIGEN_STRONG_INLINE InnerIterator& operator++() { m_iter.operator++(); return *this; }
+ /// \returns the column or row index of the current coefficient.
+ EIGEN_STRONG_INLINE Index index() const { return m_iter.index(); }
+ /// \returns the row index of the current coefficient.
+ EIGEN_STRONG_INLINE Index row() const { return m_iter.row(); }
+ /// \returns the column index of the current coefficient.
+ EIGEN_STRONG_INLINE Index col() const { return m_iter.col(); }
+ /// \returns \c true if the iterator \c *this still references a valid coefficient.
+ EIGEN_STRONG_INLINE operator bool() const { return m_iter; }
+
+protected:
+ EvaluatorType m_eval;
+ IteratorType m_iter;
+private:
+ // If you get here, then you're not using the right InnerIterator type, e.g.:
+ // SparseMatrix<double,RowMajor> A;
+ // SparseMatrix<double>::InnerIterator it(A,0);
+ template<typename T> InnerIterator(const EigenBase<T>&,Index outer);
+};
+
+namespace internal {
-// generic version for dense matrix and expressions
-template<typename Derived> class DenseBase<Derived>::InnerIterator
+// Generic inner iterator implementation for dense objects
+template<typename XprType>
+class inner_iterator_selector<XprType, IndexBased>
{
- protected:
- typedef typename Derived::Scalar Scalar;
- typedef typename Derived::Index Index;
-
- enum { IsRowMajor = (Derived::Flags&RowMajorBit)==RowMajorBit };
- public:
- EIGEN_STRONG_INLINE InnerIterator(const Derived& expr, Index outer)
- : m_expression(expr), m_inner(0), m_outer(outer), m_end(expr.innerSize())
- {}
-
- EIGEN_STRONG_INLINE Scalar value() const
- {
- return (IsRowMajor) ? m_expression.coeff(m_outer, m_inner)
- : m_expression.coeff(m_inner, m_outer);
- }
-
- EIGEN_STRONG_INLINE InnerIterator& operator++() { m_inner++; return *this; }
-
- EIGEN_STRONG_INLINE Index index() const { return m_inner; }
- inline Index row() const { return IsRowMajor ? m_outer : index(); }
- inline Index col() const { return IsRowMajor ? index() : m_outer; }
-
- EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
-
- protected:
- const Derived& m_expression;
- Index m_inner;
- const Index m_outer;
- const Index m_end;
+protected:
+ typedef typename evaluator<XprType>::type EvaluatorType;
+ typedef typename traits<XprType>::Scalar Scalar;
+ typedef typename traits<XprType>::Index Index;
+ enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
+
+public:
+ EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &innerSize)
+ : m_eval(eval), m_inner(0), m_outer(outerId), m_end(innerSize)
+ {}
+
+ EIGEN_STRONG_INLINE Scalar value() const
+ {
+ return (IsRowMajor) ? m_eval.coeff(m_outer, m_inner)
+ : m_eval.coeff(m_inner, m_outer);
+ }
+
+ EIGEN_STRONG_INLINE inner_iterator_selector& operator++() { m_inner++; return *this; }
+
+ EIGEN_STRONG_INLINE Index index() const { return m_inner; }
+ inline Index row() const { return IsRowMajor ? m_outer : index(); }
+ inline Index col() const { return IsRowMajor ? index() : m_outer; }
+
+ EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
+
+protected:
+ const EvaluatorType& m_eval;
+ Index m_inner;
+ const Index m_outer;
+ const Index m_end;
};
+// For iterator-based evaluator, inner-iterator is already implemented as
+// evaluator<>::InnerIterator
+template<typename XprType>
+class inner_iterator_selector<XprType, IteratorBased>
+ : public evaluator<XprType>::InnerIterator
+{
+protected:
+ typedef typename evaluator<XprType>::InnerIterator Base;
+ typedef typename evaluator<XprType>::type EvaluatorType;
+ typedef typename traits<XprType>::Index Index;
+
+public:
+ EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &/*innerSize*/)
+ : Base(eval, outerId)
+ {}
+};
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_COREITERATORS_H
diff --git a/Eigen/src/Core/CwiseBinaryOp.h b/Eigen/src/Core/CwiseBinaryOp.h
index e20daacc8..a205c3f10 100644
--- a/Eigen/src/Core/CwiseBinaryOp.h
+++ b/Eigen/src/Core/CwiseBinaryOp.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -56,8 +56,9 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
typename Rhs::Scalar
)
>::type Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
- typename traits<Rhs>::StorageKind>::ret StorageKind;
+ typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind,
+ typename traits<Rhs>::StorageKind,
+ BinaryOp>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::Index,
typename traits<Rhs>::Index>::type Index;
typedef typename Lhs::Nested LhsNested;
@@ -65,60 +66,37 @@ struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
- SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
- StorageOrdersAgree = (int(Lhs::Flags)&RowMajorBit)==(int(Rhs::Flags)&RowMajorBit),
- Flags0 = (int(LhsFlags) | int(RhsFlags)) & (
- HereditaryBits
- | (int(LhsFlags) & int(RhsFlags) &
- ( AlignedBit
- | (StorageOrdersAgree ? LinearAccessBit : 0)
- | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0)
- )
- )
- ),
- Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit),
- CoeffReadCost = LhsCoeffReadCost + RhsCoeffReadCost + functor_traits<BinaryOp>::Cost
+ Flags = _LhsNested::Flags & RowMajorBit
};
};
} // end namespace internal
-// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
-// that would take two operands of different types. If there were such an example, then this check should be
-// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
-// currently they take only one typename Scalar template parameter.
-// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
-// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
-// add together a float matrix and a double matrix.
-#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
- EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
- ? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
- : int(internal::is_same<LHS, RHS>::value)), \
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOp : internal::no_assignment_operator,
+template<typename BinaryOp, typename LhsType, typename RhsType>
+class CwiseBinaryOp :
public CwiseBinaryOpImpl<
- BinaryOp, Lhs, Rhs,
- typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>
+ BinaryOp, LhsType, RhsType,
+ typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
+ typename internal::traits<RhsType>::StorageKind,
+ BinaryOp>::ret>,
+ internal::no_assignment_operator
{
public:
+
+ typedef typename internal::remove_all<LhsType>::type Lhs;
+ typedef typename internal::remove_all<RhsType>::type Rhs;
typedef typename CwiseBinaryOpImpl<
- BinaryOp, Lhs, Rhs,
- typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>::Base Base;
+ BinaryOp, LhsType, RhsType,
+ typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
+ typename internal::traits<Rhs>::StorageKind,
+ BinaryOp>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
- typedef typename internal::nested<Lhs>::type LhsNested;
- typedef typename internal::nested<Rhs>::type RhsNested;
+ typedef typename internal::nested<LhsType>::type LhsNested;
+ typedef typename internal::nested<RhsType>::type RhsNested;
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
@@ -165,43 +143,13 @@ class CwiseBinaryOp : internal::no_assignment_operator,
const BinaryOp m_functor;
};
-template<typename BinaryOp, typename Lhs, typename Rhs>
-class CwiseBinaryOpImpl<BinaryOp, Lhs, Rhs, Dense>
- : public internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
+// Generic API dispatcher
+template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
+class CwiseBinaryOpImpl
+ : public internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
- typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> Derived;
- public:
-
- typedef typename internal::dense_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE( Derived )
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
- {
- return derived().functor()(derived().lhs().coeff(rowId, colId),
- derived().rhs().coeff(rowId, colId));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(rowId, colId),
- derived().rhs().template packet<LoadMode>(rowId, colId));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return derived().functor()(derived().lhs().coeff(index),
- derived().rhs().coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return derived().functor().packetOp(derived().lhs().template packet<LoadMode>(index),
- derived().rhs().template packet<LoadMode>(index));
- }
+public:
+ typedef typename internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
};
/** replaces \c *this by \c *this - \a other.
@@ -213,8 +161,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
@@ -227,8 +174,7 @@ template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, OtherDerived> tmp(derived());
- tmp = other.derived();
+ call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/CwiseNullaryOp.h b/Eigen/src/Core/CwiseNullaryOp.h
index 124383114..05c4fedd0 100644
--- a/Eigen/src/Core/CwiseNullaryOp.h
+++ b/Eigen/src/Core/CwiseNullaryOp.h
@@ -35,19 +35,13 @@ template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
- Flags = (traits<PlainObjectType>::Flags
- & ( HereditaryBits
- | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0)
- | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0)))
- | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit),
- CoeffReadCost = functor_traits<NullaryOp>::Cost
+ Flags = traits<PlainObjectType>::Flags & RowMajorBit
};
};
}
template<typename NullaryOp, typename PlainObjectType>
-class CwiseNullaryOp : internal::no_assignment_operator,
- public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type
+class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type, internal::no_assignment_operator
{
public:
diff --git a/Eigen/src/Core/CwiseUnaryOp.h b/Eigen/src/Core/CwiseUnaryOp.h
index aa7df197f..da1d1992d 100644
--- a/Eigen/src/Core/CwiseUnaryOp.h
+++ b/Eigen/src/Core/CwiseUnaryOp.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
@@ -44,10 +44,7 @@ struct traits<CwiseUnaryOp<UnaryOp, XprType> >
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
- Flags = _XprTypeNested::Flags & (
- HereditaryBits | LinearAccessBit | AlignedBit
- | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)),
- CoeffReadCost = _XprTypeNested::CoeffReadCost + functor_traits<UnaryOp>::Cost
+ Flags = _XprTypeNested::Flags & RowMajorBit
};
};
}
@@ -56,16 +53,16 @@ template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
template<typename UnaryOp, typename XprType>
-class CwiseUnaryOp : internal::no_assignment_operator,
- public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>
+class CwiseUnaryOp : public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>, internal::no_assignment_operator
{
public:
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
+ typedef typename internal::remove_all<XprType>::type NestedExpression;
EIGEN_DEVICE_FUNC
- inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
+ explicit inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
: m_xpr(xpr), m_functor(func) {}
EIGEN_DEVICE_FUNC
@@ -92,42 +89,13 @@ class CwiseUnaryOp : internal::no_assignment_operator,
const UnaryOp m_functor;
};
-// This is the generic implementation for dense storage.
-// It can be used for any expression types implementing the dense concept.
-template<typename UnaryOp, typename XprType>
-class CwiseUnaryOpImpl<UnaryOp,XprType,Dense>
- : public internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
+// Generic API dispatcher
+template<typename UnaryOp, typename XprType, typename StorageKind>
+class CwiseUnaryOpImpl
+ : public internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
{
- public:
-
- typedef CwiseUnaryOp<UnaryOp, XprType> Derived;
- typedef typename internal::dense_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
- {
- return derived().functor()(derived().nestedExpression().coeff(rowId, colId));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(rowId, colId));
- }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- return derived().functor()(derived().nestedExpression().coeff(index));
- }
-
- template<int LoadMode>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
- {
- return derived().functor().packetOp(derived().nestedExpression().template packet<LoadMode>(index));
- }
+public:
+ typedef typename internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
};
} // end namespace Eigen
diff --git a/Eigen/src/Core/CwiseUnaryView.h b/Eigen/src/Core/CwiseUnaryView.h
index b2638d326..6680f32dd 100644
--- a/Eigen/src/Core/CwiseUnaryView.h
+++ b/Eigen/src/Core/CwiseUnaryView.h
@@ -37,8 +37,8 @@ struct traits<CwiseUnaryView<ViewOp, MatrixType> >
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
- Flags = (traits<_MatrixTypeNested>::Flags & (HereditaryBits | LvalueBit | LinearAccessBit | DirectAccessBit)),
- CoeffReadCost = traits<_MatrixTypeNested>::CoeffReadCost + functor_traits<ViewOp>::Cost,
+ FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
+ Flags = traits<_MatrixTypeNested>::Flags & (RowMajorBit | FlagsLvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
// need to cast the sizeof's from size_t to int explicitly, otherwise:
// "error: no integral type can represent all of the enumerator values
@@ -62,8 +62,9 @@ class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename in
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
- inline CwiseUnaryView(const MatrixType& mat, const ViewOp& func = ViewOp())
+ explicit inline CwiseUnaryView(MatrixType& mat, const ViewOp& func = ViewOp())
: m_matrix(mat), m_functor(func) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView)
@@ -88,6 +89,15 @@ class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename in
ViewOp m_functor;
};
+// Generic API dispatcher
+template<typename ViewOp, typename XprType, typename StorageKind>
+class CwiseUnaryViewImpl
+ : public internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type
+{
+public:
+ typedef typename internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type Base;
+};
+
template<typename ViewOp, typename MatrixType>
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
@@ -100,38 +110,18 @@ class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl)
- inline Scalar* data() { return &coeffRef(0); }
- inline const Scalar* data() const { return &coeff(0); }
+ EIGEN_DEVICE_FUNC inline Scalar* data() { return &(this->coeffRef(0)); }
+ EIGEN_DEVICE_FUNC inline const Scalar* data() const { return &(this->coeff(0)); }
- inline Index innerStride() const
+ EIGEN_DEVICE_FUNC inline Index innerStride() const
{
return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
- inline Index outerStride() const
+ EIGEN_DEVICE_FUNC inline Index outerStride() const
{
return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
-
- EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
- {
- return derived().functor()(derived().nestedExpression().coeff(row, col));
- }
-
- EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
- {
- return derived().functor()(derived().nestedExpression().coeff(index));
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
- {
- return derived().functor()(const_cast_derived().nestedExpression().coeffRef(row, col));
- }
-
- EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
- {
- return derived().functor()(const_cast_derived().nestedExpression().coeffRef(index));
- }
};
} // end namespace Eigen
diff --git a/Eigen/src/Core/DenseBase.h b/Eigen/src/Core/DenseBase.h
index bd5dd14ed..e81b58481 100644
--- a/Eigen/src/Core/DenseBase.h
+++ b/Eigen/src/Core/DenseBase.h
@@ -50,7 +50,11 @@ template<typename Derived> class DenseBase
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
- class InnerIterator;
+
+ /** Inner iterator type to iterate over the coefficients of a row or column.
+ * \sa class InnerIterator
+ */
+ typedef Eigen::InnerIterator<Derived> InnerIterator;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
@@ -74,16 +78,6 @@ template<typename Derived> class DenseBase
using Base::colIndexByOuterInner;
using Base::coeff;
using Base::coeffByOuterInner;
- using Base::packet;
- using Base::packetByOuterInner;
- using Base::writePacket;
- using Base::writePacketByOuterInner;
- using Base::coeffRef;
- using Base::coeffRefByOuterInner;
- using Base::copyCoeff;
- using Base::copyCoeffByOuterInner;
- using Base::copyPacket;
- using Base::copyPacketByOuterInner;
using Base::operator();
using Base::operator[];
using Base::x;
@@ -169,16 +163,11 @@ template<typename Derived> class DenseBase
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
- /**< This is a rough measure of how expensive it is to read one coefficient from
- * this expression.
- */
-
InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
};
- enum { ThisConstantIsPrivateInPlainObjectBase };
+ enum { IsPlainObjectBase = 0 };
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
@@ -278,7 +267,8 @@ template<typename Derived> class DenseBase
Derived& operator=(const ReturnByValue<OtherDerived>& func);
#ifndef EIGEN_PARSED_BY_DOXYGEN
- /** Copies \a other into *this without evaluating other. \returns a reference to *this. */
+ /** Copies \a other into *this without evaluating other. \returns a reference to *this.
+ * \deprecated */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
@@ -287,27 +277,24 @@ template<typename Derived> class DenseBase
EIGEN_DEVICE_FUNC
CommaInitializer<Derived> operator<< (const Scalar& s);
+ // TODO flagged is temporarly disabled. It seems useless now
template<unsigned int Added,unsigned int Removed>
- const Flagged<Derived, Added, Removed> flagged() const;
+ EIGEN_DEPRECATED
+ const Derived& flagged() const
+ { return derived(); }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
+ typedef Transpose<Derived> TransposeReturnType;
EIGEN_DEVICE_FUNC
- Eigen::Transpose<Derived> transpose();
+ TransposeReturnType transpose();
typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
EIGEN_DEVICE_FUNC
ConstTransposeReturnType transpose() const;
EIGEN_DEVICE_FUNC
void transposeInPlace();
-#ifndef EIGEN_NO_DEBUG
- protected:
- template<typename OtherDerived>
- void checkTransposeAliasing(const OtherDerived& other) const;
- public:
-#endif
-
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(Index rows, Index cols, const Scalar& value);
@@ -387,16 +374,17 @@ template<typename Derived> class DenseBase
// size types on MSVC.
return typename internal::eval<Derived>::type(derived());
}
-
+
/** swaps *this with the expression \a other.
*
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- void swap(const DenseBase<OtherDerived>& other,
- int = OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
+ void swap(const DenseBase<OtherDerived>& other)
{
- SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
+ EIGEN_STATIC_ASSERT(!OtherDerived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
+ eigen_assert(rows()==other.rows() && cols()==other.cols());
+ call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
/** swaps *this with the matrix or array \a other.
@@ -406,10 +394,10 @@ template<typename Derived> class DenseBase
EIGEN_DEVICE_FUNC
void swap(PlainObjectBase<OtherDerived>& other)
{
- SwapWrapper<Derived>(derived()).lazyAssign(other.derived());
+ eigen_assert(rows()==other.rows() && cols()==other.cols());
+ call_assignment(derived(), other.derived(), internal::swap_assign_op<Scalar>());
}
-
EIGEN_DEVICE_FUNC inline const NestByValue<Derived> nestByValue() const;
EIGEN_DEVICE_FUNC inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
EIGEN_DEVICE_FUNC inline ForceAlignedAccess<Derived> forceAlignedAccess();
diff --git a/Eigen/src/Core/DenseCoeffsBase.h b/Eigen/src/Core/DenseCoeffsBase.h
index 4e986e875..a9e4dbaf9 100644
--- a/Eigen/src/Core/DenseCoeffsBase.h
+++ b/Eigen/src/Core/DenseCoeffsBase.h
@@ -97,8 +97,8 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeff(row, col);
+ && col >= 0 && col < cols());
+ return typename internal::evaluator<Derived>::type(derived()).coeff(row,col);
}
EIGEN_DEVICE_FUNC
@@ -117,7 +117,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
- return derived().coeff(row, col);
+ return coeff(row, col);
}
/** Short version: don't use this function, use
@@ -140,7 +140,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
coeff(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
- return derived().coeff(index);
+ return typename internal::evaluator<Derived>::type(derived()).coeff(index);
}
@@ -159,7 +159,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
- return derived().coeff(index);
+ return coeff(index);
}
/** \returns the coefficient at given index.
@@ -177,7 +177,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
operator()(Index index) const
{
eigen_assert(index >= 0 && index < size());
- return derived().coeff(index);
+ return coeff(index);
}
/** equivalent to operator[](0). */
@@ -217,9 +217,8 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
{
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().template packet<LoadMode>(row,col);
+ eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
+ return typename internal::evaluator<Derived>::type(derived()).template packet<LoadMode>(row,col);
}
@@ -245,7 +244,7 @@ class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
- return derived().template packet<LoadMode>(index);
+ return typename internal::evaluator<Derived>::type(derived()).template packet<LoadMode>(index);
}
protected:
@@ -325,8 +324,8 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- return derived().coeffRef(row, col);
+ && col >= 0 && col < cols());
+ return typename internal::evaluator<Derived>::type(derived()).coeffRef(row,col);
}
EIGEN_DEVICE_FUNC
@@ -348,7 +347,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
- return derived().coeffRef(row, col);
+ return coeffRef(row, col);
}
@@ -372,7 +371,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
coeffRef(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
+ return typename internal::evaluator<Derived>::type(derived()).coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
@@ -389,7 +388,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
+ return coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
@@ -406,7 +405,7 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
- return derived().coeffRef(index);
+ return coeffRef(index);
}
/** equivalent to operator[](0). */
@@ -432,144 +431,6 @@ class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived,
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
w() { return (*this)[3]; }
-
- /** \internal
- * Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit.
- *
- * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
-
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket
- (Index row, Index col, const typename internal::packet_traits<Scalar>::type& val)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().template writePacket<StoreMode>(row,col,val);
- }
-
-
- /** \internal */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacketByOuterInner
- (Index outer, Index inner, const typename internal::packet_traits<Scalar>::type& val)
- {
- writePacket<StoreMode>(rowIndexByOuterInner(outer, inner),
- colIndexByOuterInner(outer, inner),
- val);
- }
-
- /** \internal
- * Stores the given packet of coefficients, at the given index in this expression. It is your responsibility
- * to ensure that a packet really starts there. This method is only available on expressions having the
- * PacketAccessBit and the LinearAccessBit.
- *
- * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select
- * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
- * starting at an address which is a multiple of the packet size.
- */
- template<int StoreMode>
- EIGEN_STRONG_INLINE void writePacket
- (Index index, const typename internal::packet_traits<Scalar>::type& val)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().template writePacket<StoreMode>(index,val);
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-
- /** \internal Copies the coefficient at position (row,col) of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().coeffRef(row, col) = other.derived().coeff(row, col);
- }
-
- /** \internal Copies the coefficient at the given index of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().coeffRef(index) = other.derived().coeff(index);
- }
-
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void copyCoeffByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
- {
- const Index row = rowIndexByOuterInner(outer,inner);
- const Index col = colIndexByOuterInner(outer,inner);
- // derived() is important here: copyCoeff() may be reimplemented in Derived!
- derived().copyCoeff(row, col, other);
- }
-
- /** \internal Copies the packet at position (row,col) of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- derived().template writePacket<StoreMode>(row, col,
- other.derived().template packet<LoadMode>(row, col));
- }
-
- /** \internal Copies the packet at the given index of other into *this.
- *
- * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code
- * with usual assignments.
- *
- * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox.
- */
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- eigen_internal_assert(index >= 0 && index < size());
- derived().template writePacket<StoreMode>(index,
- other.derived().template packet<LoadMode>(index));
- }
-
- /** \internal */
- template<typename OtherDerived, int StoreMode, int LoadMode>
- EIGEN_STRONG_INLINE void copyPacketByOuterInner(Index outer, Index inner, const DenseBase<OtherDerived>& other)
- {
- const Index row = rowIndexByOuterInner(outer,inner);
- const Index col = colIndexByOuterInner(outer,inner);
- // derived() is important here: copyCoeff() may be reimplemented in Derived!
- derived().template copyPacket< OtherDerived, StoreMode, LoadMode>(row, col, other);
- }
-#endif
-
};
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
diff --git a/Eigen/src/Core/DenseStorage.h b/Eigen/src/Core/DenseStorage.h
index 59f515495..852648639 100644
--- a/Eigen/src/Core/DenseStorage.h
+++ b/Eigen/src/Core/DenseStorage.h
@@ -130,7 +130,7 @@ template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseSt
public:
EIGEN_DEVICE_FUNC DenseStorage() {}
EIGEN_DEVICE_FUNC
- DenseStorage(internal::constructor_without_unaligned_array_assert)
+ explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
EIGEN_DEVICE_FUNC
DenseStorage(const DenseStorage& other) : m_data(other.m_data) {}
@@ -155,7 +155,7 @@ template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0
{
public:
EIGEN_DEVICE_FUNC DenseStorage() {}
- EIGEN_DEVICE_FUNC DenseStorage(internal::constructor_without_unaligned_array_assert) {}
+ EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; }
EIGEN_DEVICE_FUNC DenseStorage(DenseIndex,DenseIndex,DenseIndex) {}
@@ -186,7 +186,7 @@ template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic
DenseIndex m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {}
- DenseStorage(internal::constructor_without_unaligned_array_assert)
+ explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {}
DenseStorage& operator=(const DenseStorage& other)
@@ -217,7 +217,7 @@ template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Si
DenseIndex m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
- DenseStorage(internal::constructor_without_unaligned_array_assert)
+ explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {}
DenseStorage& operator=(const DenseStorage& other)
@@ -246,7 +246,7 @@ template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Si
DenseIndex m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
- DenseStorage(internal::constructor_without_unaligned_array_assert)
+ explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {}
DenseStorage& operator=(const DenseStorage& other)
@@ -276,7 +276,7 @@ template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynam
DenseIndex m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
- DenseStorage(internal::constructor_without_unaligned_array_assert)
+ explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex nbCols)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows), m_cols(nbCols)
@@ -350,7 +350,7 @@ template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Ro
DenseIndex m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {}
- DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
+ explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
DenseStorage(DenseIndex size, DenseIndex, DenseIndex nbCols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(nbCols)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
DenseStorage(const DenseStorage& other)
@@ -416,7 +416,7 @@ template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dyn
DenseIndex m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {}
- DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
+ explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
DenseStorage(DenseIndex size, DenseIndex nbRows, DenseIndex) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(nbRows)
{ EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN }
DenseStorage(const DenseStorage& other)
diff --git a/Eigen/src/Core/Diagonal.h b/Eigen/src/Core/Diagonal.h
index b160479ab..33b82f90f 100644
--- a/Eigen/src/Core/Diagonal.h
+++ b/Eigen/src/Core/Diagonal.h
@@ -52,8 +52,7 @@ struct traits<Diagonal<MatrixType,DiagIndex> >
MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
MaxColsAtCompileTime = 1,
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
- Flags = (unsigned int)_MatrixTypeNested::Flags & (HereditaryBits | LinearAccessBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost,
+ Flags = (unsigned int)_MatrixTypeNested::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
OuterStrideAtCompileTime = 0
@@ -71,17 +70,15 @@ template<typename MatrixType, int _DiagIndex> class Diagonal
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
EIGEN_DEVICE_FUNC
- inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {}
+ explicit inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
EIGEN_DEVICE_FUNC
inline Index rows() const
{
- EIGEN_USING_STD_MATH(min);
- return m_index.value()<0 ? (min)(Index(m_matrix.cols()),Index(m_matrix.rows()+m_index.value()))
- : (min)(Index(m_matrix.rows()),Index(m_matrix.cols()-m_index.value()));
-
+ return m_index.value()<0 ? numext::mini(Index(m_matrix.cols()),Index(m_matrix.rows()+m_index.value()))
+ : numext::mini(Index(m_matrix.rows()),Index(m_matrix.cols()-m_index.value()));
}
EIGEN_DEVICE_FUNC
@@ -149,14 +146,14 @@ template<typename MatrixType, int _DiagIndex> class Diagonal
}
EIGEN_DEVICE_FUNC
- const typename internal::remove_all<typename MatrixType::Nested>::type&
+ inline const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const
{
return m_matrix;
}
EIGEN_DEVICE_FUNC
- int index() const
+ inline Index index() const
{
return m_index.value();
}
@@ -173,7 +170,7 @@ template<typename MatrixType, int _DiagIndex> class Diagonal
EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; }
- // triger a compile time error is someone try to call packet
+ // trigger a compile time error is someone try to call packet
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index) const;
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index,Index) const;
};
@@ -190,7 +187,7 @@ template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalReturnType
MatrixBase<Derived>::diagonal()
{
- return derived();
+ return DiagonalReturnType(derived());
}
/** This is the const version of diagonal(). */
@@ -213,18 +210,18 @@ MatrixBase<Derived>::diagonal() const
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
-inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<DynamicIndex>::Type
+inline typename MatrixBase<Derived>::DiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index)
{
- return typename DiagonalIndexReturnType<DynamicIndex>::Type(derived(), index);
+ return DiagonalDynamicIndexReturnType(derived(), index);
}
/** This is the const version of diagonal(Index). */
template<typename Derived>
-inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<DynamicIndex>::Type
+inline typename MatrixBase<Derived>::ConstDiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index) const
{
- return typename ConstDiagonalIndexReturnType<DynamicIndex>::Type(derived(), index);
+ return ConstDiagonalDynamicIndexReturnType(derived(), index);
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
@@ -239,20 +236,20 @@ MatrixBase<Derived>::diagonal(Index index) const
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
-template<int Index>
-inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index>::Type
+template<int Index_>
+inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index_>::Type
MatrixBase<Derived>::diagonal()
{
- return derived();
+ return typename DiagonalIndexReturnType<Index_>::Type(derived());
}
/** This is the const version of diagonal<int>(). */
template<typename Derived>
-template<int Index>
-inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index>::Type
+template<int Index_>
+inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index_>::Type
MatrixBase<Derived>::diagonal() const
{
- return derived();
+ return typename ConstDiagonalIndexReturnType<Index_>::Type(derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/DiagonalMatrix.h b/Eigen/src/Core/DiagonalMatrix.h
index 96b65483d..49b9b7925 100644
--- a/Eigen/src/Core/DiagonalMatrix.h
+++ b/Eigen/src/Core/DiagonalMatrix.h
@@ -30,7 +30,7 @@ class DiagonalBase : public EigenBase<Derived>
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
- Flags = 0
+ Flags = NoPreferredStorageOrderBit
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
@@ -44,18 +44,7 @@ class DiagonalBase : public EigenBase<Derived>
EIGEN_DEVICE_FUNC
DenseMatrixType toDenseMatrix() const { return derived(); }
- template<typename DenseDerived>
- EIGEN_DEVICE_FUNC
- void evalTo(MatrixBase<DenseDerived> &other) const;
- template<typename DenseDerived>
- EIGEN_DEVICE_FUNC
- void addTo(MatrixBase<DenseDerived> &other) const
- { other.diagonal() += diagonal(); }
- template<typename DenseDerived>
- EIGEN_DEVICE_FUNC
- void subTo(MatrixBase<DenseDerived> &other) const
- { other.diagonal() -= diagonal(); }
-
+
EIGEN_DEVICE_FUNC
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
EIGEN_DEVICE_FUNC
@@ -66,44 +55,37 @@ class DiagonalBase : public EigenBase<Derived>
EIGEN_DEVICE_FUNC
inline Index cols() const { return diagonal().size(); }
- /** \returns the diagonal matrix product of \c *this by the matrix \a matrix.
- */
template<typename MatrixDerived>
EIGEN_DEVICE_FUNC
- const DiagonalProduct<MatrixDerived, Derived, OnTheLeft>
+ const Product<Derived,MatrixDerived,LazyProduct>
operator*(const MatrixBase<MatrixDerived> &matrix) const
{
- return DiagonalProduct<MatrixDerived, Derived, OnTheLeft>(matrix.derived(), derived());
+ return Product<Derived, MatrixDerived, LazyProduct>(derived(),matrix.derived());
}
+ typedef DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> > InverseReturnType;
EIGEN_DEVICE_FUNC
- inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> >
+ inline const InverseReturnType
inverse() const
{
- return diagonal().cwiseInverse();
+ return InverseReturnType(diagonal().cwiseInverse());
}
+ typedef DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> > ScalarMultipleReturnType;
EIGEN_DEVICE_FUNC
- inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
+ inline const ScalarMultipleReturnType
operator*(const Scalar& scalar) const
{
- return diagonal() * scalar;
+ return ScalarMultipleReturnType(diagonal() * scalar);
}
EIGEN_DEVICE_FUNC
- friend inline const DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> >
+ friend inline const ScalarMultipleReturnType
operator*(const Scalar& scalar, const DiagonalBase& other)
{
- return other.diagonal() * scalar;
+ return ScalarMultipleReturnType(other.diagonal() * scalar);
}
};
-template<typename Derived>
-template<typename DenseDerived>
-void DiagonalBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
-{
- other.setZero();
- other.diagonal() = diagonal();
-}
#endif
/** \class DiagonalMatrix
@@ -125,10 +107,10 @@ struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
- typedef Dense StorageKind;
+ typedef DiagonalShape StorageKind;
typedef DenseIndex Index;
enum {
- Flags = LvalueBit
+ Flags = LvalueBit | NoPreferredStorageOrderBit
};
};
}
@@ -164,7 +146,7 @@ class DiagonalMatrix
/** Constructs a diagonal matrix with given dimension */
EIGEN_DEVICE_FUNC
- inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
+ explicit inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
/** 2D constructor. */
EIGEN_DEVICE_FUNC
@@ -249,13 +231,14 @@ struct traits<DiagonalWrapper<_DiagonalVectorType> >
typedef _DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::Index Index;
- typedef typename DiagonalVectorType::StorageKind StorageKind;
+ typedef DiagonalShape StorageKind;
+ typedef typename traits<DiagonalVectorType>::XprKind XprKind;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- MaxRowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- MaxColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
- Flags = traits<DiagonalVectorType>::Flags & LvalueBit
+ MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
+ MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
+ Flags = (traits<DiagonalVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
};
};
}
@@ -272,7 +255,7 @@ class DiagonalWrapper
/** Constructor from expression of diagonal coefficients to wrap. */
EIGEN_DEVICE_FUNC
- inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {}
+ explicit inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {}
/** \returns a const reference to the wrapped expression of diagonal coefficients. */
EIGEN_DEVICE_FUNC
@@ -295,7 +278,7 @@ template<typename Derived>
inline const DiagonalWrapper<const Derived>
MatrixBase<Derived>::asDiagonal() const
{
- return derived();
+ return DiagonalWrapper<const Derived>(derived());
}
/** \returns true if *this is approximately equal to a diagonal matrix,
@@ -326,6 +309,33 @@ bool MatrixBase<Derived>::isDiagonal(const RealScalar& prec) const
return true;
}
+namespace internal {
+
+template<> struct storage_kind_to_shape<DiagonalShape> { typedef DiagonalShape Shape; };
+
+struct Diagonal2Dense {};
+
+template<> struct AssignmentKind<DenseShape,DiagonalShape> { typedef Diagonal2Dense Kind; };
+
+// Diagonal matrix to Dense assignment
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Dense, Scalar>
+{
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &/*func*/)
+ {
+ dst.setZero();
+ dst.diagonal() = src.diagonal();
+ }
+
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar> &/*func*/)
+ { dst.diagonal() += src.diagonal(); }
+
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar> &/*func*/)
+ { dst.diagonal() -= src.diagonal(); }
+};
+
+} // namespace internal
+
} // end namespace Eigen
#endif // EIGEN_DIAGONALMATRIX_H
diff --git a/Eigen/src/Core/DiagonalProduct.h b/Eigen/src/Core/DiagonalProduct.h
index c03a0c2e1..d372b938f 100644
--- a/Eigen/src/Core/DiagonalProduct.h
+++ b/Eigen/src/Core/DiagonalProduct.h
@@ -13,116 +13,14 @@
namespace Eigen {
-namespace internal {
-template<typename MatrixType, typename DiagonalType, int ProductOrder>
-struct traits<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
- : traits<MatrixType>
-{
- typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-
- _StorageOrder = MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor,
- _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
- ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
- _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
- // FIXME currently we need same types, but in the future the next rule should be the one
- //_Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
- _Vectorizable = bool(int(MatrixType::Flags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagonalType::DiagonalVectorType::Flags)&PacketAccessBit))),
- _LinearAccessMask = (RowsAtCompileTime==1 || ColsAtCompileTime==1) ? LinearAccessBit : 0,
-
- Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixType::Flags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit,//(int(MatrixType::Flags)&int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit),
- CoeffReadCost = NumTraits<Scalar>::MulCost + MatrixType::CoeffReadCost + DiagonalType::DiagonalVectorType::CoeffReadCost
- };
-};
-}
-
-template<typename MatrixType, typename DiagonalType, int ProductOrder>
-class DiagonalProduct : internal::no_assignment_operator,
- public MatrixBase<DiagonalProduct<MatrixType, DiagonalType, ProductOrder> >
-{
- public:
-
- typedef MatrixBase<DiagonalProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(DiagonalProduct)
-
- inline DiagonalProduct(const MatrixType& matrix, const DiagonalType& diagonal)
- : m_matrix(matrix), m_diagonal(diagonal)
- {
- eigen_assert(diagonal.diagonal().size() == (ProductOrder == OnTheLeft ? matrix.rows() : matrix.cols()));
- }
-
- EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
- EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
- {
- return m_diagonal.diagonal().coeff(ProductOrder == OnTheLeft ? row : col) * m_matrix.coeff(row, col);
- }
-
- EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
- {
- enum {
- StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
- };
- return coeff(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
- {
- enum {
- StorageOrder = Flags & RowMajorBit ? RowMajor : ColMajor
- };
- const Index indexInDiagonalVector = ProductOrder == OnTheLeft ? row : col;
- return packet_impl<LoadMode>(row,col,indexInDiagonalVector,typename internal::conditional<
- ((int(StorageOrder) == RowMajor && int(ProductOrder) == OnTheLeft)
- ||(int(StorageOrder) == ColMajor && int(ProductOrder) == OnTheRight)), internal::true_type, internal::false_type>::type());
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
- {
- enum {
- StorageOrder = int(MatrixType::Flags) & RowMajorBit ? RowMajor : ColMajor
- };
- return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
- }
-
- protected:
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
- {
- return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
- internal::pset1<PacketScalar>(m_diagonal.diagonal().coeff(id)));
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
- {
- enum {
- InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
- DiagonalVectorPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagonalType::DiagonalVectorType::Flags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
- };
- return internal::pmul(m_matrix.template packet<LoadMode>(row, col),
- m_diagonal.diagonal().template packet<DiagonalVectorPacketLoadMode>(id));
- }
-
- typename MatrixType::Nested m_matrix;
- typename DiagonalType::Nested m_diagonal;
-};
-
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
*/
template<typename Derived>
template<typename DiagonalDerived>
-inline const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
+inline const Product<Derived, DiagonalDerived, LazyProduct>
MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &a_diagonal) const
{
- return DiagonalProduct<Derived, DiagonalDerived, OnTheRight>(derived(), a_diagonal.derived());
+ return Product<Derived, DiagonalDerived, LazyProduct>(derived(),a_diagonal.derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/Dot.h b/Eigen/src/Core/Dot.h
index db16e4acc..68e9c2660 100644
--- a/Eigen/src/Core/Dot.h
+++ b/Eigen/src/Core/Dot.h
@@ -113,8 +113,7 @@ template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
- typedef typename internal::nested<Derived>::type Nested;
- typedef typename internal::remove_reference<Nested>::type _Nested;
+ typedef typename internal::nested_eval<Derived,2>::type _Nested;
_Nested n(derived());
return n / n.norm();
}
@@ -206,8 +205,8 @@ template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
{
- typename internal::nested<Derived,2>::type nested(derived());
- typename internal::nested<OtherDerived,2>::type otherNested(other.derived());
+ typename internal::nested_eval<Derived,2>::type nested(derived());
+ typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived());
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
diff --git a/Eigen/src/Core/EigenBase.h b/Eigen/src/Core/EigenBase.h
index 1a577c2dc..52b66e6dc 100644
--- a/Eigen/src/Core/EigenBase.h
+++ b/Eigen/src/Core/EigenBase.h
@@ -121,7 +121,7 @@ template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
{
- other.derived().evalTo(derived());
+ call_assignment(derived(), other.derived());
return derived();
}
@@ -129,7 +129,7 @@ template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
{
- other.derived().addTo(derived());
+ call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
@@ -137,7 +137,7 @@ template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
{
- other.derived().subTo(derived());
+ call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/Flagged.h b/Eigen/src/Core/Flagged.h
index 1f2955fc1..2e2a50be5 100644
--- a/Eigen/src/Core/Flagged.h
+++ b/Eigen/src/Core/Flagged.h
@@ -48,39 +48,39 @@ template<typename ExpressionType, unsigned int Added, unsigned int Removed> clas
ExpressionType, const ExpressionType&>::type ExpressionTypeNested;
typedef typename ExpressionType::InnerIterator InnerIterator;
- inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {}
+ explicit inline Flagged(const ExpressionType& matrix) : m_matrix(matrix) {}
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
- inline Index outerStride() const { return m_matrix.outerStride(); }
- inline Index innerStride() const { return m_matrix.innerStride(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); }
+ EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_matrix.outerStride(); }
+ EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_matrix.innerStride(); }
- inline CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC inline CoeffReturnType coeff(Index row, Index col) const
{
return m_matrix.coeff(row, col);
}
- inline CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC inline CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(index);
}
- inline const Scalar& coeffRef(Index row, Index col) const
+ EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index row, Index col) const
{
return m_matrix.const_cast_derived().coeffRef(row, col);
}
- inline const Scalar& coeffRef(Index index) const
+ EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index index) const
{
return m_matrix.const_cast_derived().coeffRef(index);
}
- inline Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived().coeffRef(row, col);
}
- inline Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(index);
}
@@ -109,13 +109,13 @@ template<typename ExpressionType, unsigned int Added, unsigned int Removed> clas
m_matrix.const_cast_derived().template writePacket<LoadMode>(index, x);
}
- const ExpressionType& _expression() const { return m_matrix; }
+ EIGEN_DEVICE_FUNC const ExpressionType& _expression() const { return m_matrix; }
template<typename OtherDerived>
- typename ExpressionType::PlainObject solveTriangular(const MatrixBase<OtherDerived>& other) const;
+ EIGEN_DEVICE_FUNC typename ExpressionType::PlainObject solveTriangular(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
- void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
+ EIGEN_DEVICE_FUNC void solveTriangularInPlace(const MatrixBase<OtherDerived>& other) const;
protected:
ExpressionTypeNested m_matrix;
@@ -132,7 +132,7 @@ template<unsigned int Added,unsigned int Removed>
inline const Flagged<Derived, Added, Removed>
DenseBase<Derived>::flagged() const
{
- return derived();
+ return Flagged<Derived, Added, Removed>(derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/ForceAlignedAccess.h b/Eigen/src/Core/ForceAlignedAccess.h
index 807c7a293..7b08b45e6 100644
--- a/Eigen/src/Core/ForceAlignedAccess.h
+++ b/Eigen/src/Core/ForceAlignedAccess.h
@@ -39,29 +39,29 @@ template<typename ExpressionType> class ForceAlignedAccess
typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
- inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
+ EIGEN_DEVICE_FUNC explicit inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
- inline Index rows() const { return m_expression.rows(); }
- inline Index cols() const { return m_expression.cols(); }
- inline Index outerStride() const { return m_expression.outerStride(); }
- inline Index innerStride() const { return m_expression.innerStride(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); }
+ EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); }
+ EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); }
- inline const CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
- inline Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
- inline const CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
- inline Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
@@ -90,7 +90,7 @@ template<typename ExpressionType> class ForceAlignedAccess
m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
}
- operator const ExpressionType&() const { return m_expression; }
+ EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType& m_expression;
@@ -127,7 +127,7 @@ template<bool Enable>
inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
MatrixBase<Derived>::forceAlignedAccessIf() const
{
- return derived();
+ return derived(); // FIXME This should not work but apparently is never used
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
@@ -138,7 +138,7 @@ template<bool Enable>
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
MatrixBase<Derived>::forceAlignedAccessIf()
{
- return derived();
+ return derived(); // FIXME This should not work but apparently is never used
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/Fuzzy.h b/Eigen/src/Core/Fuzzy.h
index f9a88dd3c..3e403a09d 100644
--- a/Eigen/src/Core/Fuzzy.h
+++ b/Eigen/src/Core/Fuzzy.h
@@ -22,10 +22,9 @@ struct isApprox_selector
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
- EIGEN_USING_STD_MATH(min);
- typename internal::nested<Derived,2>::type nested(x);
- typename internal::nested<OtherDerived,2>::type otherNested(y);
- return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
+ typename internal::nested_eval<Derived,2>::type nested(x);
+ typename internal::nested_eval<OtherDerived,2>::type otherNested(y);
+ return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
diff --git a/Eigen/src/Core/GeneralProduct.h b/Eigen/src/Core/GeneralProduct.h
index 9d3d5562c..81750722c 100644
--- a/Eigen/src/Core/GeneralProduct.h
+++ b/Eigen/src/Core/GeneralProduct.h
@@ -13,28 +13,6 @@
namespace Eigen {
-/** \class GeneralProduct
- * \ingroup Core_Module
- *
- * \brief Expression of the product of two general matrices or vectors
- *
- * \param LhsNested the type used to store the left-hand side
- * \param RhsNested the type used to store the right-hand side
- * \param ProductMode the type of the product
- *
- * This class represents an expression of the product of two general matrices.
- * We call a general matrix, a dense matrix with full storage. For instance,
- * This excludes triangular, selfadjoint, and sparse matrices.
- * It is the return type of the operator* between general matrices. Its template
- * arguments are determined automatically by ProductReturnType. Therefore,
- * GeneralProduct should never be used direclty. To determine the result type of a
- * function which involves a matrix product, use ProductReturnType::Type.
- *
- * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
-class GeneralProduct;
-
enum {
Large = 2,
Small = 3
@@ -59,14 +37,14 @@ template<typename Lhs, typename Rhs> struct product_type
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
- MaxRows = _Lhs::MaxRowsAtCompileTime,
- Rows = _Lhs::RowsAtCompileTime,
- MaxCols = _Rhs::MaxColsAtCompileTime,
- Cols = _Rhs::ColsAtCompileTime,
- MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
- _Rhs::MaxRowsAtCompileTime),
- Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
- _Rhs::RowsAtCompileTime)
+ MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
+ Rows = traits<_Lhs>::RowsAtCompileTime,
+ MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
+ Cols = traits<_Rhs>::ColsAtCompileTime,
+ MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
+ traits<_Rhs>::MaxRowsAtCompileTime),
+ Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
+ traits<_Rhs>::RowsAtCompileTime)
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
@@ -81,7 +59,8 @@ private:
public:
enum {
- value = selector::ret
+ value = selector::ret,
+ ret = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
@@ -97,6 +76,31 @@ public:
#endif
};
+// template<typename Lhs, typename Rhs> struct product_tag
+// {
+// private:
+//
+// typedef typename remove_all<Lhs>::type _Lhs;
+// typedef typename remove_all<Rhs>::type _Rhs;
+// enum {
+// Rows = _Lhs::RowsAtCompileTime,
+// Cols = _Rhs::ColsAtCompileTime,
+// Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime, _Rhs::RowsAtCompileTime)
+// };
+//
+// enum {
+// rows_select = Rows==1 ? int(Rows) : int(Large),
+// cols_select = Cols==1 ? int(Cols) : int(Large),
+// depth_select = Depth==1 ? int(Depth) : int(Large)
+// };
+// typedef product_type_selector<rows_select, cols_select, depth_select> selector;
+//
+// public:
+// enum {
+// ret = selector::ret
+// };
+//
+// };
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
@@ -127,54 +131,6 @@ template<> struct product_type_selector<Large,Large,Small> { enum
} // end namespace internal
-/** \class ProductReturnType
- * \ingroup Core_Module
- *
- * \brief Helper class to get the correct and optimized returned type of operator*
- *
- * \param Lhs the type of the left-hand side
- * \param Rhs the type of the right-hand side
- * \param ProductMode the type of the product (determined automatically by internal::product_mode)
- *
- * This class defines the typename Type representing the optimized product expression
- * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
- * is the recommended way to define the result type of a function returning an expression
- * which involve a matrix product. The class Product should never be
- * used directly.
- *
- * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType>
-struct ProductReturnType
-{
- // TODO use the nested type to reduce instanciations ????
-// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
-// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
-
- typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
-};
-
-// this is a workaround for sun CC
-template<typename Lhs, typename Rhs>
-struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{};
-
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
@@ -186,119 +142,10 @@ struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedPr
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
-namespace internal {
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
- : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, InnerProduct>
- : internal::no_assignment_operator,
- public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
-{
- typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
- public:
- GeneralProduct(const Lhs& lhs, const Rhs& rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
- }
-
- /** Convertion to scalar */
- operator const typename Base::Scalar() const {
- return Base::coeff(0,0);
- }
-};
-
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
-namespace internal {
-
-// Column major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&)
-{
- typedef typename Dest::Index Index;
- // FIXME make sure lhs is sequentially stored
- // FIXME not very good if rhs is real and lhs complex while alpha is real too
- const Index cols = dest.cols();
- for (Index j=0; j<cols; ++j)
- func(dest.col(j), prod.rhs().coeff(0,j) * prod.lhs());
-}
-
-// Row major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) {
- typedef typename Dest::Index Index;
- // FIXME make sure rhs is sequentially stored
- // FIXME not very good if lhs is real and rhs complex while alpha is real too
- const Index rows = dest.rows();
- for (Index i=0; i<rows; ++i)
- func(dest.row(i), prod.lhs().coeff(i,0) * prod.rhs());
-}
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, OuterProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
-{
- template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
-
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
- struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
- struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
- struct adds {
- Scalar m_scale;
- adds(const Scalar& s) : m_scale(s) {}
- template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
- dst.const_cast_derived() += m_scale * src;
- }
- };
-
- template<typename Dest>
- inline void evalTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, set(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void addTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, add(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void subTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, sub(), IsRowMajor<Dest>());
- }
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- internal::outer_product_selector_run(*this, dest, adds(alpha), IsRowMajor<Dest>());
- }
-};
-
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
@@ -312,60 +159,13 @@ class GeneralProduct<Lhs, Rhs, OuterProduct>
*/
namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
-{};
-
template<int Side, int StorageOrder, bool BlasCompatible>
-struct gemv_selector;
+struct gemv_dense_sense_selector;
} // end namespace internal
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, GemvProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
-
- GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs)
- {
-// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
-// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
- typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
- internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
- bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
- }
-};
-
namespace internal {
-// The vector is on the left => transposition
-template<int StorageOrder, bool BlasCompatible>
-struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
-{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- Transpose<Dest> destT(dest);
- enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
- gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
- ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
- (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
- }
-};
-
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
@@ -402,27 +202,43 @@ struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
#endif
};
-template<> struct gemv_selector<OnTheRight,ColMajor,true>
+// The vector is on the left => transposition
+template<int StorageOrder, bool BlasCompatible>
+struct gemv_dense_sense_selector<OnTheLeft,StorageOrder,BlasCompatible>
+{
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
+ {
+ Transpose<Dest> destT(dest);
+ enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
+ gemv_dense_sense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
+ ::run(rhs.transpose(), lhs.transpose(), destT, alpha);
+ }
+};
+
+template<> struct gemv_dense_sense_selector<OnTheRight,ColMajor,true>
{
- template<typename ProductType, typename Dest>
- static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename ProductType::Index Index;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::RealScalar RealScalar;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+ typedef typename Dest::RealScalar RealScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
- ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
- ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
+ ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
+ ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
@@ -477,34 +293,35 @@ template<> struct gemv_selector<OnTheRight,ColMajor,true>
}
};
-template<> struct gemv_selector<OnTheRight,RowMajor,true>
+template<> struct gemv_dense_sense_selector<OnTheRight,RowMajor,true>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::_ActualRhsType _ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
-
- typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
+ typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
+
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
- DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
+ DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
- gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
+ gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
@@ -515,7 +332,7 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
@@ -530,29 +347,29 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
}
};
-template<> struct gemv_selector<OnTheRight,ColMajor,false>
+template<> struct gemv_dense_sense_selector<OnTheRight,ColMajor,false>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
- const Index size = prod.rhs().rows();
+ const Index size = rhs.rows();
for(Index k=0; k<size; ++k)
- dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
+ dest += (alpha*rhs.coeff(k)) * lhs.col(k);
}
};
-template<> struct gemv_selector<OnTheRight,RowMajor,false>
+template<> struct gemv_dense_sense_selector<OnTheRight,RowMajor,false>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
- const Index rows = prod.rows();
+ const Index rows = dest.rows();
for(Index i=0; i<rows; ++i)
- dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
+ dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(rhs.transpose())).sum();
}
};
@@ -570,7 +387,6 @@ template<> struct gemv_selector<OnTheRight,RowMajor,false>
*/
#ifndef __CUDACC__
-#ifdef EIGEN_TEST_EVALUATORS
template<typename Derived>
template<typename OtherDerived>
inline const Product<Derived, OtherDerived>
@@ -601,39 +417,9 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
return Product<Derived, OtherDerived>(derived(), other.derived());
}
-#else
-template<typename Derived>
-template<typename OtherDerived>
-inline const typename ProductReturnType<Derived, OtherDerived>::Type
-MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
-{
- // A note regarding the function declaration: In MSVC, this function will sometimes
- // not be inlined since DenseStorage is an unwindable object for dynamic
- // matrices and product types are holding a member to store the result.
- // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
- enum {
- ProductIsValid = Derived::ColsAtCompileTime==Dynamic
- || OtherDerived::RowsAtCompileTime==Dynamic
- || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
- AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
- SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
- };
- // note to the lost user:
- // * for a dot product use: v1.dot(v2)
- // * for a coeff-wise product use: v1.cwiseProduct(v2)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
- INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
- EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
- INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
- EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
-#ifdef EIGEN_DEBUG_PRODUCT
- internal::product_type<Derived,OtherDerived>::debug();
-#endif
- return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
-}
-#endif
-#endif
+#endif // __CUDACC__
+
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
*
* The returned product will behave like any other expressions: the coefficients of the product will be
@@ -647,7 +433,7 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
*/
template<typename Derived>
template<typename OtherDerived>
-const typename LazyProductReturnType<Derived,OtherDerived>::Type
+const Product<Derived,OtherDerived,LazyProduct>
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
@@ -666,7 +452,7 @@ MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
- return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
+ return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/GenericPacketMath.h b/Eigen/src/Core/GenericPacketMath.h
index 3ef3475c7..8759cd06c 100644
--- a/Eigen/src/Core/GenericPacketMath.h
+++ b/Eigen/src/Core/GenericPacketMath.h
@@ -129,12 +129,12 @@ pdiv(const Packet& a,
/** \internal \returns the min of \a a and \a b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmin(const Packet& a,
- const Packet& b) { EIGEN_USING_STD_MATH(min); return (min)(a, b); }
+ const Packet& b) { return numext::mini(a, b); }
/** \internal \returns the max of \a a and \a b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmax(const Packet& a,
- const Packet& b) { EIGEN_USING_STD_MATH(max); return (max)(a, b); }
+ const Packet& b) { return numext::maxi(a, b); }
/** \internal \returns the absolute value of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
@@ -245,8 +245,8 @@ template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu
/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> inline void prefetch(const Scalar* addr)
{
-#if !defined(_MSC_VER)
-__builtin_prefetch(addr);
+#if !EIGEN_COMP_MSVC
+ __builtin_prefetch(addr);
#endif
}
diff --git a/Eigen/src/Core/GlobalFunctions.h b/Eigen/src/Core/GlobalFunctions.h
index 2067a2a6e..ee67b7d3c 100644
--- a/Eigen/src/Core/GlobalFunctions.h
+++ b/Eigen/src/Core/GlobalFunctions.h
@@ -15,7 +15,7 @@
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
NAME(const Eigen::ArrayBase<Derived>& x) { \
- return x.derived(); \
+ return Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived>(x.derived()); \
}
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
@@ -30,7 +30,7 @@
{ \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
- return x.derived(); \
+ return typename NAME##_retval<ArrayBase<Derived> >::type(x.derived()); \
} \
};
diff --git a/Eigen/src/Core/Inverse.h b/Eigen/src/Core/Inverse.h
new file mode 100644
index 000000000..f3b0dff87
--- /dev/null
+++ b/Eigen/src/Core/Inverse.h
@@ -0,0 +1,129 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INVERSE_H
+#define EIGEN_INVERSE_H
+
+namespace Eigen {
+
+// TODO move the general declaration in Core, and rename this file DenseInverseImpl.h, or something like this...
+
+template<typename XprType,typename StorageKind> class InverseImpl;
+
+namespace internal {
+
+template<typename XprType>
+struct traits<Inverse<XprType> >
+ : traits<typename XprType::PlainObject>
+{
+ typedef typename XprType::PlainObject PlainObject;
+ typedef traits<PlainObject> BaseTraits;
+ enum {
+ Flags = BaseTraits::Flags & RowMajorBit
+ };
+};
+
+} // end namespace internal
+
+/** \class Inverse
+ *
+ * \brief Expression of the inverse of another expression
+ *
+ * \tparam XprType the type of the expression we are taking the inverse
+ *
+ * This class represents an abstract expression of A.inverse()
+ * and most of the time this is the only way it is used.
+ *
+ */
+template<typename XprType>
+class Inverse : public InverseImpl<XprType,typename internal::traits<XprType>::StorageKind>
+{
+public:
+ typedef typename XprType::Index Index;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename internal::nested<XprType>::type XprTypeNested;
+ typedef typename internal::remove_all<XprTypeNested>::type XprTypeNestedCleaned;
+
+ explicit Inverse(const XprType &xpr)
+ : m_xpr(xpr)
+ {}
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
+
+ EIGEN_DEVICE_FUNC const XprTypeNestedCleaned& nestedExpression() const { return m_xpr; }
+
+protected:
+ XprTypeNested m_xpr;
+};
+
+/** \internal
+ * Specialization of the Inverse expression for dense expressions.
+ * Direct access to the coefficients are discared.
+ * FIXME this intermediate class is probably not needed anymore.
+ */
+template<typename XprType>
+class InverseImpl<XprType,Dense>
+ : public MatrixBase<Inverse<XprType> >
+{
+ typedef Inverse<XprType> Derived;
+
+public:
+
+ typedef MatrixBase<Derived> Base;
+ EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
+ typedef typename internal::remove_all<XprType>::type NestedExpression;
+
+private:
+
+ Scalar coeff(Index row, Index col) const;
+ Scalar coeff(Index i) const;
+};
+
+namespace internal {
+
+/** \internal
+ * \brief Default evaluator for Inverse expression.
+ *
+ * This default evaluator for Inverse expression simply evaluate the inverse into a temporary
+ * by a call to internal::call_assignment_no_alias.
+ * Therefore, inverse implementers only have to specialize Assignment<Dst,Inverse<...>, ...> for
+ * there own nested expression.
+ *
+ * \sa class Inverse
+ */
+template<typename ArgType>
+struct unary_evaluator<Inverse<ArgType> >
+ : public evaluator<typename Inverse<ArgType>::PlainObject>::type
+{
+ typedef Inverse<ArgType> InverseType;
+ typedef typename InverseType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator<InverseType> type;
+ typedef evaluator<InverseType> nestedType;
+
+ enum { Flags = Base::Flags | EvalBeforeNestingBit };
+
+ unary_evaluator(const InverseType& inv_xpr)
+ : m_result(inv_xpr.rows(), inv_xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ internal::call_assignment_no_alias(m_result, inv_xpr);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_INVERSE_H
diff --git a/Eigen/src/Core/Map.h b/Eigen/src/Core/Map.h
index ced1b76ba..098f1c096 100644
--- a/Eigen/src/Core/Map.h
+++ b/Eigen/src/Core/Map.h
@@ -79,22 +79,9 @@ struct traits<Map<PlainObjectType, MapOptions, StrideType> >
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
- HasNoInnerStride = InnerStrideAtCompileTime == 1,
- HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
- HasNoStride = HasNoInnerStride && HasNoOuterStride,
IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
- IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
- KeepsPacketAccess = bool(HasNoInnerStride)
- && ( bool(IsDynamicSize)
- || HasNoOuterStride
- || ( OuterStrideAtCompileTime!=Dynamic
- && ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%EIGEN_ALIGN_BYTES)==0 ) ),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
- Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
- Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
- ? int(Flags1) : int(Flags1 & ~LinearAccessBit),
- Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit),
- Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit)
+ Flags = is_lvalue<PlainObjectType>::value ? int(Flags0) : (int(Flags0) & ~LvalueBit)
};
private:
enum { Options }; // Expressions don't have Options
@@ -135,7 +122,7 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
* \param a_stride optional Stride object, passing the strides.
*/
EIGEN_DEVICE_FUNC
- inline Map(PointerArgType dataPtr, const StrideType& a_stride = StrideType())
+ explicit inline Map(PointerArgType dataPtr, const StrideType& a_stride = StrideType())
: Base(cast_to_pointer_type(dataPtr)), m_stride(a_stride)
{
PlainObjectType::Base::_check_template_params();
diff --git a/Eigen/src/Core/MapBase.h b/Eigen/src/Core/MapBase.h
index e8ecb175b..1589cbaae 100644
--- a/Eigen/src/Core/MapBase.h
+++ b/Eigen/src/Core/MapBase.h
@@ -12,7 +12,7 @@
#define EIGEN_MAPBASE_H
#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
- EIGEN_STATIC_ASSERT((int(internal::traits<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
+ EIGEN_STATIC_ASSERT((int(internal::evaluator<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
namespace Eigen {
@@ -85,7 +85,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
*
* \sa innerStride(), outerStride()
*/
- inline const Scalar* data() const { return m_data; }
+ EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_data; }
EIGEN_DEVICE_FUNC
inline const Scalar& coeff(Index rowId, Index colId) const
@@ -128,7 +128,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
}
EIGEN_DEVICE_FUNC
- inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
+ explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
checkSanity();
@@ -161,11 +161,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
EIGEN_DEVICE_FUNC
void checkSanity() const
{
- EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits<Derived>::Flags&PacketAccessBit,
- internal::inner_stride_at_compile_time<Derived>::ret==1),
- PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
- eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % EIGEN_ALIGN_BYTES) == 0)
- && "data is not aligned");
+ eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::IsAligned, (size_t(m_data) % EIGEN_ALIGN_BYTES) == 0) && "data is not aligned");
}
PointerType m_data;
@@ -176,6 +172,7 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
template<typename Derived> class MapBase<Derived, WriteAccessors>
: public MapBase<Derived, ReadOnlyAccessors>
{
+ typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
public:
typedef MapBase<Derived, ReadOnlyAccessors> Base;
@@ -243,11 +240,13 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
EIGEN_DEVICE_FUNC
Derived& operator=(const MapBase& other)
{
- Base::Base::operator=(other);
+ ReadOnlyMapBase::Base::operator=(other);
return derived();
}
- using Base::Base::operator=;
+ // In theory we could simply refer to Base:Base::operator=, but MSVC does not like Base::Base,
+ // see bugs 821 and 920.
+ using ReadOnlyMapBase::Base::operator=;
};
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
diff --git a/Eigen/src/Core/MathFunctions.h b/Eigen/src/Core/MathFunctions.h
index e9fed2e52..16ad2dc7e 100644
--- a/Eigen/src/Core/MathFunctions.h
+++ b/Eigen/src/Core/MathFunctions.h
@@ -14,7 +14,7 @@ namespace Eigen {
// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
-#if defined(_WIN32_WCE) && defined(_MSC_VER) && _MSC_VER<=1500
+#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
long abs(long x) { return (labs(x)); }
double abs(double x) { return (fabs(x)); }
float abs(float x) { return (fabsf(x)); }
@@ -360,50 +360,31 @@ inline NewType cast(const OldType& x)
}
/****************************************************************************
-* Implementation of atanh2 *
+* Implementation of logp1 *
****************************************************************************/
template<typename Scalar>
-struct atanh2_impl
+struct log1p_impl
{
- static inline Scalar run(const Scalar& x, const Scalar& r)
+ static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
- #if (__cplusplus >= 201103L) && !defined(__CYGWIN__)
+ // Let's be conservative and enable the default C++11 implementation only if we are sure it exists
+ #if (__cplusplus >= 201103L) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_CLANG || EIGEN_COMP_MSVC || EIGEN_COMP_ICC) \
+ && (EIGEN_ARCH_i386_OR_x86_64) && (EIGEN_OS_GNULINUX || EIGEN_OS_WIN_STRICT || EIGEN_OS_MAC)
using std::log1p;
- return log1p(2 * x / (r - x)) / 2;
+ return log1p(x);
#else
- using std::abs;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
using std::log;
- using std::sqrt;
- Scalar z = x / r;
- if (r == 0 || abs(z) > sqrt(NumTraits<Scalar>::epsilon()))
- return log((r + x) / (r - x)) / 2;
- else
- return z + z*z*z / 3;
+ Scalar x1p = RealScalar(1) + x;
+ return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
#endif
}
};
-template<typename RealScalar>
-struct atanh2_impl<std::complex<RealScalar> >
-{
- typedef std::complex<RealScalar> Scalar;
- static inline Scalar run(const Scalar& x, const Scalar& r)
- {
- using std::log;
- using std::norm;
- using std::sqrt;
- Scalar z = x / r;
- if (r == Scalar(0) || norm(z) > NumTraits<RealScalar>::epsilon())
- return RealScalar(0.5) * log((r + x) / (r - x));
- else
- return z + z*z*z / RealScalar(3);
- }
-};
-
template<typename Scalar>
-struct atanh2_retval
+struct log1p_retval
{
typedef Scalar type;
};
@@ -591,6 +572,22 @@ inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
****************************************************************************/
namespace numext {
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+inline T mini(const T& x, const T& y)
+{
+ EIGEN_USING_STD_MATH(min);
+ return min EIGEN_NOT_A_MACRO (x,y);
+}
+
+template<typename T>
+EIGEN_DEVICE_FUNC
+inline T maxi(const T& x, const T& y)
+{
+ EIGEN_USING_STD_MATH(max);
+ return max EIGEN_NOT_A_MACRO (x,y);
+}
template<typename Scalar>
EIGEN_DEVICE_FUNC
@@ -664,9 +661,9 @@ inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar&
template<typename Scalar>
EIGEN_DEVICE_FUNC
-inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
+inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
{
- return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
+ return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
}
template<typename Scalar>
@@ -694,6 +691,21 @@ bool (isfinite)(const std::complex<T>& x)
return isfinite(real(x)) && isfinite(imag(x));
}
+// Log base 2 for 32 bits positive integers.
+// Conveniently returns 0 for x==0.
+inline int log2(int x)
+{
+ eigen_assert(x>=0);
+ unsigned int v(x);
+ static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return table[(v * 0x07C4ACDDU) >> 27];
+}
+
} // end namespace numext
namespace internal {
diff --git a/Eigen/src/Core/Matrix.h b/Eigen/src/Core/Matrix.h
index 8c95ee3ca..0b3d90786 100644
--- a/Eigen/src/Core/Matrix.h
+++ b/Eigen/src/Core/Matrix.h
@@ -115,7 +115,8 @@ struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
- CoeffReadCost = NumTraits<Scalar>::ReadCost,
+ // FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase
+ EvaluatorFlags = compute_matrix_evaluator_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
@@ -213,7 +214,7 @@ class Matrix
// FIXME is it still needed
EIGEN_DEVICE_FUNC
- Matrix(internal::constructor_without_unaligned_array_assert)
+ explicit Matrix(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{ Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
@@ -359,15 +360,6 @@ class Matrix
*this = other;
}
- /** \internal
- * \brief Override MatrixBase::swap() since for dynamic-sized matrices
- * of same type it is enough to swap the data pointers.
- */
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void swap(MatrixBase<OtherDerived> const & other)
- { this->_swap(other.derived()); }
-
EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index 3cb5e04fd..86994cb36 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -66,8 +66,7 @@ template<typename Derived> class MatrixBase
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
- using Base::CoeffReadCost;
-
+
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
@@ -181,26 +180,20 @@ template<typename Derived> class MatrixBase
#ifdef __CUDACC__
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- const typename LazyProductReturnType<Derived,OtherDerived>::Type
+ const Product<Derived,OtherDerived,LazyProduct>
operator*(const MatrixBase<OtherDerived> &other) const
{ return this->lazyProduct(other); }
#else
-#ifdef EIGEN_TEST_EVALUATORS
template<typename OtherDerived>
const Product<Derived,OtherDerived>
operator*(const MatrixBase<OtherDerived> &other) const;
-#else
- template<typename OtherDerived>
- const typename ProductReturnType<Derived,OtherDerived>::Type
- operator*(const MatrixBase<OtherDerived> &other) const;
-#endif
#endif
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- const typename LazyProductReturnType<Derived,OtherDerived>::Type
+ const Product<Derived,OtherDerived,LazyProduct>
lazyProduct(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
@@ -214,7 +207,7 @@ template<typename Derived> class MatrixBase
template<typename DiagonalDerived>
EIGEN_DEVICE_FUNC
- const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
+ const Product<Derived, DiagonalDerived, LazyProduct>
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
template<typename OtherDerived>
@@ -251,19 +244,14 @@ template<typename Derived> class MatrixBase
template<int Index>
EIGEN_DEVICE_FUNC
typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
+
+ typedef Diagonal<Derived,DynamicIndex> DiagonalDynamicIndexReturnType;
+ typedef typename internal::add_const<Diagonal<const Derived,DynamicIndex> >::type ConstDiagonalDynamicIndexReturnType;
- // Note: The "MatrixBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
- // On the other hand they confuse MSVC8...
- #if (defined _MSC_VER) && (_MSC_VER >= 1500) // 2008 or later
- typename MatrixBase::template DiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index);
- typename MatrixBase::template ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
- #else
EIGEN_DEVICE_FUNC
- typename DiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index);
-
+ DiagonalDynamicIndexReturnType diagonal(Index index);
EIGEN_DEVICE_FUNC
- typename ConstDiagonalIndexReturnType<DynamicIndex>::Type diagonal(Index index) const;
- #endif
+ ConstDiagonalDynamicIndexReturnType diagonal(Index index) const;
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
@@ -334,10 +322,12 @@ template<typename Derived> class MatrixBase
NoAlias<Derived,Eigen::MatrixBase > noalias();
- inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
- inline ForceAlignedAccess<Derived> forceAlignedAccess();
- template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
- template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
+ // TODO forceAlignedAccess is temporarily disabled
+ // Need to find a nicer workaround.
+ inline const Derived& forceAlignedAccess() const { return derived(); }
+ inline Derived& forceAlignedAccess() { return derived(); }
+ template<bool Enable> inline const Derived& forceAlignedAccessIf() const { return derived(); }
+ template<bool Enable> inline Derived& forceAlignedAccessIf() { return derived(); }
Scalar trace() const;
@@ -348,10 +338,10 @@ template<typename Derived> class MatrixBase
/** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> array() { return derived(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> array() { return ArrayWrapper<Derived>(derived()); }
/** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper<const Derived> array() const { return derived(); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper<const Derived> array() const { return ArrayWrapper<const Derived>(derived()); }
/////////// LU module ///////////
@@ -361,7 +351,8 @@ template<typename Derived> class MatrixBase
const PartialPivLU<PlainObject> lu() const;
EIGEN_DEVICE_FUNC
- const internal::inverse_impl<Derived> inverse() const;
+ const Inverse<Derived> inverse() const;
+
template<typename ResultType>
void computeInverseAndDetWithCheck(
ResultType& inverse,
@@ -394,6 +385,7 @@ template<typename Derived> class MatrixBase
/////////// SVD module ///////////
JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
+ BDCSVD<PlainObject> bdcSvd(unsigned int computationOptions = 0) const;
/////////// Geometry module ///////////
diff --git a/Eigen/src/Core/NestByValue.h b/Eigen/src/Core/NestByValue.h
index a893b1761..9aeaf8d18 100644
--- a/Eigen/src/Core/NestByValue.h
+++ b/Eigen/src/Core/NestByValue.h
@@ -40,29 +40,29 @@ template<typename ExpressionType> class NestByValue
typedef typename internal::dense_xpr_base<NestByValue>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue)
- inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
+ EIGEN_DEVICE_FUNC explicit inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
- inline Index rows() const { return m_expression.rows(); }
- inline Index cols() const { return m_expression.cols(); }
- inline Index outerStride() const { return m_expression.outerStride(); }
- inline Index innerStride() const { return m_expression.innerStride(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); }
+ EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); }
+ EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); }
- inline const CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
- inline Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
- inline const CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
- inline Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
@@ -91,7 +91,7 @@ template<typename ExpressionType> class NestByValue
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
}
- operator const ExpressionType&() const { return m_expression; }
+ EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType m_expression;
diff --git a/Eigen/src/Core/NoAlias.h b/Eigen/src/Core/NoAlias.h
index 0a1c32743..0ade75255 100644
--- a/Eigen/src/Core/NoAlias.h
+++ b/Eigen/src/Core/NoAlias.h
@@ -30,68 +30,35 @@ namespace Eigen {
template<typename ExpressionType, template <typename> class StorageBase>
class NoAlias
{
- typedef typename ExpressionType::Scalar Scalar;
public:
- NoAlias(ExpressionType& expression) : m_expression(expression) {}
-
- /** Behaves like MatrixBase::lazyAssign(other)
- * \sa MatrixBase::lazyAssign() */
+ typedef typename ExpressionType::Scalar Scalar;
+
+ explicit NoAlias(ExpressionType& expression) : m_expression(expression) {}
+
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase<OtherDerived>& other)
- { return internal::assign_selector<ExpressionType,OtherDerived,false>::run(m_expression,other.derived()); }
-
- /** \sa MatrixBase::operator+= */
+ {
+ call_assignment_no_alias(m_expression, other.derived(), internal::assign_op<Scalar>());
+ return m_expression;
+ }
+
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase<OtherDerived>& other)
{
- typedef SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
- SelfAdder tmp(m_expression);
- typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
- typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
- internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
+ call_assignment_no_alias(m_expression, other.derived(), internal::add_assign_op<Scalar>());
return m_expression;
}
-
- /** \sa MatrixBase::operator-= */
+
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase<OtherDerived>& other)
{
- typedef SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
- SelfAdder tmp(m_expression);
- typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
- typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
- internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
+ call_assignment_no_alias(m_expression, other.derived(), internal::sub_assign_op<Scalar>());
return m_expression;
}
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- { other.derived().addTo(m_expression); return m_expression; }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- { other.derived().subTo(m_expression); return m_expression; }
-
- template<typename Lhs, typename Rhs, int NestingFlags>
- EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
- { return m_expression.derived() += CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
-
- template<typename Lhs, typename Rhs, int NestingFlags>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
- { return m_expression.derived() -= CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
-
- template<typename OtherDerived>
- ExpressionType& operator=(const ReturnByValue<OtherDerived>& func)
- { return m_expression = func; }
-#endif
-
EIGEN_DEVICE_FUNC
ExpressionType& expression() const
{
@@ -133,7 +100,7 @@ class NoAlias
template<typename Derived>
NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
{
- return derived();
+ return NoAlias<Derived, Eigen::MatrixBase >(derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/PermutationMatrix.h b/Eigen/src/Core/PermutationMatrix.h
index 8aa4c8bc5..4846f2ae1 100644
--- a/Eigen/src/Core/PermutationMatrix.h
+++ b/Eigen/src/Core/PermutationMatrix.h
@@ -13,7 +13,8 @@
namespace Eigen {
-template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
+// TODO: this does not seems to be needed at all:
+// template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
/** \class PermutationBase
* \ingroup Core_Module
@@ -60,7 +61,6 @@ class PermutationBase : public EigenBase<Derived>
typedef typename Traits::IndicesType IndicesType;
enum {
Flags = Traits::Flags,
- CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
@@ -73,6 +73,7 @@ class PermutationBase : public EigenBase<Derived>
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,StorageIndexType>
PlainPermutationType;
using Base::derived;
+ typedef Transpose<PermutationBase> TransposeReturnType;
#endif
/** Copies the other permutation into *this */
@@ -118,7 +119,7 @@ class PermutationBase : public EigenBase<Derived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
- for (int i=0; i<rows();++i)
+ for (Index i=0; i<rows(); ++i)
other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
}
#endif
@@ -163,10 +164,10 @@ class PermutationBase : public EigenBase<Derived>
*
* \returns a reference to *this.
*
- * \warning This is much slower than applyTranspositionOnTheRight(int,int):
+ * \warning This is much slower than applyTranspositionOnTheRight(Index,Index):
* this has linear complexity and requires a lot of branching.
*
- * \sa applyTranspositionOnTheRight(int,int)
+ * \sa applyTranspositionOnTheRight(Index,Index)
*/
Derived& applyTranspositionOnTheLeft(Index i, Index j)
{
@@ -185,7 +186,7 @@ class PermutationBase : public EigenBase<Derived>
*
* This is a fast operation, it only consists in swapping two indices.
*
- * \sa applyTranspositionOnTheLeft(int,int)
+ * \sa applyTranspositionOnTheLeft(Index,Index)
*/
Derived& applyTranspositionOnTheRight(Index i, Index j)
{
@@ -198,14 +199,14 @@ class PermutationBase : public EigenBase<Derived>
*
* \note \note_try_to_help_rvo
*/
- inline Transpose<PermutationBase> inverse() const
- { return derived(); }
+ inline TransposeReturnType inverse() const
+ { return TransposeReturnType(derived()); }
/** \returns the tranpose permutation matrix.
*
* \note \note_try_to_help_rvo
*/
- inline Transpose<PermutationBase> transpose() const
- { return derived(); }
+ inline TransposeReturnType transpose() const
+ { return TransposeReturnType(derived()); }
/**** multiplication helpers to hopefully get RVO ****/
@@ -215,13 +216,13 @@ class PermutationBase : public EigenBase<Derived>
template<typename OtherDerived>
void assignTranspose(const PermutationBase<OtherDerived>& other)
{
- for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
+ for (Index i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
}
template<typename Lhs,typename Rhs>
void assignProduct(const Lhs& lhs, const Rhs& rhs)
{
eigen_assert(lhs.cols() == rhs.rows());
- for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
+ for (Index i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
}
#endif
@@ -274,6 +275,7 @@ template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType> >
: traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
+ typedef PermutationStorage StorageKind;
typedef Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
@@ -287,6 +289,8 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
typedef internal::traits<PermutationMatrix> Traits;
public:
+ typedef const PermutationMatrix& Nested;
+
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename Traits::StorageIndexType StorageIndexType;
@@ -298,8 +302,10 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
/** Constructs an uninitialized permutation matrix of given size.
*/
- inline PermutationMatrix(Index size) : m_indices(size)
- {}
+ explicit inline PermutationMatrix(Index size) : m_indices(size)
+ {
+ eigen_internal_assert(size <= NumTraits<StorageIndexType>::highest());
+ }
/** Copy constructor. */
template<typename OtherDerived>
@@ -370,7 +376,10 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
PermutationMatrix(const Transpose<PermutationBase<Other> >& other)
: m_indices(other.nestedPermutation().size())
{
- for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
+ eigen_internal_assert(m_indices.size() <= NumTraits<StorageIndexType>::highest());
+ StorageIndexType end = StorageIndexType(m_indices.size());
+ for (StorageIndexType i=0; i<end;++i)
+ m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
}
template<typename Lhs,typename Rhs>
PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
@@ -391,6 +400,7 @@ template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndexType>,_PacketAccess> >
: traits<Matrix<_StorageIndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
+ typedef PermutationStorage StorageKind;
typedef Map<const Matrix<_StorageIndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef typename IndicesType::Index Index;
typedef _StorageIndexType StorageIndexType;
@@ -462,8 +472,6 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageInd
* \sa class PermutationBase, class PermutationMatrix
*/
-struct PermutationStorage {};
-
template<typename _IndicesType> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
@@ -477,10 +485,9 @@ struct traits<PermutationWrapper<_IndicesType> >
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
- MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
- Flags = 0,
- CoeffReadCost = _IndicesType::CoeffReadCost
+ MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
+ MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
+ Flags = 0
};
};
}
@@ -509,35 +516,39 @@ class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesTyp
typename IndicesType::Nested m_indices;
};
+
+// TODO: Do we need to define these operator* functions? Would it be better to have them inherited
+// from MatrixBase?
+
/** \returns the matrix with the permutation applied to the columns.
*/
-template<typename Derived, typename PermutationDerived>
-inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
-operator*(const MatrixBase<Derived>& matrix,
- const PermutationBase<PermutationDerived> &permutation)
+template<typename MatrixDerived, typename PermutationDerived>
+EIGEN_DEVICE_FUNC
+const Product<MatrixDerived, PermutationDerived, DefaultProduct>
+operator*(const MatrixBase<MatrixDerived> &matrix,
+ const PermutationBase<PermutationDerived>& permutation)
{
- return internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheRight>
- (permutation.derived(), matrix.derived());
+ return Product<MatrixDerived, PermutationDerived, DefaultProduct>
+ (matrix.derived(), permutation.derived());
}
/** \returns the matrix with the permutation applied to the rows.
*/
-template<typename Derived, typename PermutationDerived>
-inline const internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheLeft>
+template<typename PermutationDerived, typename MatrixDerived>
+EIGEN_DEVICE_FUNC
+const Product<PermutationDerived, MatrixDerived, DefaultProduct>
operator*(const PermutationBase<PermutationDerived> &permutation,
- const MatrixBase<Derived>& matrix)
+ const MatrixBase<MatrixDerived>& matrix)
{
- return internal::permut_matrix_product_retval
- <PermutationDerived, Derived, OnTheLeft>
- (permutation.derived(), matrix.derived());
+ return Product<PermutationDerived, MatrixDerived, DefaultProduct>
+ (permutation.derived(), matrix.derived());
}
namespace internal {
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
+ : traits<typename MatrixType::PlainObject>
{
typedef typename MatrixType::PlainObject ReturnType;
};
@@ -590,7 +601,7 @@ struct permut_matrix_product_retval
}
else
{
- for(int i = 0; i < n; ++i)
+ for(Index i = 0; i < n; ++i)
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i)
@@ -617,6 +628,8 @@ struct traits<Transpose<PermutationBase<Derived> > >
} // end namespace internal
+// TODO: the specificties should be handled by the evaluator,
+// at the very least we should only specialize TransposeImpl
template<typename Derived>
class Transpose<PermutationBase<Derived> >
: public EigenBase<Transpose<PermutationBase<Derived> > >
@@ -631,26 +644,26 @@ class Transpose<PermutationBase<Derived> >
typedef typename Derived::DenseMatrixType DenseMatrixType;
enum {
Flags = Traits::Flags,
- CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
};
typedef typename Traits::Scalar Scalar;
+ typedef typename Traits::Index Index;
#endif
Transpose(const PermutationType& p) : m_permutation(p) {}
- inline int rows() const { return m_permutation.rows(); }
- inline int cols() const { return m_permutation.cols(); }
+ inline Index rows() const { return m_permutation.rows(); }
+ inline Index cols() const { return m_permutation.cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
- for (int i=0; i<rows();++i)
+ for (Index i=0; i<rows();++i)
other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1);
}
#endif
@@ -663,19 +676,19 @@ class Transpose<PermutationBase<Derived> >
/** \returns the matrix with the inverse permutation applied to the columns.
*/
template<typename OtherDerived> friend
- inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
+ const Product<OtherDerived, Transpose, DefaultProduct>
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
{
- return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
+ return Product<OtherDerived, Transpose, DefaultProduct>(matrix.derived(), trPerm.derived());
}
/** \returns the matrix with the inverse permutation applied to the rows.
*/
template<typename OtherDerived>
- inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
+ const Product<Transpose, OtherDerived, DefaultProduct>
operator*(const MatrixBase<OtherDerived>& matrix) const
{
- return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
+ return Product<Transpose, OtherDerived, DefaultProduct>(*this, matrix.derived());
}
const PermutationType& nestedPermutation() const { return m_permutation; }
@@ -690,6 +703,38 @@ const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() con
return derived();
}
+namespace internal {
+
+// TODO currently a permutation matrix expression has the form PermutationMatrix or PermutationWrapper
+// or their transpose; in the future shape should be defined by the expression traits
+template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
+struct evaluator_traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
+{
+ typedef typename storage_kind_to_evaluator_kind<Dense>::Kind Kind;
+ typedef PermutationShape Shape;
+ static const int AssumeAliasing = 0;
+};
+
+template<typename IndicesType>
+struct evaluator_traits<PermutationWrapper<IndicesType> >
+{
+ typedef typename storage_kind_to_evaluator_kind<Dense>::Kind Kind;
+ typedef PermutationShape Shape;
+ static const int AssumeAliasing = 0;
+};
+
+template<typename Derived>
+struct evaluator_traits<Transpose<PermutationBase<Derived> > >
+{
+ typedef typename storage_kind_to_evaluator_kind<Dense>::Kind Kind;
+ typedef PermutationShape Shape;
+ static const int AssumeAliasing = 0;
+};
+
+template<> struct AssignmentKind<DenseShape,PermutationShape> { typedef EigenBase2EigenBase Kind; };
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_PERMUTATIONMATRIX_H
diff --git a/Eigen/src/Core/PlainObjectBase.h b/Eigen/src/Core/PlainObjectBase.h
index 69f34bd3e..06e326a05 100644
--- a/Eigen/src/Core/PlainObjectBase.h
+++ b/Eigen/src/Core/PlainObjectBase.h
@@ -128,7 +128,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
public:
- enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::Flags & AlignedBit) != 0 };
+ enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::EvaluatorFlags & AlignedBit) != 0 };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
EIGEN_DEVICE_FUNC
@@ -221,11 +221,11 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
}
/** \returns a const pointer to the data array of this matrix */
- EIGEN_STRONG_INLINE const Scalar *data() const
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
- EIGEN_STRONG_INLINE Scalar *data()
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
@@ -457,7 +457,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
// FIXME is it still needed ?
/** \internal */
EIGEN_DEVICE_FUNC
- PlainObjectBase(internal::constructor_without_unaligned_array_assert)
+ explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert)
: m_storage(internal::constructor_without_unaligned_array_assert())
{
// _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
@@ -639,22 +639,16 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* \internal
*/
+ // aliasing is dealt once in internall::call_assignment
+ // so at this stage we have to assume aliasing... and resising has to be done later.
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
- _set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
+ internal::call_assignment(this->derived(), other.derived());
return this->derived();
}
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
-
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
@@ -669,7 +663,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
//_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
- return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
+ internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op<Scalar>());
+ return this->derived();
}
template<typename T0, typename T1>
@@ -704,9 +699,12 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[1] = Scalar(val1);
}
+ // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array,
+ // then the argument is meant to be the size of the object.
template<typename T>
EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if<Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value,T>::type* = 0)
+ EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if< (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value)
+ && ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0)
{
// NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
const bool is_integer = NumTraits<T>::IsInteger;
@@ -714,6 +712,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(size);
}
+
+ // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitely converted)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0)
@@ -722,6 +722,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[0] = val0;
}
+ // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Index& val0,
@@ -734,18 +735,21 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
m_storage.data()[0] = Scalar(val0);
}
+ // Initialize a fixed size matrix from a pointer to raw data
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar* data){
this->_set_noalias(ConstMapType(data));
}
+ // Initialize an arbitrary matrix from a dense expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){
this->_set_noalias(other);
}
+ // Initialize an arbitrary matrix from a generic Eigen expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){
@@ -766,23 +770,58 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
{
this->derived() = r;
}
-
+
+ // For fixed -size arrays:
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const Scalar& val0,
+ typename internal::enable_if< Base::SizeAtCompileTime!=Dynamic
+ && Base::SizeAtCompileTime!=1
+ && internal::is_convertible<T, Scalar>::value
+ && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>::type* = 0)
+ {
+ Base::setConstant(val0);
+ }
+
+ template<typename T>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE void _init1(const Index& val0,
+ typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
+ && (internal::is_same<Index,T>::value)
+ && Base::SizeAtCompileTime!=Dynamic
+ && Base::SizeAtCompileTime!=1
+ && internal::is_convertible<T, Scalar>::value
+ && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>::type* = 0)
+ {
+ Base::setConstant(val0);
+ }
+
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;
- /** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
- * data pointers.
+ public:
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+ /** \internal
+ * \brief Override DenseBase::swap() since for dynamic-sized matrices
+ * of same type it is enough to swap the data pointers.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- void _swap(DenseBase<OtherDerived> const & other)
+ void swap(DenseBase<OtherDerived> & other)
{
enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
- internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
+ internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived());
}
-
- public:
-#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+ /** \internal
+ * \brief const version forwarded to DenseBase::swap
+ */
+ template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
+ void swap(DenseBase<OtherDerived> const & other)
+ { Base::swap(other.derived()); }
+
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void _check_template_params()
{
@@ -797,10 +836,9 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
&& (Options & (DontAlign|RowMajor)) == Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
-#endif
-private:
- enum { ThisConstantIsPrivateInPlainObjectBase };
+ enum { IsPlainObjectBase = 1 };
+#endif
};
namespace internal {
diff --git a/Eigen/src/Core/Product.h b/Eigen/src/Core/Product.h
index 5d3789be7..cb79543ef 100644
--- a/Eigen/src/Core/Product.h
+++ b/Eigen/src/Core/Product.h
@@ -12,8 +12,7 @@
namespace Eigen {
-template<typename Lhs, typename Rhs> class Product;
-template<typename Lhs, typename Rhs, typename StorageKind> class ProductImpl;
+template<typename Lhs, typename Rhs, int Option, typename StorageKind> class ProductImpl;
/** \class Product
* \ingroup Core_Module
@@ -24,53 +23,108 @@ template<typename Lhs, typename Rhs, typename StorageKind> class ProductImpl;
* \param Rhs the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
+ *
+ * The other template parameters are:
+ * \tparam Option can be DefaultProduct or LazyProduct
*
*/
-// Use ProductReturnType to get correct traits, in particular vectorization flags
+
namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<Product<Lhs, Rhs> >
- : traits<typename ProductReturnType<Lhs, Rhs>::Type>
-{
- // We want A+B*C to be of type Product<Matrix, Sum> and not Product<Matrix, Matrix>
- // TODO: This flag should eventually go in a separate evaluator traits class
+
+// Determine the scalar of Product<Lhs, Rhs>. This is normally the same as Lhs::Scalar times
+// Rhs::Scalar, but product with permutation matrices inherit the scalar of the other factor.
+template<typename Lhs, typename Rhs, typename LhsShape = typename evaluator_traits<Lhs>::Shape,
+ typename RhsShape = typename evaluator_traits<Rhs>::Shape >
+struct product_result_scalar
+{
+ typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
+};
+
+template<typename Lhs, typename Rhs, typename RhsShape>
+struct product_result_scalar<Lhs, Rhs, PermutationShape, RhsShape>
+{
+ typedef typename Rhs::Scalar Scalar;
+};
+
+template<typename Lhs, typename Rhs, typename LhsShape>
+ struct product_result_scalar<Lhs, Rhs, LhsShape, PermutationShape>
+{
+ typedef typename Lhs::Scalar Scalar;
+};
+
+template<typename Lhs, typename Rhs, int Option>
+struct traits<Product<Lhs, Rhs, Option> >
+{
+ typedef typename remove_all<Lhs>::type LhsCleaned;
+ typedef typename remove_all<Rhs>::type RhsCleaned;
+ typedef traits<LhsCleaned> LhsTraits;
+ typedef traits<RhsCleaned> RhsTraits;
+
+ typedef MatrixXpr XprKind;
+
+ typedef typename product_result_scalar<LhsCleaned,RhsCleaned>::Scalar Scalar;
+ typedef typename product_promote_storage_type<typename LhsTraits::StorageKind,
+ typename RhsTraits::StorageKind,
+ internal::product_type<Lhs,Rhs>::ret>::ret StorageKind;
+ typedef typename promote_index_type<typename LhsTraits::Index,
+ typename RhsTraits::Index>::type Index;
+
enum {
- Flags = traits<typename ProductReturnType<Lhs, Rhs>::Type>::Flags & ~(EvalBeforeNestingBit | DirectAccessBit)
+ RowsAtCompileTime = LhsTraits::RowsAtCompileTime,
+ ColsAtCompileTime = RhsTraits::ColsAtCompileTime,
+ MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime,
+
+ // FIXME: only needed by GeneralMatrixMatrixTriangular
+ InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
+
+ // The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator.
+ Flags = ( (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1)
+ || ((LhsTraits::Flags&NoPreferredStorageOrderBit) && (RhsTraits::Flags&RowMajorBit))
+ || ((RhsTraits::Flags&NoPreferredStorageOrderBit) && (LhsTraits::Flags&RowMajorBit)) )
+ ? RowMajorBit : (MaxColsAtCompileTime==1 ? 0 : NoPreferredStorageOrderBit)
};
};
+
} // end namespace internal
-template<typename Lhs, typename Rhs>
-class Product : public ProductImpl<Lhs,Rhs,typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
- typename internal::traits<Rhs>::StorageKind>::ret>
+template<typename _Lhs, typename _Rhs, int Option>
+class Product : public ProductImpl<_Lhs,_Rhs,Option,
+ typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,
+ typename internal::traits<_Rhs>::StorageKind,
+ internal::product_type<_Lhs,_Rhs>::ret>::ret>
{
public:
+ typedef _Lhs Lhs;
+ typedef _Rhs Rhs;
+
typedef typename ProductImpl<
- Lhs, Rhs,
- typename internal::promote_storage_type<typename Lhs::StorageKind,
- typename Rhs::StorageKind>::ret>::Base Base;
+ Lhs, Rhs, Option,
+ typename internal::product_promote_storage_type<typename internal::traits<Lhs>::StorageKind,
+ typename internal::traits<Rhs>::StorageKind,
+ internal::product_type<Lhs,Rhs>::ret>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
- typedef typename Lhs::Nested LhsNested;
- typedef typename Rhs::Nested RhsNested;
+ typedef typename internal::nested<Lhs>::type LhsNested;
+ typedef typename internal::nested<Rhs>::type RhsNested;
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
- Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
+ EIGEN_DEVICE_FUNC Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
{
eigen_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
- const LhsNestedCleaned& lhs() const { return m_lhs; }
- const RhsNestedCleaned& rhs() const { return m_rhs; }
+ EIGEN_DEVICE_FUNC const LhsNestedCleaned& lhs() const { return m_lhs; }
+ EIGEN_DEVICE_FUNC const RhsNestedCleaned& rhs() const { return m_rhs; }
protected:
@@ -78,14 +132,77 @@ class Product : public ProductImpl<Lhs,Rhs,typename internal::promote_storage_ty
RhsNested m_rhs;
};
-template<typename Lhs, typename Rhs>
-class ProductImpl<Lhs,Rhs,Dense> : public internal::dense_xpr_base<Product<Lhs,Rhs> >::type
+namespace internal {
+
+template<typename Lhs, typename Rhs, int Option, int ProductTag = internal::product_type<Lhs,Rhs>::ret>
+class dense_product_base
+ : public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
+{};
+
+/** Convertion to scalar for inner-products */
+template<typename Lhs, typename Rhs, int Option>
+class dense_product_base<Lhs, Rhs, Option, InnerProduct>
+ : public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
+{
+ typedef Product<Lhs,Rhs,Option> ProductXpr;
+ typedef typename internal::dense_xpr_base<ProductXpr>::type Base;
+public:
+ using Base::derived;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+
+ operator const Scalar() const
+ {
+ return typename internal::evaluator<ProductXpr>::type(derived()).coeff(0,0);
+ }
+};
+
+} // namespace internal
+
+// Generic API dispatcher
+template<typename Lhs, typename Rhs, int Option, typename StorageKind>
+class ProductImpl : public internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type
{
- typedef Product<Lhs, Rhs> Derived;
public:
+ typedef typename internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type Base;
+};
- typedef typename internal::dense_xpr_base<Product<Lhs, Rhs> >::type Base;
+template<typename Lhs, typename Rhs, int Option>
+class ProductImpl<Lhs,Rhs,Option,Dense>
+ : public internal::dense_product_base<Lhs,Rhs,Option>
+{
+ typedef Product<Lhs, Rhs, Option> Derived;
+
+ public:
+
+ typedef typename internal::dense_product_base<Lhs, Rhs, Option> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
+ protected:
+ enum {
+ IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) &&
+ (ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic),
+ EnableCoeff = IsOneByOne || Option==LazyProduct
+ };
+
+ public:
+
+ EIGEN_DEVICE_FUNC Scalar coeff(Index row, Index col) const
+ {
+ EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
+ eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
+
+ return typename internal::evaluator<Derived>::type(derived()).coeff(row,col);
+ }
+
+ EIGEN_DEVICE_FUNC Scalar coeff(Index i) const
+ {
+ EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
+ eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
+
+ return typename internal::evaluator<Derived>::type(derived()).coeff(i);
+ }
+
+
};
/***************************************************************************
@@ -102,6 +219,15 @@ prod(const Lhs& lhs, const Rhs& rhs)
return Product<Lhs,Rhs>(lhs,rhs);
}
+/** \internal used to test the evaluator only
+ */
+template<typename Lhs,typename Rhs>
+const Product<Lhs,Rhs,LazyProduct>
+lazyprod(const Lhs& lhs, const Rhs& rhs)
+{
+ return Product<Lhs,Rhs,LazyProduct>(lhs,rhs);
+}
+
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H
diff --git a/Eigen/src/Core/ProductBase.h b/Eigen/src/Core/ProductBase.h
index 483914a9b..050343b2d 100644
--- a/Eigen/src/Core/ProductBase.h
+++ b/Eigen/src/Core/ProductBase.h
@@ -12,253 +12,6 @@
namespace Eigen {
-/** \class ProductBase
- * \ingroup Core_Module
- *
- */
-
-namespace internal {
-template<typename Derived, typename _Lhs, typename _Rhs>
-struct traits<ProductBase<Derived,_Lhs,_Rhs> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<_Lhs>::type Lhs;
- typedef typename remove_all<_Rhs>::type Rhs;
- typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<Lhs>::StorageKind,
- typename traits<Rhs>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<Lhs>::Index,
- typename traits<Rhs>::Index>::type Index;
- enum {
- RowsAtCompileTime = traits<Lhs>::RowsAtCompileTime,
- ColsAtCompileTime = traits<Rhs>::ColsAtCompileTime,
- MaxRowsAtCompileTime = traits<Lhs>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = traits<Rhs>::MaxColsAtCompileTime,
- Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0)
- | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit,
- // Note that EvalBeforeNestingBit and NestByRefBit
- // are not used in practice because nested is overloaded for products
- CoeffReadCost = 0 // FIXME why is it needed ?
- };
-};
-}
-
-#define EIGEN_PRODUCT_PUBLIC_INTERFACE(Derived) \
- typedef ProductBase<Derived, Lhs, Rhs > Base; \
- EIGEN_DENSE_PUBLIC_INTERFACE(Derived) \
- typedef typename Base::LhsNested LhsNested; \
- typedef typename Base::_LhsNested _LhsNested; \
- typedef typename Base::LhsBlasTraits LhsBlasTraits; \
- typedef typename Base::ActualLhsType ActualLhsType; \
- typedef typename Base::_ActualLhsType _ActualLhsType; \
- typedef typename Base::RhsNested RhsNested; \
- typedef typename Base::_RhsNested _RhsNested; \
- typedef typename Base::RhsBlasTraits RhsBlasTraits; \
- typedef typename Base::ActualRhsType ActualRhsType; \
- typedef typename Base::_ActualRhsType _ActualRhsType; \
- using Base::m_lhs; \
- using Base::m_rhs;
-
-template<typename Derived, typename Lhs, typename Rhs>
-class ProductBase : public MatrixBase<Derived>
-{
- public:
- typedef MatrixBase<Derived> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(ProductBase)
-
- typedef typename Lhs::Nested LhsNested;
- typedef typename internal::remove_all<LhsNested>::type _LhsNested;
- typedef internal::blas_traits<_LhsNested> LhsBlasTraits;
- typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
- typedef typename internal::remove_all<ActualLhsType>::type _ActualLhsType;
- typedef typename internal::traits<Lhs>::Scalar LhsScalar;
-
- typedef typename Rhs::Nested RhsNested;
- typedef typename internal::remove_all<RhsNested>::type _RhsNested;
- typedef internal::blas_traits<_RhsNested> RhsBlasTraits;
- typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
- typedef typename internal::remove_all<ActualRhsType>::type _ActualRhsType;
- typedef typename internal::traits<Rhs>::Scalar RhsScalar;
-
- // Diagonal of a product: no need to evaluate the arguments because they are going to be evaluated only once
- typedef CoeffBasedProduct<LhsNested, RhsNested, 0> FullyLazyCoeffBaseProductType;
-
- public:
-
- typedef typename Base::PlainObject PlainObject;
-
- ProductBase(const Lhs& a_lhs, const Rhs& a_rhs)
- : m_lhs(a_lhs), m_rhs(a_rhs)
- {
- eigen_assert(a_lhs.cols() == a_rhs.rows()
- && "invalid matrix product"
- && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
- }
-
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst,Scalar(1)); }
-
- template<typename Dest>
- inline void addTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(1)); }
-
- template<typename Dest>
- inline void subTo(Dest& dst) const { scaleAndAddTo(dst,Scalar(-1)); }
-
- template<typename Dest>
- inline void scaleAndAddTo(Dest& dst, const Scalar& alpha) const { derived().scaleAndAddTo(dst,alpha); }
-
- const _LhsNested& lhs() const { return m_lhs; }
- const _RhsNested& rhs() const { return m_rhs; }
-
- // Implicit conversion to the nested type (trigger the evaluation of the product)
- operator const PlainObject& () const
- {
- m_result.resize(m_lhs.rows(), m_rhs.cols());
- derived().evalTo(m_result);
- return m_result;
- }
-
- const Diagonal<const FullyLazyCoeffBaseProductType,0> diagonal() const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
-
- template<int Index>
- const Diagonal<FullyLazyCoeffBaseProductType,Index> diagonal() const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs); }
-
- const Diagonal<FullyLazyCoeffBaseProductType,Dynamic> diagonal(Index index) const
- { return FullyLazyCoeffBaseProductType(m_lhs, m_rhs).diagonal(index); }
-
- // restrict coeff accessors to 1x1 expressions. No need to care about mutators here since this isn't an Lvalue expression
- typename Base::CoeffReturnType coeff(Index row, Index col) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- Matrix<Scalar,1,1> result = *this;
- return result.coeff(row,col);
- }
-
- typename Base::CoeffReturnType coeff(Index i) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- Matrix<Scalar,1,1> result = *this;
- return result.coeff(i);
- }
-
- const Scalar& coeffRef(Index row, Index col) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- return derived().coeffRef(row,col);
- }
-
- const Scalar& coeffRef(Index i) const
- {
- EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
- eigen_assert(this->rows() == 1 && this->cols() == 1);
- return derived().coeffRef(i);
- }
-
- protected:
-
- LhsNested m_lhs;
- RhsNested m_rhs;
-
- mutable PlainObject m_result;
-};
-
-// here we need to overload the nested rule for products
-// such that the nested type is a const reference to a plain matrix
-namespace internal {
-template<typename Lhs, typename Rhs, int Mode, int N, typename PlainObject>
-struct nested<GeneralProduct<Lhs,Rhs,Mode>, N, PlainObject>
-{
- typedef PlainObject const& type;
-};
-}
-
-template<typename NestedProduct>
-class ScaledProduct;
-
-// Note that these two operator* functions are not defined as member
-// functions of ProductBase, because, otherwise we would have to
-// define all overloads defined in MatrixBase. Furthermore, Using
-// "using Base::operator*" would not work with MSVC.
-//
-// Also note that here we accept any compatible scalar types
-template<typename Derived,typename Lhs,typename Rhs>
-const ScaledProduct<Derived>
-operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::Scalar& x)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-template<typename Derived,typename Lhs,typename Rhs>
-typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
- const ScaledProduct<Derived> >::type
-operator*(const ProductBase<Derived,Lhs,Rhs>& prod, const typename Derived::RealScalar& x)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-
-template<typename Derived,typename Lhs,typename Rhs>
-const ScaledProduct<Derived>
-operator*(const typename Derived::Scalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-template<typename Derived,typename Lhs,typename Rhs>
-typename internal::enable_if<!internal::is_same<typename Derived::Scalar,typename Derived::RealScalar>::value,
- const ScaledProduct<Derived> >::type
-operator*(const typename Derived::RealScalar& x,const ProductBase<Derived,Lhs,Rhs>& prod)
-{ return ScaledProduct<Derived>(prod.derived(), x); }
-
-namespace internal {
-template<typename NestedProduct>
-struct traits<ScaledProduct<NestedProduct> >
- : traits<ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested> >
-{
- typedef typename traits<NestedProduct>::StorageKind StorageKind;
-};
-}
-
-template<typename NestedProduct>
-class ScaledProduct
- : public ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested>
-{
- public:
- typedef ProductBase<ScaledProduct<NestedProduct>,
- typename NestedProduct::_LhsNested,
- typename NestedProduct::_RhsNested> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::PlainObject PlainObject;
-// EIGEN_PRODUCT_PUBLIC_INTERFACE(ScaledProduct)
-
- ScaledProduct(const NestedProduct& prod, const Scalar& x)
- : Base(prod.lhs(),prod.rhs()), m_prod(prod), m_alpha(x) {}
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const { dst.setZero(); scaleAndAddTo(dst, Scalar(1)); }
-
- template<typename Dest>
- inline void addTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(1)); }
-
- template<typename Dest>
- inline void subTo(Dest& dst) const { scaleAndAddTo(dst, Scalar(-1)); }
-
- template<typename Dest>
- inline void scaleAndAddTo(Dest& dst, const Scalar& a_alpha) const { m_prod.derived().scaleAndAddTo(dst,a_alpha * m_alpha); }
-
- const Scalar& alpha() const { return m_alpha; }
-
- protected:
- const NestedProduct& m_prod;
- Scalar m_alpha;
-};
-
/** \internal
* Overloaded to perform an efficient C = (A*B).lazy() */
template<typename Derived>
diff --git a/Eigen/src/Core/ProductEvaluators.h b/Eigen/src/Core/ProductEvaluators.h
index 855914f2e..488eee00c 100644
--- a/Eigen/src/Core/ProductEvaluators.h
+++ b/Eigen/src/Core/ProductEvaluators.h
@@ -16,95 +16,347 @@
namespace Eigen {
namespace internal {
+
+/** \internal
+ * Evaluator of a product expression.
+ * Since products require special treatments to handle all possible cases,
+ * we simply deffer the evaluation logic to a product_evaluator class
+ * which offers more partial specialization possibilities.
+ *
+ * \sa class product_evaluator
+ */
+template<typename Lhs, typename Rhs, int Options>
+struct evaluator<Product<Lhs, Rhs, Options> >
+ : public product_evaluator<Product<Lhs, Rhs, Options> >
+{
+ typedef Product<Lhs, Rhs, Options> XprType;
+ typedef product_evaluator<XprType> Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
-// We can evaluate the product either all at once, like GeneralProduct and its evalTo() function, or
-// traverse the matrix coefficient by coefficient, like CoeffBasedProduct. Use the existing logic
-// in ProductReturnType to decide.
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {}
+};
+
+// Catch scalar * ( A * B ) and transform it to (A*scalar) * B
+// TODO we should apply that rule only if that's really helpful
+template<typename Lhs, typename Rhs, typename Scalar>
+struct evaluator<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > >
+ : public evaluator<Product<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,const Lhs>, Rhs, DefaultProduct> >
+{
+ typedef CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const Product<Lhs, Rhs, DefaultProduct> > XprType;
+ typedef evaluator<Product<CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,const Lhs>, Rhs, DefaultProduct> > Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
+ : Base(xpr.functor().m_other * xpr.nestedExpression().lhs() * xpr.nestedExpression().rhs())
+ {}
+};
-template<typename XprType, typename ProductType>
-struct product_evaluator_dispatcher;
+
+template<typename Lhs, typename Rhs, int DiagIndex>
+struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
+ : public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
+{
+ typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
+ typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
+ : Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
+ Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
+ xpr.index() ))
+ {}
+};
+
+
+// Helper class to perform a matrix product with the destination at hand.
+// Depending on the sizes of the factors, there are different evaluation strategies
+// as controlled by internal::product_type.
+template< typename Lhs, typename Rhs,
+ typename LhsShape = typename evaluator_traits<Lhs>::Shape,
+ typename RhsShape = typename evaluator_traits<Rhs>::Shape,
+ int ProductType = internal::product_type<Lhs,Rhs>::value>
+struct generic_product_impl;
template<typename Lhs, typename Rhs>
-struct evaluator_impl<Product<Lhs, Rhs> >
- : product_evaluator_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
+struct evaluator_traits<Product<Lhs, Rhs, DefaultProduct> >
+ : evaluator_traits_base<Product<Lhs, Rhs, DefaultProduct> >
{
- typedef Product<Lhs, Rhs> XprType;
- typedef product_evaluator_dispatcher<XprType, typename ProductReturnType<Lhs, Rhs>::Type> Base;
+ enum { AssumeAliasing = 1 };
+};
- evaluator_impl(const XprType& xpr) : Base(xpr)
- { }
+// This is the default evaluator implementation for products:
+// It creates a temporary and call generic_product_impl
+template<typename Lhs, typename Rhs, int ProductTag, typename LhsShape, typename RhsShape>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, ProductTag, LhsShape, RhsShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar>
+ : public evaluator<typename Product<Lhs, Rhs, DefaultProduct>::PlainObject>::type
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+ enum {
+ Flags = Base::Flags | EvalBeforeNestingBit
+// CoeffReadCost = 0 // FIXME why is it needed? (this was already the case before the evaluators, see traits<ProductBase>)
+ };
+
+ EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+
+// FIXME shall we handle nested_eval here?
+// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
+// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
+// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
+// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
+//
+// const LhsNested lhs(xpr.lhs());
+// const RhsNested rhs(xpr.rhs());
+//
+// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
+
+ generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
+ }
+
+protected:
+ PlainObject m_result;
};
-template<typename XprType, typename ProductType>
-struct product_evaluator_traits_dispatcher;
+// Dense = Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ // FIXME shall we handle nested_eval here?
+ generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
+ }
+};
-template<typename Lhs, typename Rhs>
-struct evaluator_traits<Product<Lhs, Rhs> >
- : product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, typename ProductReturnType<Lhs, Rhs>::Type>
-{
- static const int AssumeAliasing = 1;
+// Dense += Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar> &)
+ {
+ // FIXME shall we handle nested_eval here?
+ generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
+ }
};
-// Case 1: Evaluate all at once
-//
-// We can view the GeneralProduct class as a part of the product evaluator.
-// Four sub-cases: InnerProduct, OuterProduct, GemmProduct and GemvProduct.
-// InnerProduct is special because GeneralProduct does not have an evalTo() method in this case.
+// Dense -= Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar> &)
+ {
+ // FIXME shall we handle nested_eval here?
+ generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
+ }
+};
-template<typename Lhs, typename Rhs>
-struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
+
+// Dense ?= scalar * Product
+// TODO we should apply that rule if that's really helpful
+// for instance, this is not good for inner products
+template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis>
+struct Assignment<DstXprType, CwiseUnaryOp<internal::scalar_multiple_op<ScalarBis>,
+ const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense, Scalar>
{
- static const int HasEvalTo = 0;
+ typedef CwiseUnaryOp<internal::scalar_multiple_op<ScalarBis>,
+ const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
+ {
+ // TODO use operator* instead of prod() once we have made enough progress
+ call_assignment(dst.noalias(), prod(src.functor().m_other * src.nestedExpression().lhs(), src.nestedExpression().rhs()), func);
+ }
};
+
template<typename Lhs, typename Rhs>
-struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, InnerProduct> >
- : public evaluator<typename Product<Lhs, Rhs>::PlainObject>::type
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
{
- typedef Product<Lhs, Rhs> XprType;
- typedef typename XprType::PlainObject PlainObject;
- typedef typename evaluator<PlainObject>::type evaluator_base;
+ template<typename Dst>
+ static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
+ }
+
+ template<typename Dst>
+ static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
+ }
+
+ template<typename Dst>
+ static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
+};
+
+
+/***********************************************************************
+* Implementation of outer dense * dense vector product
+***********************************************************************/
+
+// Column major result
+template<typename Dst, typename Lhs, typename Rhs, typename Func>
+EIGEN_DONT_INLINE void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
+{
+ typedef typename Dst::Index Index;
+ typename evaluator<Rhs>::type rhsEval(rhs);
+ // FIXME make sure lhs is sequentially stored
+ // FIXME not very good if rhs is real and lhs complex while alpha is real too
+ // FIXME we should probably build an evaluator for dst
+ const Index cols = dst.cols();
+ for (Index j=0; j<cols; ++j)
+ func(dst.col(j), rhsEval.coeff(0,j) * lhs);
+}
+
+// Row major result
+template<typename Dst, typename Lhs, typename Rhs, typename Func>
+EIGEN_DONT_INLINE void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&) {
+ typedef typename Dst::Index Index;
+ typename evaluator<Lhs>::type lhsEval(lhs);
+ // FIXME make sure rhs is sequentially stored
+ // FIXME not very good if lhs is real and rhs complex while alpha is real too
+ // FIXME we should probably build an evaluator for dst
+ const Index rows = dst.rows();
+ for (Index i=0; i<rows; ++i)
+ func(dst.row(i), lhsEval.coeff(i,0) * rhs);
+}
- // TODO: Computation is too early (?)
- product_evaluator_dispatcher(const XprType& xpr) : evaluator_base(m_result)
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
+{
+ template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ // TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
+ struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
+ struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
+ struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
+ struct adds {
+ Scalar m_scale;
+ explicit adds(const Scalar& s) : m_scale(s) {}
+ template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
+ dst.const_cast_derived() += m_scale * src;
+ }
+ };
+
+ template<typename Dst>
+ static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
- m_result.coeffRef(0,0) = (xpr.lhs().transpose().cwiseProduct(xpr.rhs())).sum();
+ internal::outer_product_selector_run(dst, lhs, rhs, set(), IsRowMajor<Dst>());
+ }
+
+ template<typename Dst>
+ static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ internal::outer_product_selector_run(dst, lhs, rhs, add(), IsRowMajor<Dst>());
+ }
+
+ template<typename Dst>
+ static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ internal::outer_product_selector_run(dst, lhs, rhs, sub(), IsRowMajor<Dst>());
+ }
+
+ template<typename Dst>
+ static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ {
+ internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), IsRowMajor<Dst>());
}
-protected:
- PlainObject m_result;
};
-// For the other three subcases, simply call the evalTo() method of GeneralProduct
-// TODO: GeneralProduct should take evaluators, not expression objects.
-template<typename Lhs, typename Rhs, int ProductType>
-struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
+// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
+template<typename Lhs, typename Rhs, typename Derived>
+struct generic_product_impl_base
{
- static const int HasEvalTo = 1;
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dst>
+ static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
+
+ template<typename Dst>
+ static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
+
+ template<typename Dst>
+ static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ { scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
+
+ template<typename Dst>
+ static void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ { Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
+
};
-template<typename Lhs, typename Rhs, int ProductType>
-struct product_evaluator_dispatcher<Product<Lhs, Rhs>, GeneralProduct<Lhs, Rhs, ProductType> >
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
{
- typedef Product<Lhs, Rhs> XprType;
- typedef typename XprType::PlainObject PlainObject;
- typedef typename evaluator<PlainObject>::type evaluator_base;
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
+ typedef typename internal::conditional<int(Side)==OnTheRight,Lhs,Rhs>::type MatrixType;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+ {
+ internal::gemv_dense_sense_selector<Side,
+ (int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
+ bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
+ >::run(lhs, rhs, dst, alpha);
+ }
+};
+
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
+{
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
- product_evaluator_dispatcher(const XprType& xpr) : m_xpr(xpr)
- { }
+ template<typename Dst>
+ static inline void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ // TODO: use the following instead of calling call_assignment, same for the other methods
+ // dst = lazyprod(lhs,rhs);
+ call_assignment(dst, lazyprod(lhs,rhs), internal::assign_op<Scalar>());
+ }
- template<typename DstEvaluatorType, typename DstXprType>
- void evalTo(DstEvaluatorType /* not used */, DstXprType& dst) const
+ template<typename Dst>
+ static inline void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
- dst.resize(m_xpr.rows(), m_xpr.cols());
- GeneralProduct<Lhs, Rhs, ProductType>(m_xpr.lhs(), m_xpr.rhs()).evalTo(dst);
+ // dst += lazyprod(lhs,rhs);
+ call_assignment(dst, lazyprod(lhs,rhs), internal::add_assign_op<Scalar>());
}
-protected:
- const XprType& m_xpr;
+ template<typename Dst>
+ static inline void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ // dst -= lazyprod(lhs,rhs);
+ call_assignment(dst, lazyprod(lhs,rhs), internal::sub_assign_op<Scalar>());
+ }
+
+// template<typename Dst>
+// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
+// { dst += alpha * lazyprod(lhs,rhs); }
};
+// This specialization enforces the use of a coefficient-based evaluation strategy
+template<typename Lhs, typename Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
+ : generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
+
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
@@ -117,65 +369,116 @@ struct etor_product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
-template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
-struct product_evaluator_traits_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
-{
- static const int HasEvalTo = 0;
-};
-
-template<typename Lhs, typename Rhs, typename LhsNested, typename RhsNested, int Flags>
-struct product_evaluator_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNested, RhsNested, Flags> >
- : evaluator_impl_base<Product<Lhs, Rhs> >
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar >
+ : evaluator_base<Product<Lhs, Rhs, LazyProduct> >
{
- typedef Product<Lhs, Rhs> XprType;
- typedef CoeffBasedProduct<LhsNested, RhsNested, Flags> CoeffBasedProductType;
-
- product_evaluator_dispatcher(const XprType& xpr)
- : m_lhsImpl(xpr.lhs()),
- m_rhsImpl(xpr.rhs()),
- m_innerDim(xpr.lhs().cols())
- { }
-
+ typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef typename XprType::Index Index;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketScalar PacketScalar;
typedef typename XprType::PacketReturnType PacketReturnType;
+ EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
+ : m_lhs(xpr.lhs()),
+ m_rhs(xpr.rhs()),
+ m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
+ m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
+ // or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
+ m_innerDim(xpr.lhs().cols())
+ { }
+
// Everything below here is taken from CoeffBasedProduct.h
+ typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
+ typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
+
+ typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
+ typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
+
+ typedef typename evaluator<LhsNestedCleaned>::type LhsEtorType;
+ typedef typename evaluator<RhsNestedCleaned>::type RhsEtorType;
+
enum {
- RowsAtCompileTime = traits<CoeffBasedProductType>::RowsAtCompileTime,
+ RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
+ ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
+ InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
+ MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime,
+
PacketSize = packet_traits<Scalar>::size,
- InnerSize = traits<CoeffBasedProductType>::InnerSize,
- CoeffReadCost = traits<CoeffBasedProductType>::CoeffReadCost,
+
+ LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
+ RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
+ CoeffReadCost = (InnerSize == Dynamic || LhsCoeffReadCost==Dynamic || RhsCoeffReadCost==Dynamic || NumTraits<Scalar>::AddCost==Dynamic || NumTraits<Scalar>::MulCost==Dynamic) ? Dynamic
+ : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
+
Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
- CanVectorizeInner = traits<CoeffBasedProductType>::CanVectorizeInner
+
+ LhsFlags = LhsEtorType::Flags,
+ RhsFlags = RhsEtorType::Flags,
+
+ LhsRowMajor = LhsFlags & RowMajorBit,
+ RhsRowMajor = RhsFlags & RowMajorBit,
+
+ SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
+
+ CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
+ && (ColsAtCompileTime == Dynamic
+ || ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
+ && (RhsFlags&AlignedBit)
+ )
+ ),
+
+ CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
+ && (RowsAtCompileTime == Dynamic
+ || ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
+ && (LhsFlags&AlignedBit)
+ )
+ ),
+
+ EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
+ : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
+ : (RhsRowMajor && !CanVectorizeLhs),
+
+ Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
+ | (EvalToRowMajor ? RowMajorBit : 0)
+ | (CanVectorizeLhs ? (LhsFlags & AlignedBit) : 0)
+ | (CanVectorizeRhs ? (RhsFlags & AlignedBit) : 0)
+ // TODO enable vectorization for mixed types
+ | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
+
+ /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
+ * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
+ * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
+ * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
+ */
+ CanVectorizeInner = SameType
+ && LhsRowMajor
+ && (!RhsRowMajor)
+ && (LhsFlags & RhsFlags & ActualPacketAccessBit)
+ && (LhsFlags & RhsFlags & AlignedBit)
+ && (InnerSize % packet_traits<Scalar>::size == 0)
};
-
- typedef typename evaluator<Lhs>::type LhsEtorType;
- typedef typename evaluator<Rhs>::type RhsEtorType;
- typedef etor_product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
- Unroll ? InnerSize-1 : Dynamic,
- LhsEtorType, RhsEtorType, Scalar> CoeffImpl;
-
- const CoeffReturnType coeff(Index row, Index col) const
+
+ EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index row, Index col) const
{
- Scalar res;
- CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
- return res;
+ // TODO check performance regression wrt to Eigen 3.2 which has special handling of this function
+ return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
+ * TODO: this seems possible when the result is a vector
*/
- const CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const
{
- Scalar res;
const Index row = RowsAtCompileTime == 1 ? 0 : index;
const Index col = RowsAtCompileTime == 1 ? index : 0;
- CoeffImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
- return res;
+ // TODO check performance regression wrt to Eigen 3.2 which has special handling of this function
+ return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
template<int LoadMode>
@@ -183,224 +486,382 @@ struct product_evaluator_dispatcher<Product<Lhs, Rhs>, CoeffBasedProduct<LhsNest
{
PacketScalar res;
typedef etor_product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
- Unroll ? InnerSize-1 : Dynamic,
- LhsEtorType, RhsEtorType, PacketScalar, LoadMode> PacketImpl;
+ Unroll ? InnerSize-1 : Dynamic,
+ LhsEtorType, RhsEtorType, PacketScalar, LoadMode> PacketImpl;
+
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
protected:
- typename evaluator<Lhs>::type m_lhsImpl;
- typename evaluator<Rhs>::type m_rhsImpl;
+ const LhsNested m_lhs;
+ const RhsNested m_rhs;
+
+ LhsEtorType m_lhsImpl;
+ RhsEtorType m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
-/***************************************************************************
-* Normal product .coeff() implementation (with meta-unrolling)
-***************************************************************************/
+template<typename Lhs, typename Rhs>
+struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar >
+ : product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape, typename traits<Lhs>::Scalar, typename traits<Rhs>::Scalar >
+{
+ typedef Product<Lhs, Rhs, DefaultProduct> XprType;
+ typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
+ typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar > Base;
+ enum {
+ Flags = Base::Flags | EvalBeforeNestingBit
+ };
+ EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
+ : Base(BaseProduct(xpr.lhs(),xpr.rhs()))
+ {}
+};
-/**************************************
-*** Scalar path - no vectorization ***
-**************************************/
+/****************************************
+*** Coeff based product, Packet path ***
+****************************************/
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
+template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
- etor_product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, innerDim, res);
- res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
+ etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
+ res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
};
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
+template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, RetScalar &res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
+ etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
+ res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
};
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar& res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
- eigen_assert(innerDim>0 && "you are using a non initialized matrix");
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- for(Index i = 1; i < innerDim; ++i)
- res += lhs.coeff(row, i) * rhs.coeff(i, col);
+ res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
}
};
-/*******************************************
-*** Scalar path with inner vectorization ***
-*******************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
-struct etor_product_coeff_vectorized_unroller
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::PacketScalar &pres)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
- etor_product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
- pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
+ res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
}
};
-template<typename Lhs, typename Rhs, typename Packet>
-struct etor_product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::PacketScalar &pres)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
- pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
+ eigen_assert(innerDim>0 && "you are using a non initialized matrix");
+ res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
+ for(Index i = 1; i < innerDim; ++i)
+ res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
}
};
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
+template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
+struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
- typedef typename Lhs::PacketScalar Packet;
typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, RetScalar &res)
+ static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
- Packet pres;
- etor_product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, innerDim, pres);
- etor_product_coeff_impl<DefaultTraversal,UnrollingIndex,Lhs,Rhs,RetScalar>::run(row, col, lhs, rhs, innerDim, res);
- res = predux(pres);
+ eigen_assert(innerDim>0 && "you are using a non initialized matrix");
+ res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
+ for(Index i = 1; i < innerDim; ++i)
+ res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
-template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
-struct etor_product_coeff_vectorized_dyn_selector
+
+/***************************************************************************
+* Triangular products
+***************************************************************************/
+template<int Mode, bool LhsIsTriangular,
+ typename Lhs, bool LhsIsVector,
+ typename Rhs, bool RhsIsVector>
+struct triangular_product_impl;
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
+ triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
+ ::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
-// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
-// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
-template<typename Lhs, typename Rhs, int RhsCols>
-struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
+: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
+ triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
-template<typename Lhs, typename Rhs, int LhsRows>
-struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
+
+/***************************************************************************
+* SelfAdjoint products
+***************************************************************************/
+template <typename Lhs, int LhsMode, bool LhsIsVector,
+ typename Rhs, int RhsMode, bool RhsIsVector>
+struct selfadjoint_product_impl;
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
+ selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
-template<typename Lhs, typename Rhs>
-struct etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
+: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
{
- typedef typename Lhs::Index Index;
- EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, typename Lhs::Scalar &res)
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
- res = lhs.transpose().cwiseProduct(rhs).sum();
+ selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct etor_product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
+
+/***************************************************************************
+* Diagonal products
+***************************************************************************/
+
+template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
+struct diagonal_product_evaluator_base
+ : evaluator_base<Derived>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, typename Lhs::Scalar &res)
+ typedef typename MatrixType::Index Index;
+ typedef typename scalar_product_traits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
+ typedef typename internal::packet_traits<Scalar>::type PacketScalar;
+public:
+ enum {
+ CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
+
+ MatrixFlags = evaluator<MatrixType>::Flags,
+ DiagFlags = evaluator<DiagonalType>::Flags,
+ _StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
+ _ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
+ ||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
+ _SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
+ // FIXME currently we need same types, but in the future the next rule should be the one
+ //_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
+ _Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
+ _LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
+ Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0) | AlignedBit
+ //(int(MatrixFlags)&int(DiagFlags)&AlignedBit),
+ };
+
+ diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
+ : m_diagImpl(diag), m_matImpl(mat)
{
- etor_product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, innerDim, res);
}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
+ {
+ return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
+ }
+
+protected:
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::true_type) const
+ {
+ return internal::pmul(m_matImpl.template packet<LoadMode>(row, col),
+ internal::pset1<PacketScalar>(m_diagImpl.coeff(id)));
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet_impl(Index row, Index col, Index id, internal::false_type) const
+ {
+ enum {
+ InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
+ DiagonalPacketLoadMode = (LoadMode == Aligned && (((InnerSize%16) == 0) || (int(DiagFlags)&AlignedBit)==AlignedBit) ? Aligned : Unaligned)
+ };
+ return internal::pmul(m_matImpl.template packet<LoadMode>(row, col),
+ m_diagImpl.template packet<DiagonalPacketLoadMode>(id));
+ }
+
+ typename evaluator<DiagonalType>::nestedType m_diagImpl;
+ typename evaluator<MatrixType>::nestedType m_matImpl;
};
-/*******************
-*** Packet path ***
-*******************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
+// diagonal * dense
+template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape, typename Lhs::Scalar, typename Rhs::Scalar>
+ : diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
+ typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
+ using Base::m_diagImpl;
+ using Base::m_matImpl;
+ using Base::coeff;
+ using Base::packet_impl;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::PacketScalar PacketScalar;
+
+ typedef Product<Lhs, Rhs, ProductKind> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ enum {
+ StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
+ };
+
+ EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
+ : Base(xpr.rhs(), xpr.lhs().diagonal())
{
- etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
- res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
+ {
+ return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
+ }
+
+#ifndef __CUDACC__
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
+ {
+ // NVCC complains about template keyword, so we disable this function in CUDA mode
+ return this->template packet_impl<LoadMode>(row,col, row,
+ typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
+ {
+ return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
+ }
+#endif
};
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
+// dense * diagonal
+template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape, typename Lhs::Scalar, typename Rhs::Scalar>
+ : diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
+ typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
+ using Base::m_diagImpl;
+ using Base::m_matImpl;
+ using Base::coeff;
+ using Base::packet_impl;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::PacketScalar PacketScalar;
+
+ typedef Product<Lhs, Rhs, ProductKind> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+
+ enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
+
+ EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
+ : Base(xpr.lhs(), xpr.rhs().diagonal())
{
- etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
- res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
+ {
+ return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
+ }
+
+#ifndef __CUDACC__
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
+ {
+ return this->template packet_impl<LoadMode>(row,col, col,
+ typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
+ }
+
+ template<int LoadMode>
+ EIGEN_STRONG_INLINE PacketScalar packet(Index idx) const
+ {
+ return packet<LoadMode>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
+ }
+#endif
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
+/***************************************************************************
+* Products with permutation matrices
+***************************************************************************/
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Rhs, PermutationShape, DenseShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
+ permut_matrix_product_retval<Lhs, Rhs, OnTheLeft, false> pmpr(lhs, rhs);
+ pmpr.evalTo(dst);
}
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Rhs, DenseShape, PermutationShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
+ permut_matrix_product_retval<Rhs, Lhs, OnTheRight, false> pmpr(rhs, lhs);
+ pmpr.evalTo(dst);
}
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Transpose<Lhs>, Rhs, PermutationShape, DenseShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
{
- eigen_assert(innerDim>0 && "you are using a non initialized matrix");
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- for(Index i = 1; i < innerDim; ++i)
- res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
+ permut_matrix_product_retval<Lhs, Rhs, OnTheLeft, true> pmpr(lhs.nestedPermutation(), rhs);
+ pmpr.evalTo(dst);
}
};
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
+template<typename Lhs, typename Rhs, int ProductTag>
+struct generic_product_impl<Lhs, Transpose<Rhs>, DenseShape, PermutationShape, ProductTag>
{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
{
- eigen_assert(innerDim>0 && "you are using a non initialized matrix");
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- for(Index i = 1; i < innerDim; ++i)
- res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
+ permut_matrix_product_retval<Rhs, Lhs, OnTheRight, true> pmpr(rhs.nestedPermutation(), lhs);
+ pmpr.evalTo(dst);
}
};
diff --git a/Eigen/src/Core/Redux.h b/Eigen/src/Core/Redux.h
index c626946ba..f6546917e 100644
--- a/Eigen/src/Core/Redux.h
+++ b/Eigen/src/Core/Redux.h
@@ -65,6 +65,25 @@ public:
? CompleteUnrolling
: NoUnrolling
};
+
+#ifdef EIGEN_DEBUG_ASSIGN
+ static void debug()
+ {
+ std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl;
+ std::cerr.setf(std::ios::hex, std::ios::basefield);
+ EIGEN_DEBUG_VAR(Derived::Flags)
+ std::cerr.unsetf(std::ios::hex);
+ EIGEN_DEBUG_VAR(InnerMaxSize)
+ EIGEN_DEBUG_VAR(PacketSize)
+ EIGEN_DEBUG_VAR(MightVectorize)
+ EIGEN_DEBUG_VAR(MayLinearVectorize)
+ EIGEN_DEBUG_VAR(MaySliceVectorize)
+ EIGEN_DEBUG_VAR(Traversal)
+ EIGEN_DEBUG_VAR(UnrollingLimit)
+ EIGEN_DEBUG_VAR(Unrolling)
+ std::cerr << std::endl;
+ }
+#endif
};
/***************************************************************************
@@ -174,7 +193,7 @@ struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
+ static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
Scalar res;
@@ -200,10 +219,10 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling>
typedef typename packet_traits<Scalar>::type PacketScalar;
typedef typename Derived::Index Index;
- static Scalar run(const Derived& mat, const Func& func)
+ static Scalar run(const Derived &mat, const Func& func)
{
const Index size = mat.size();
- eigen_assert(size && "you are using an empty matrix");
+
const Index packetSize = packet_traits<Scalar>::size;
const Index alignedStart = internal::first_aligned(mat);
enum {
@@ -258,7 +277,7 @@ struct redux_impl<Func, Derived, SliceVectorizedTraversal, NoUnrolling>
typedef typename packet_traits<Scalar>::type PacketScalar;
typedef typename Derived::Index Index;
- static Scalar run(const Derived& mat, const Func& func)
+ EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
const Index innerSize = mat.innerSize();
@@ -300,7 +319,7 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
Size = Derived::SizeAtCompileTime,
VectorizedSize = (Size / PacketSize) * PacketSize
};
- static EIGEN_STRONG_INLINE Scalar run(const Derived& mat, const Func& func)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func)
{
eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix");
if (VectorizedSize > 0) {
@@ -315,6 +334,66 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
}
};
+// evaluator adaptor
+template<typename _XprType>
+class redux_evaluator
+{
+public:
+ typedef _XprType XprType;
+ EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename XprType::PacketScalar PacketScalar;
+ typedef typename XprType::PacketReturnType PacketReturnType;
+
+ enum {
+ MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = XprType::MaxColsAtCompileTime,
+ // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator
+ Flags = evaluator<XprType>::Flags & ~DirectAccessBit,
+ IsRowMajor = XprType::IsRowMajor,
+ SizeAtCompileTime = XprType::SizeAtCompileTime,
+ InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime,
+ CoeffReadCost = evaluator<XprType>::CoeffReadCost
+ };
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
+ EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); }
+ EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); }
+ EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); }
+
+ EIGEN_DEVICE_FUNC
+ CoeffReturnType coeff(Index row, Index col) const
+ { return m_evaluator.coeff(row, col); }
+
+ EIGEN_DEVICE_FUNC
+ CoeffReturnType coeff(Index index) const
+ { return m_evaluator.coeff(index); }
+
+ template<int LoadMode>
+ PacketReturnType packet(Index row, Index col) const
+ { return m_evaluator.template packet<LoadMode>(row, col); }
+
+ template<int LoadMode>
+ PacketReturnType packet(Index index) const
+ { return m_evaluator.template packet<LoadMode>(index); }
+
+ EIGEN_DEVICE_FUNC
+ CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
+ { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
+
+ template<int LoadMode>
+ PacketReturnType packetByOuterInner(Index outer, Index inner) const
+ { return m_evaluator.template packet<LoadMode>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); }
+
+protected:
+ typename internal::evaluator<XprType>::nestedType m_evaluator;
+ const XprType &m_xpr;
+};
+
} // end namespace internal
/***************************************************************************
@@ -325,7 +404,7 @@ struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling>
/** \returns the result of a full redux operation on the whole matrix or vector using \a func
*
* The template parameter \a BinaryOp is the type of the functor \a func which must be
- * an associative operator. Both current STL and TR1 functor styles are handled.
+ * an associative operator. Both current C++98 and C++11 functor styles are handled.
*
* \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise()
*/
@@ -334,9 +413,22 @@ template<typename Func>
EIGEN_STRONG_INLINE typename internal::result_of<Func(typename internal::traits<Derived>::Scalar)>::type
DenseBase<Derived>::redux(const Func& func) const
{
- typedef typename internal::remove_all<typename Derived::Nested>::type ThisNested;
- return internal::redux_impl<Func, ThisNested>
- ::run(derived(), func);
+ eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix");
+
+ // FIXME, eval_nest should be handled by redux_evaluator, however:
+ // - it is currently difficult to provide the right Flags since they are still handled by the expressions
+ // - handling it here might reduce the number of template instantiations
+// typedef typename internal::nested_eval<Derived,1>::type ThisNested;
+// typedef typename internal::remove_all<ThisNested>::type ThisNestedCleaned;
+// typedef typename internal::redux_evaluator<ThisNestedCleaned> ThisEvaluator;
+//
+// ThisNested thisNested(derived());
+// ThisEvaluator thisEval(thisNested);
+
+ typedef typename internal::redux_evaluator<Derived> ThisEvaluator;
+ ThisEvaluator thisEval(derived());
+
+ return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func);
}
/** \returns the minimum of all coefficients of \c *this.
@@ -346,7 +438,7 @@ template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::minCoeff() const
{
- return this->redux(Eigen::internal::scalar_min_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_min_op<Scalar>());
}
/** \returns the maximum of all coefficients of \c *this.
@@ -356,7 +448,7 @@ template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::maxCoeff() const
{
- return this->redux(Eigen::internal::scalar_max_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_max_op<Scalar>());
}
/** \returns the sum of all coefficients of *this
@@ -369,7 +461,7 @@ DenseBase<Derived>::sum() const
{
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
return Scalar(0);
- return this->redux(Eigen::internal::scalar_sum_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_sum_op<Scalar>());
}
/** \returns the mean of all coefficients of *this
@@ -380,7 +472,7 @@ template<typename Derived>
EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar
DenseBase<Derived>::mean() const
{
- return Scalar(this->redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
+ return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size());
}
/** \returns the product of all coefficients of *this
@@ -396,7 +488,7 @@ DenseBase<Derived>::prod() const
{
if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0))
return Scalar(1);
- return this->redux(Eigen::internal::scalar_product_op<Scalar>());
+ return derived().redux(Eigen::internal::scalar_product_op<Scalar>());
}
/** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal.
diff --git a/Eigen/src/Core/Ref.h b/Eigen/src/Core/Ref.h
index 92614c6e2..6e6adbd31 100644
--- a/Eigen/src/Core/Ref.h
+++ b/Eigen/src/Core/Ref.h
@@ -12,10 +12,6 @@
namespace Eigen {
-template<typename Derived> class RefBase;
-template<typename PlainObjectType, int Options = 0,
- typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
-
/** \class Ref
* \ingroup Core_Module
*
@@ -131,12 +127,12 @@ public:
typedef MapBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(RefBase)
- inline Index innerStride() const
+ EIGEN_DEVICE_FUNC inline Index innerStride() const
{
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
- inline Index outerStride() const
+ EIGEN_DEVICE_FUNC inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
@@ -144,7 +140,7 @@ public:
: this->rows();
}
- RefBase()
+ EIGEN_DEVICE_FUNC RefBase()
: Base(0,RowsAtCompileTime==Dynamic?0:RowsAtCompileTime,ColsAtCompileTime==Dynamic?0:ColsAtCompileTime),
// Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values:
m_stride(StrideType::OuterStrideAtCompileTime==Dynamic?0:StrideType::OuterStrideAtCompileTime,
@@ -158,7 +154,7 @@ protected:
typedef Stride<StrideType::OuterStrideAtCompileTime,StrideType::InnerStrideAtCompileTime> StrideBase;
template<typename Expression>
- void construct(Expression& expr)
+ EIGEN_DEVICE_FUNC void construct(Expression& expr)
{
if(PlainObjectType::RowsAtCompileTime==1)
{
@@ -188,6 +184,8 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref
: public RefBase<Ref<PlainObjectType, Options, StrideType> >
{
typedef internal::traits<Ref> Traits;
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC inline Ref(const PlainObjectBase<Derived>& expr);
public:
typedef RefBase<Ref> Base;
@@ -196,20 +194,21 @@ template<typename PlainObjectType, int Options, typename StrideType> class Ref
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
- inline Ref(PlainObjectBase<Derived>& expr,
- typename internal::enable_if<bool(Traits::template match<Derived>::MatchAtCompileTime),Derived>::type* = 0)
+ EIGEN_DEVICE_FUNC inline Ref(PlainObjectBase<Derived>& expr)
{
- Base::construct(expr);
+ EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
+ Base::construct(expr.derived());
}
template<typename Derived>
- inline Ref(const DenseBase<Derived>& expr,
- typename internal::enable_if<bool(internal::is_lvalue<Derived>::value&&bool(Traits::template match<Derived>::MatchAtCompileTime)),Derived>::type* = 0,
- int = Derived::ThisConstantIsPrivateInPlainObjectBase)
+ EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr)
#else
template<typename Derived>
inline Ref(DenseBase<Derived>& expr)
#endif
{
+ EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
+ EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH);
+ EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
Base::construct(expr.const_cast_derived());
}
@@ -228,7 +227,7 @@ template<typename TPlainObjectType, int Options, typename StrideType> class Ref<
EIGEN_DENSE_PUBLIC_INTERFACE(Ref)
template<typename Derived>
- inline Ref(const DenseBase<Derived>& expr)
+ EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr)
{
// std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," << match_helper<Derived>::InnerStrideMatch << "\n";
// std::cout << int(StrideType::OuterStrideAtCompileTime) << " - " << int(Derived::OuterStrideAtCompileTime) << "\n";
@@ -236,18 +235,27 @@ template<typename TPlainObjectType, int Options, typename StrideType> class Ref<
construct(expr.derived(), typename Traits::template match<Derived>::type());
}
+ EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) {
+ // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy
+ }
+
+ template<typename OtherRef>
+ EIGEN_DEVICE_FUNC inline Ref(const RefBase<OtherRef>& other) {
+ construct(other.derived(), typename Traits::template match<OtherRef>::type());
+ }
+
protected:
template<typename Expression>
- void construct(const Expression& expr,internal::true_type)
+ EIGEN_DEVICE_FUNC void construct(const Expression& expr,internal::true_type)
{
Base::construct(expr);
}
template<typename Expression>
- void construct(const Expression& expr, internal::false_type)
+ EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type)
{
- m_object.lazyAssign(expr);
+ internal::call_assignment_no_alias(m_object,expr,internal::assign_op<Scalar>());
Base::construct(m_object);
}
diff --git a/Eigen/src/Core/Replicate.h b/Eigen/src/Core/Replicate.h
index dde86a834..3777049ee 100644
--- a/Eigen/src/Core/Replicate.h
+++ b/Eigen/src/Core/Replicate.h
@@ -53,8 +53,9 @@ struct traits<Replicate<MatrixType,RowFactor,ColFactor> >
IsRowMajor = MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1 ? 1
: MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1 ? 0
: (MatrixType::Flags & RowMajorBit) ? 1 : 0,
- Flags = (_MatrixTypeNested::Flags & HereditaryBits & ~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0),
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
+
+ // FIXME enable DirectAccess with negative strides?
+ Flags = IsRowMajor ? RowMajorBit : 0
};
};
}
@@ -68,6 +69,7 @@ template<typename MatrixType,int RowFactor,int ColFactor> class Replicate
typedef typename internal::dense_xpr_base<Replicate>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Replicate)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
template<typename OriginalMatrixType>
inline explicit Replicate(const OriginalMatrixType& a_matrix)
diff --git a/Eigen/src/Core/ReturnByValue.h b/Eigen/src/Core/ReturnByValue.h
index 7834f6cbc..af01a5567 100644
--- a/Eigen/src/Core/ReturnByValue.h
+++ b/Eigen/src/Core/ReturnByValue.h
@@ -38,9 +38,10 @@ struct traits<ReturnByValue<Derived> >
* So internal::nested always gives the plain return matrix type.
*
* FIXME: I don't understand why we need this specialization: isn't this taken care of by the EvalBeforeNestingBit ??
+ * Answer: EvalBeforeNestingBit should be deprecated since we have the evaluators
*/
template<typename Derived,int n,typename PlainObject>
-struct nested<ReturnByValue<Derived>, n, PlainObject>
+struct nested_eval<ReturnByValue<Derived>, n, PlainObject>
{
typedef typename traits<Derived>::ReturnType type;
};
@@ -48,7 +49,7 @@ struct nested<ReturnByValue<Derived>, n, PlainObject>
} // end namespace internal
template<typename Derived> class ReturnByValue
- : internal::no_assignment_operator, public internal::dense_xpr_base< ReturnByValue<Derived> >::type
+ : public internal::dense_xpr_base< ReturnByValue<Derived> >::type, internal::no_assignment_operator
{
public:
typedef typename internal::traits<Derived>::ReturnType ReturnType;
@@ -73,6 +74,7 @@ template<typename Derived> class ReturnByValue
const Unusable& coeff(Index,Index) const { return *reinterpret_cast<const Unusable*>(this); }
Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); }
Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); }
+#undef Unusable
#endif
};
@@ -84,6 +86,36 @@ Derived& DenseBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
return derived();
}
+namespace internal {
+
+// Expression is evaluated in a temporary; default implementation of Assignment is bypassed so that
+// when a ReturnByValue expression is assigned, the evaluator is not constructed.
+// TODO: Finalize port to new regime; ReturnByValue should not exist in the expression world
+
+template<typename Derived>
+struct evaluator<ReturnByValue<Derived> >
+ : public evaluator<typename internal::traits<Derived>::ReturnType>::type
+{
+ typedef ReturnByValue<Derived> XprType;
+ typedef typename internal::traits<Derived>::ReturnType PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr)
+ : m_result(xpr.rows(), xpr.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ xpr.evalTo(m_result);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_RETURNBYVALUE_H
diff --git a/Eigen/src/Core/Reverse.h b/Eigen/src/Core/Reverse.h
index e30ae3d28..291300a4a 100644
--- a/Eigen/src/Core/Reverse.h
+++ b/Eigen/src/Core/Reverse.h
@@ -44,14 +44,7 @@ struct traits<Reverse<MatrixType, Direction> >
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
-
- // let's enable LinearAccess only with vectorization because of the product overhead
- LinearAccess = ( (Direction==BothDirections) && (int(_MatrixTypeNested::Flags)&PacketAccessBit) )
- ? LinearAccessBit : 0,
-
- Flags = int(_MatrixTypeNested::Flags) & (HereditaryBits | LvalueBit | PacketAccessBit | LinearAccess),
-
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
+ Flags = _MatrixTypeNested::Flags & (RowMajorBit | LvalueBit)
};
};
@@ -74,6 +67,7 @@ template<typename MatrixType, int Direction> class Reverse
typedef typename internal::dense_xpr_base<Reverse>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Reverse)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
using Base::IsRowMajor;
// next line is necessary because otherwise const version of operator()
@@ -95,47 +89,47 @@ template<typename MatrixType, int Direction> class Reverse
typedef internal::reverse_packet_cond<PacketScalar,ReversePacket> reverse_packet;
public:
- inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
+ EIGEN_DEVICE_FUNC explicit inline Reverse(const MatrixType& matrix) : m_matrix(matrix) { }
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Reverse)
- inline Index rows() const { return m_matrix.rows(); }
- inline Index cols() const { return m_matrix.cols(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); }
- inline Index innerStride() const
+ EIGEN_DEVICE_FUNC inline Index innerStride() const
{
return -m_matrix.innerStride();
}
- inline Scalar& operator()(Index row, Index col)
+ EIGEN_DEVICE_FUNC inline Scalar& operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
return coeffRef(row, col);
}
- inline Scalar& coeffRef(Index row, Index col)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
{
return m_matrix.const_cast_derived().coeffRef(ReverseRow ? m_matrix.rows() - row - 1 : row,
ReverseCol ? m_matrix.cols() - col - 1 : col);
}
- inline CoeffReturnType coeff(Index row, Index col) const
+ EIGEN_DEVICE_FUNC inline CoeffReturnType coeff(Index row, Index col) const
{
return m_matrix.coeff(ReverseRow ? m_matrix.rows() - row - 1 : row,
ReverseCol ? m_matrix.cols() - col - 1 : col);
}
- inline CoeffReturnType coeff(Index index) const
+ EIGEN_DEVICE_FUNC inline CoeffReturnType coeff(Index index) const
{
return m_matrix.coeff(m_matrix.size() - index - 1);
}
- inline Scalar& coeffRef(Index index)
+ EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
{
return m_matrix.const_cast_derived().coeffRef(m_matrix.size() - index - 1);
}
- inline Scalar& operator()(Index index)
+ EIGEN_DEVICE_FUNC inline Scalar& operator()(Index index)
{
eigen_assert(index >= 0 && index < m_matrix.size());
return coeffRef(index);
@@ -170,7 +164,7 @@ template<typename MatrixType, int Direction> class Reverse
m_matrix.const_cast_derived().template writePacket<LoadMode>(m_matrix.size() - index - PacketSize, internal::preverse(x));
}
- const typename internal::remove_all<typename MatrixType::Nested>::type&
+ EIGEN_DEVICE_FUNC const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const
{
return m_matrix;
@@ -190,7 +184,7 @@ template<typename Derived>
inline typename DenseBase<Derived>::ReverseReturnType
DenseBase<Derived>::reverse()
{
- return derived();
+ return ReverseReturnType(derived());
}
/** This is the const version of reverse(). */
@@ -198,7 +192,7 @@ template<typename Derived>
inline const typename DenseBase<Derived>::ConstReverseReturnType
DenseBase<Derived>::reverse() const
{
- return derived();
+ return ConstReverseReturnType(derived());
}
/** This is the "in place" version of reverse: it reverses \c *this.
diff --git a/Eigen/src/Core/Select.h b/Eigen/src/Core/Select.h
index 87993bbb5..79eec1b5b 100644
--- a/Eigen/src/Core/Select.h
+++ b/Eigen/src/Core/Select.h
@@ -43,23 +43,21 @@ struct traits<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >
ColsAtCompileTime = ConditionMatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = ConditionMatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = ConditionMatrixType::MaxColsAtCompileTime,
- Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & HereditaryBits,
- CoeffReadCost = traits<typename remove_all<ConditionMatrixNested>::type>::CoeffReadCost
- + EIGEN_SIZE_MAX(traits<typename remove_all<ThenMatrixNested>::type>::CoeffReadCost,
- traits<typename remove_all<ElseMatrixNested>::type>::CoeffReadCost)
+ Flags = (unsigned int)ThenMatrixType::Flags & ElseMatrixType::Flags & RowMajorBit
};
};
}
template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType>
-class Select : internal::no_assignment_operator,
- public internal::dense_xpr_base< Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >::type
+class Select : public internal::dense_xpr_base< Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> >::type,
+ internal::no_assignment_operator
{
public:
typedef typename internal::dense_xpr_base<Select>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Select)
+ inline EIGEN_DEVICE_FUNC
Select(const ConditionMatrixType& a_conditionMatrix,
const ThenMatrixType& a_thenMatrix,
const ElseMatrixType& a_elseMatrix)
@@ -69,9 +67,10 @@ class Select : internal::no_assignment_operator,
eigen_assert(m_condition.cols() == m_then.cols() && m_condition.cols() == m_else.cols());
}
- Index rows() const { return m_condition.rows(); }
- Index cols() const { return m_condition.cols(); }
+ inline EIGEN_DEVICE_FUNC Index rows() const { return m_condition.rows(); }
+ inline EIGEN_DEVICE_FUNC Index cols() const { return m_condition.cols(); }
+ inline EIGEN_DEVICE_FUNC
const Scalar coeff(Index i, Index j) const
{
if (m_condition.coeff(i,j))
@@ -80,6 +79,7 @@ class Select : internal::no_assignment_operator,
return m_else.coeff(i,j);
}
+ inline EIGEN_DEVICE_FUNC
const Scalar coeff(Index i) const
{
if (m_condition.coeff(i))
@@ -88,17 +88,17 @@ class Select : internal::no_assignment_operator,
return m_else.coeff(i);
}
- const ConditionMatrixType& conditionMatrix() const
+ inline EIGEN_DEVICE_FUNC const ConditionMatrixType& conditionMatrix() const
{
return m_condition;
}
- const ThenMatrixType& thenMatrix() const
+ inline EIGEN_DEVICE_FUNC const ThenMatrixType& thenMatrix() const
{
return m_then;
}
- const ElseMatrixType& elseMatrix() const
+ inline EIGEN_DEVICE_FUNC const ElseMatrixType& elseMatrix() const
{
return m_else;
}
diff --git a/Eigen/src/Core/SelfAdjointView.h b/Eigen/src/Core/SelfAdjointView.h
index 6c2733650..b785e8e1e 100644
--- a/Eigen/src/Core/SelfAdjointView.h
+++ b/Eigen/src/Core/SelfAdjointView.h
@@ -35,26 +35,23 @@ struct traits<SelfAdjointView<MatrixType, UpLo> > : traits<MatrixType>
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
typedef MatrixType ExpressionType;
- typedef typename MatrixType::PlainObject DenseMatrixType;
+ typedef typename MatrixType::PlainObject FullMatrixType;
enum {
Mode = UpLo | SelfAdjoint,
- Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits)
- & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)), // FIXME these flags should be preserved
- CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
+ FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
+ Flags = MatrixTypeNestedCleaned::Flags & (HereditaryBits|FlagsLvalueBit)
+ & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)) // FIXME these flags should be preserved
};
};
}
-template <typename Lhs, int LhsMode, bool LhsIsVector,
- typename Rhs, int RhsMode, bool RhsIsVector>
-struct SelfadjointProductMatrix;
-
// FIXME could also be called SelfAdjointWrapper to be consistent with DiagonalWrapper ??
-template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
- : public TriangularBase<SelfAdjointView<MatrixType, UpLo> >
+template<typename _MatrixType, unsigned int UpLo> class SelfAdjointView
+ : public TriangularBase<SelfAdjointView<_MatrixType, UpLo> >
{
public:
+ typedef _MatrixType MatrixType;
typedef TriangularBase<SelfAdjointView> Base;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<SelfAdjointView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
@@ -65,12 +62,13 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
typedef typename MatrixType::Index Index;
enum {
- Mode = internal::traits<SelfAdjointView>::Mode
+ Mode = internal::traits<SelfAdjointView>::Mode,
+ Flags = internal::traits<SelfAdjointView>::Flags
};
typedef typename MatrixType::PlainObject PlainObject;
EIGEN_DEVICE_FUNC
- inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
+ explicit inline SelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
{}
EIGEN_DEVICE_FUNC
@@ -98,6 +96,7 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index row, Index col)
{
+ EIGEN_STATIC_ASSERT_LVALUE(SelfAdjointView);
Base::check_coordinates_internal(row, col);
return m_matrix.const_cast_derived().coeffRef(row, col);
}
@@ -111,26 +110,29 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
EIGEN_DEVICE_FUNC
MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
- /** Efficient self-adjoint matrix times vector/matrix product */
+ /** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- SelfadjointProductMatrix<MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
+ const Product<SelfAdjointView,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
- return SelfadjointProductMatrix
- <MatrixType,Mode,false,OtherDerived,0,OtherDerived::IsVectorAtCompileTime>
- (m_matrix, rhs.derived());
+ return Product<SelfAdjointView,OtherDerived>(*this, rhs.derived());
}
- /** Efficient vector/matrix times self-adjoint matrix product */
+ /** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
- SelfadjointProductMatrix<OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
+ const Product<OtherDerived,SelfAdjointView>
operator*(const MatrixBase<OtherDerived>& lhs, const SelfAdjointView& rhs)
{
- return SelfadjointProductMatrix
- <OtherDerived,0,OtherDerived::IsVectorAtCompileTime,MatrixType,Mode,false>
- (lhs.derived(),rhs.m_matrix);
+ return Product<OtherDerived,SelfAdjointView>(lhs.derived(),rhs);
+ }
+
+ friend EIGEN_DEVICE_FUNC
+ const SelfAdjointView<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>,MatrixType>,UpLo>
+ operator*(const Scalar& s, const SelfAdjointView& mat)
+ {
+ return (s*mat.nestedExpression()).template selfadjointView<UpLo>();
}
/** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
@@ -194,96 +196,57 @@ template<typename MatrixType, unsigned int UpLo> class SelfAdjointView
namespace internal {
-template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
-{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
-
- if(row == col)
- dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
- else if(row < col)
- dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
+// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
+// in the future selfadjoint-ness should be defined by the expression traits
+// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
+template<typename MatrixType, unsigned int Mode>
+struct evaluator_traits<SelfAdjointView<MatrixType,Mode> >
{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) {}
+ typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
+ typedef SelfAdjointShape Shape;
+
+ static const int AssumeAliasing = 0;
};
-template<typename Derived1, typename Derived2, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
+template<int UpLo, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version>
+class triangular_dense_assignment_kernel<UpLo,SelfAdjoint,SetOpposite,DstEvaluatorTypeT,SrcEvaluatorTypeT,Functor,Version>
+ : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
+protected:
+ typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
+ typedef typename Base::DstXprType DstXprType;
+ typedef typename Base::SrcXprType SrcXprType;
+ using Base::m_dst;
+ using Base::m_src;
+ using Base::m_functor;
+public:
+
+ typedef typename Base::DstEvaluatorType DstEvaluatorType;
+ typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::AssignmentTraits AssignmentTraits;
+
+
+ EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
+ : Base(dst, src, func, dstExpr)
+ {}
+
+ EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
{
- triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src);
-
- if(row == col)
- dst.coeffRef(row, col) = numext::real(src.coeff(row, col));
- else if(row > col)
- dst.coeffRef(col, row) = numext::conj(dst.coeffRef(row, col) = src.coeff(row, col));
+ eigen_internal_assert(row!=col);
+ Scalar tmp = m_src.coeff(row,col);
+ m_functor.assignCoeff(m_dst.coeffRef(row,col), tmp);
+ m_functor.assignCoeff(m_dst.coeffRef(col,row), numext::conj(tmp));
}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, 0, ClearOpposite>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
+
+ EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id)
{
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = 0; i < j; ++i)
- {
- dst.copyCoeff(i, j, src);
- dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
- }
- dst.copyCoeff(j, j, src);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Lower, Dynamic, ClearOpposite>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- typedef typename Derived1::Index Index;
- for(Index i = 0; i < dst.rows(); ++i)
- {
- for(Index j = 0; j < i; ++j)
- {
- dst.copyCoeff(i, j, src);
- dst.coeffRef(j,i) = numext::conj(dst.coeff(i,j));
- }
- dst.copyCoeff(i, i, src);
- }
+ Base::assignCoeff(id,id);
}
+
+ EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index, Index)
+ { eigen_internal_assert(false && "should never be called"); }
};
} // end namespace internal
@@ -297,7 +260,7 @@ template<unsigned int UpLo>
typename MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView() const
{
- return derived();
+ return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived());
}
template<typename Derived>
@@ -305,7 +268,7 @@ template<unsigned int UpLo>
typename MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type
MatrixBase<Derived>::selfadjointView()
{
- return derived();
+ return typename SelfAdjointViewReturnType<UpLo>::Type(derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/SelfCwiseBinaryOp.h b/Eigen/src/Core/SelfCwiseBinaryOp.h
index 8abdca4a5..38185d9d7 100644
--- a/Eigen/src/Core/SelfCwiseBinaryOp.h
+++ b/Eigen/src/Core/SelfCwiseBinaryOp.h
@@ -12,179 +12,11 @@
namespace Eigen {
-/** \class SelfCwiseBinaryOp
- * \ingroup Core_Module
- *
- * \internal
- *
- * \brief Internal helper class for optimizing operators like +=, -=
- *
- * This is a pseudo expression class re-implementing the copyCoeff/copyPacket
- * method to directly performs a +=/-= operations in an optimal way. In particular,
- * this allows to make sure that the input/output data are loaded only once using
- * aligned packet loads.
- *
- * \sa class SwapWrapper for a similar trick.
- */
-
-namespace internal {
-template<typename BinaryOp, typename Lhs, typename Rhs>
-struct traits<SelfCwiseBinaryOp<BinaryOp,Lhs,Rhs> >
- : traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >
-{
- enum {
- // Note that it is still a good idea to preserve the DirectAccessBit
- // so that assign can correctly align the data.
- Flags = traits<CwiseBinaryOp<BinaryOp,Lhs,Rhs> >::Flags | (Lhs::Flags&AlignedBit) | (Lhs::Flags&DirectAccessBit) | (Lhs::Flags&LvalueBit),
- OuterStrideAtCompileTime = Lhs::OuterStrideAtCompileTime,
- InnerStrideAtCompileTime = Lhs::InnerStrideAtCompileTime
- };
-};
-}
-
-template<typename BinaryOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp
- : public internal::dense_xpr_base< SelfCwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
-{
- public:
-
- typedef typename internal::dense_xpr_base<SelfCwiseBinaryOp>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SelfCwiseBinaryOp)
-
- typedef typename internal::packet_traits<Scalar>::type Packet;
-
- EIGEN_DEVICE_FUNC
- inline SelfCwiseBinaryOp(Lhs& xpr, const BinaryOp& func = BinaryOp()) : m_matrix(xpr), m_functor(func) {}
-
- EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows(); }
- EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols(); }
- EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_matrix.outerStride(); }
- EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_matrix.innerStride(); }
- EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_matrix.data(); }
-
- // note that this function is needed by assign to correctly align loads/stores
- // TODO make Assign use .data()
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index row, Index col)
- {
- EIGEN_STATIC_ASSERT_LVALUE(Lhs)
- return m_matrix.const_cast_derived().coeffRef(row, col);
- }
- EIGEN_DEVICE_FUNC
- inline const Scalar& coeffRef(Index row, Index col) const
- {
- return m_matrix.coeffRef(row, col);
- }
-
- // note that this function is needed by assign to correctly align loads/stores
- // TODO make Assign use .data()
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(Lhs)
- return m_matrix.const_cast_derived().coeffRef(index);
- }
- EIGEN_DEVICE_FUNC
- inline const Scalar& coeffRef(Index index) const
- {
- return m_matrix.const_cast_derived().coeffRef(index);
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- Scalar& tmp = m_matrix.coeffRef(row,col);
- tmp = m_functor(tmp, _other.coeff(row,col));
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_matrix.size());
- Scalar& tmp = m_matrix.coeffRef(index);
- tmp = m_functor(tmp, _other.coeff(index));
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index row, Index col, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(row >= 0 && row < rows()
- && col >= 0 && col < cols());
- m_matrix.template writePacket<StoreMode>(row, col,
- m_functor.packetOp(m_matrix.template packet<StoreMode>(row, col),_other.template packet<LoadMode>(row, col)) );
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_matrix.size());
- m_matrix.template writePacket<StoreMode>(index,
- m_functor.packetOp(m_matrix.template packet<StoreMode>(index),_other.template packet<LoadMode>(index)) );
- }
-
- // reimplement lazyAssign to handle complex *= real
- // see CwiseBinaryOp ctor for details
- template<typename RhsDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE SelfCwiseBinaryOp& lazyAssign(const DenseBase<RhsDerived>& rhs)
- {
- EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs,RhsDerived)
- EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename RhsDerived::Scalar);
-
- #ifdef EIGEN_DEBUG_ASSIGN
- internal::assign_traits<SelfCwiseBinaryOp, RhsDerived>::debug();
- #endif
- eigen_assert(rows() == rhs.rows() && cols() == rhs.cols());
- internal::assign_impl<SelfCwiseBinaryOp, RhsDerived>::run(*this,rhs.derived());
- #ifndef EIGEN_NO_DEBUG
- this->checkTransposeAliasing(rhs.derived());
- #endif
- return *this;
- }
-
- // overloaded to honor evaluation of special matrices
- // maybe another solution would be to not use SelfCwiseBinaryOp
- // at first...
- EIGEN_DEVICE_FUNC
- SelfCwiseBinaryOp& operator=(const Rhs& _rhs)
- {
- typename internal::nested<Rhs>::type rhs(_rhs);
- return Base::operator=(rhs);
- }
-
- EIGEN_DEVICE_FUNC
- Lhs& expression() const
- {
- return m_matrix;
- }
-
- EIGEN_DEVICE_FUNC
- const BinaryOp& functor() const
- {
- return m_functor;
- }
-
- protected:
- Lhs& m_matrix;
- const BinaryOp& m_functor;
-
- private:
- SelfCwiseBinaryOp& operator=(const SelfCwiseBinaryOp&);
-};
-
template<typename Derived>
inline Derived& DenseBase<Derived>::operator*=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_product_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(),other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::mul_assign_op<Scalar>());
return derived();
}
@@ -192,8 +24,7 @@ template<typename Derived>
inline Derived& ArrayBase<Derived>::operator+=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(),other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::add_assign_op<Scalar>());
return derived();
}
@@ -201,8 +32,7 @@ template<typename Derived>
inline Derived& ArrayBase<Derived>::operator-=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(),other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::sub_assign_op<Scalar>());
return derived();
}
@@ -210,8 +40,7 @@ template<typename Derived>
inline Derived& DenseBase<Derived>::operator/=(const Scalar& other)
{
typedef typename Derived::PlainObject PlainObject;
- SelfCwiseBinaryOp<internal::scalar_quotient_op<Scalar>, Derived, typename PlainObject::ConstantReturnType> tmp(derived());
- tmp = PlainObject::Constant(rows(),cols(), other);
+ internal::call_assignment(this->derived(), PlainObject::Constant(rows(),cols(),other), internal::div_assign_op<Scalar>());
return derived();
}
diff --git a/Eigen/src/Core/Solve.h b/Eigen/src/Core/Solve.h
new file mode 100644
index 000000000..3905cd616
--- /dev/null
+++ b/Eigen/src/Core/Solve.h
@@ -0,0 +1,152 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_SOLVE_H
+#define EIGEN_SOLVE_H
+
+namespace Eigen {
+
+template<typename Decomposition, typename RhsType, typename StorageKind> class SolveImpl;
+
+/** \class Solve
+ * \ingroup Core_Module
+ *
+ * \brief Pseudo expression representing a solving operation
+ *
+ * \tparam Decomposition the type of the matrix or decomposion object
+ * \tparam Rhstype the type of the right-hand side
+ *
+ * This class represents an expression of A.solve(B)
+ * and most of the time this is the only way it is used.
+ *
+ */
+namespace internal {
+
+// this solve_traits class permits to determine the evaluation type with respect to storage kind (Dense vs Sparse)
+template<typename Decomposition, typename RhsType,typename StorageKind> struct solve_traits;
+
+template<typename Decomposition, typename RhsType>
+struct solve_traits<Decomposition,RhsType,Dense>
+{
+ typedef typename Decomposition::MatrixType MatrixType;
+ typedef Matrix<typename RhsType::Scalar,
+ MatrixType::ColsAtCompileTime,
+ RhsType::ColsAtCompileTime,
+ RhsType::PlainObject::Options,
+ MatrixType::MaxColsAtCompileTime,
+ RhsType::MaxColsAtCompileTime> PlainObject;
+};
+
+template<typename Decomposition, typename RhsType>
+struct traits<Solve<Decomposition, RhsType> >
+ : traits<typename solve_traits<Decomposition,RhsType,typename internal::traits<RhsType>::StorageKind>::PlainObject>
+{
+ typedef typename solve_traits<Decomposition,RhsType,typename internal::traits<RhsType>::StorageKind>::PlainObject PlainObject;
+ typedef traits<PlainObject> BaseTraits;
+ enum {
+ Flags = BaseTraits::Flags & RowMajorBit,
+ CoeffReadCost = Dynamic
+ };
+};
+
+}
+
+
+template<typename Decomposition, typename RhsType>
+class Solve : public SolveImpl<Decomposition,RhsType,typename internal::traits<RhsType>::StorageKind>
+{
+public:
+ typedef typename RhsType::Index Index;
+ typedef typename internal::traits<Solve>::PlainObject PlainObject;
+
+ Solve(const Decomposition &dec, const RhsType &rhs)
+ : m_dec(dec), m_rhs(rhs)
+ {}
+
+ EIGEN_DEVICE_FUNC Index rows() const { return m_dec.cols(); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_rhs.cols(); }
+
+ EIGEN_DEVICE_FUNC const Decomposition& dec() const { return m_dec; }
+ EIGEN_DEVICE_FUNC const RhsType& rhs() const { return m_rhs; }
+
+protected:
+ const Decomposition &m_dec;
+ const RhsType &m_rhs;
+};
+
+
+// Specialization of the Solve expression for dense results
+template<typename Decomposition, typename RhsType>
+class SolveImpl<Decomposition,RhsType,Dense>
+ : public MatrixBase<Solve<Decomposition,RhsType> >
+{
+ typedef Solve<Decomposition,RhsType> Derived;
+
+public:
+
+ typedef MatrixBase<Solve<Decomposition,RhsType> > Base;
+ EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
+
+private:
+
+ Scalar coeff(Index row, Index col) const;
+ Scalar coeff(Index i) const;
+};
+
+// Generic API dispatcher
+template<typename Decomposition, typename RhsType, typename StorageKind>
+class SolveImpl : public internal::generic_xpr_base<Solve<Decomposition,RhsType>, MatrixXpr, StorageKind>::type
+{
+ public:
+ typedef typename internal::generic_xpr_base<Solve<Decomposition,RhsType>, MatrixXpr, StorageKind>::type Base;
+};
+
+namespace internal {
+
+// Evaluator of Solve -> eval into a temporary
+template<typename Decomposition, typename RhsType>
+struct evaluator<Solve<Decomposition,RhsType> >
+ : public evaluator<typename Solve<Decomposition,RhsType>::PlainObject>::type
+{
+ typedef Solve<Decomposition,RhsType> SolveType;
+ typedef typename SolveType::PlainObject PlainObject;
+ typedef typename evaluator<PlainObject>::type Base;
+
+ typedef evaluator type;
+ typedef evaluator nestedType;
+
+ EIGEN_DEVICE_FUNC explicit evaluator(const SolveType& solve)
+ : m_result(solve.rows(), solve.cols())
+ {
+ ::new (static_cast<Base*>(this)) Base(m_result);
+ solve.dec()._solve_impl(solve.rhs(), m_result);
+ }
+
+protected:
+ PlainObject m_result;
+};
+
+// Specialization for "dst = dec.solve(rhs)"
+// NOTE we need to specialize it for Dense2Dense to avoid ambiguous specialization error and a Sparse2Sparse specialization must exist somewhere
+template<typename DstXprType, typename DecType, typename RhsType, typename Scalar>
+struct Assignment<DstXprType, Solve<DecType,RhsType>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
+{
+ typedef Solve<DecType,RhsType> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ // FIXME shall we resize dst here?
+ src.dec()._solve_impl(src.rhs(), dst);
+ }
+};
+
+} // end namepsace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_SOLVE_H
diff --git a/Eigen/src/Core/SolveTriangular.h b/Eigen/src/Core/SolveTriangular.h
index e158e3162..f97048bda 100644
--- a/Eigen/src/Core/SolveTriangular.h
+++ b/Eigen/src/Core/SolveTriangular.h
@@ -171,10 +171,10 @@ struct triangular_solver_selector<Lhs,Rhs,OnTheRight,Mode,CompleteUnrolling,1> {
*/
template<typename MatrixType, unsigned int Mode>
template<int Side, typename OtherDerived>
-void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
+void TriangularViewImpl<MatrixType,Mode,Dense>::solveInPlace(const MatrixBase<OtherDerived>& _other) const
{
OtherDerived& other = _other.const_cast_derived();
- eigen_assert( cols() == rows() && ((Side==OnTheLeft && cols() == other.rows()) || (Side==OnTheRight && cols() == other.cols())) );
+ eigen_assert( derived().cols() == derived().rows() && ((Side==OnTheLeft && derived().cols() == other.rows()) || (Side==OnTheRight && derived().cols() == other.cols())) );
eigen_assert((!(Mode & ZeroDiag)) && bool(Mode & (Upper|Lower)));
enum { copy = internal::traits<OtherDerived>::Flags & RowMajorBit && OtherDerived::IsVectorAtCompileTime };
@@ -183,7 +183,7 @@ void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived
OtherCopy otherCopy(other);
internal::triangular_solver_selector<MatrixType, typename internal::remove_reference<OtherCopy>::type,
- Side, Mode>::run(nestedExpression(), otherCopy);
+ Side, Mode>::run(derived().nestedExpression(), otherCopy);
if (copy)
other = otherCopy;
@@ -213,9 +213,9 @@ void TriangularView<MatrixType,Mode>::solveInPlace(const MatrixBase<OtherDerived
template<typename Derived, unsigned int Mode>
template<int Side, typename Other>
const internal::triangular_solve_retval<Side,TriangularView<Derived,Mode>,Other>
-TriangularView<Derived,Mode>::solve(const MatrixBase<Other>& other) const
+TriangularViewImpl<Derived,Mode,Dense>::solve(const MatrixBase<Other>& other) const
{
- return internal::triangular_solve_retval<Side,TriangularView,Other>(*this, other.derived());
+ return internal::triangular_solve_retval<Side,TriangularViewType,Other>(derived(), other.derived());
}
namespace internal {
diff --git a/Eigen/src/Core/StableNorm.h b/Eigen/src/Core/StableNorm.h
index 64d43e1b1..0b7e39827 100644
--- a/Eigen/src/Core/StableNorm.h
+++ b/Eigen/src/Core/StableNorm.h
@@ -17,7 +17,6 @@ namespace internal {
template<typename ExpressionType, typename Scalar>
inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
{
- using std::max;
Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
if(maxCoeff>scale)
@@ -58,8 +57,6 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
typedef typename Derived::RealScalar RealScalar;
typedef typename Derived::Index Index;
using std::pow;
- EIGEN_USING_STD_MATH(min);
- EIGEN_USING_STD_MATH(max);
using std::sqrt;
using std::abs;
const Derived& vec(_vec.derived());
@@ -136,8 +133,8 @@ blueNorm_impl(const EigenBase<Derived>& _vec)
}
else
return sqrt(amed);
- asml = (min)(abig, amed);
- abig = (max)(abig, amed);
+ asml = numext::mini(abig, amed);
+ abig = numext::maxi(abig, amed);
if(asml <= abig*relerr)
return abig;
else
@@ -160,7 +157,6 @@ template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::stableNorm() const
{
- EIGEN_USING_STD_MATH(min);
using std::sqrt;
const Index blockSize = 4096;
RealScalar scale(0);
@@ -174,7 +170,7 @@ MatrixBase<Derived>::stableNorm() const
if (bi>0)
internal::stable_norm_kernel(this->head(bi), ssq, scale, invScale);
for (; bi<n; bi+=blockSize)
- internal::stable_norm_kernel(this->segment(bi,(min)(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
+ internal::stable_norm_kernel(this->segment(bi,numext::mini(blockSize, n - bi)).template forceAlignedAccessIf<Alignment>(), ssq, scale, invScale);
return scale * sqrt(ssq);
}
diff --git a/Eigen/src/Core/Stride.h b/Eigen/src/Core/Stride.h
index d3d454e4e..e46faad34 100644
--- a/Eigen/src/Core/Stride.h
+++ b/Eigen/src/Core/Stride.h
@@ -86,26 +86,26 @@ class Stride
/** \brief Convenience specialization of Stride to specify only an inner stride
* See class Map for some examples */
-template<int Value = Dynamic>
+template<int Value>
class InnerStride : public Stride<0, Value>
{
typedef Stride<0, Value> Base;
public:
typedef DenseIndex Index;
EIGEN_DEVICE_FUNC InnerStride() : Base() {}
- EIGEN_DEVICE_FUNC InnerStride(Index v) : Base(0, v) {}
+ EIGEN_DEVICE_FUNC InnerStride(Index v) : Base(0, v) {} // FIXME making this explicit could break valid code
};
/** \brief Convenience specialization of Stride to specify only an outer stride
* See class Map for some examples */
-template<int Value = Dynamic>
+template<int Value>
class OuterStride : public Stride<Value, 0>
{
typedef Stride<Value, 0> Base;
public:
typedef DenseIndex Index;
EIGEN_DEVICE_FUNC OuterStride() : Base() {}
- EIGEN_DEVICE_FUNC OuterStride(Index v) : Base(v,0) {}
+ EIGEN_DEVICE_FUNC OuterStride(Index v) : Base(v,0) {} // FIXME making this explicit could break valid code
};
} // end namespace Eigen
diff --git a/Eigen/src/Core/Swap.h b/Eigen/src/Core/Swap.h
index d602fba65..55319320a 100644
--- a/Eigen/src/Core/Swap.h
+++ b/Eigen/src/Core/Swap.h
@@ -12,129 +12,54 @@
namespace Eigen {
-/** \class SwapWrapper
- * \ingroup Core_Module
- *
- * \internal
- *
- * \brief Internal helper class for swapping two expressions
- */
namespace internal {
-template<typename ExpressionType>
-struct traits<SwapWrapper<ExpressionType> > : traits<ExpressionType> {};
-}
-template<typename ExpressionType> class SwapWrapper
- : public internal::dense_xpr_base<SwapWrapper<ExpressionType> >::type
+// Overload default assignPacket behavior for swapping them
+template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT>
+class generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar>, Specialized>
+ : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar>, BuiltIn>
{
- public:
-
- typedef typename internal::dense_xpr_base<SwapWrapper>::type Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(SwapWrapper)
- typedef typename internal::packet_traits<Scalar>::type Packet;
-
- EIGEN_DEVICE_FUNC
- inline SwapWrapper(ExpressionType& xpr) : m_expression(xpr) {}
-
- EIGEN_DEVICE_FUNC
- inline Index rows() const { return m_expression.rows(); }
- EIGEN_DEVICE_FUNC
- inline Index cols() const { return m_expression.cols(); }
- EIGEN_DEVICE_FUNC
- inline Index outerStride() const { return m_expression.outerStride(); }
- EIGEN_DEVICE_FUNC
- inline Index innerStride() const { return m_expression.innerStride(); }
-
- typedef typename internal::conditional<
- internal::is_lvalue<ExpressionType>::value,
- Scalar,
- const Scalar
- >::type ScalarWithConstIfNotLvalue;
-
- EIGEN_DEVICE_FUNC
- inline ScalarWithConstIfNotLvalue* data() { return m_expression.data(); }
- EIGEN_DEVICE_FUNC
- inline const Scalar* data() const { return m_expression.data(); }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index rowId, Index colId)
- {
- return m_expression.const_cast_derived().coeffRef(rowId, colId);
- }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index index)
- {
- return m_expression.const_cast_derived().coeffRef(index);
- }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index rowId, Index colId) const
- {
- return m_expression.coeffRef(rowId, colId);
- }
-
- EIGEN_DEVICE_FUNC
- inline Scalar& coeffRef(Index index) const
- {
- return m_expression.coeffRef(index);
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index rowId, Index colId, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(rowId >= 0 && rowId < rows()
- && colId >= 0 && colId < cols());
- Scalar tmp = m_expression.coeff(rowId, colId);
- m_expression.coeffRef(rowId, colId) = _other.coeff(rowId, colId);
- _other.coeffRef(rowId, colId) = tmp;
- }
-
- template<typename OtherDerived>
- EIGEN_DEVICE_FUNC
- void copyCoeff(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_expression.size());
- Scalar tmp = m_expression.coeff(index);
- m_expression.coeffRef(index) = _other.coeff(index);
- _other.coeffRef(index) = tmp;
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index rowId, Index colId, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(rowId >= 0 && rowId < rows()
- && colId >= 0 && colId < cols());
- Packet tmp = m_expression.template packet<StoreMode>(rowId, colId);
- m_expression.template writePacket<StoreMode>(rowId, colId,
- _other.template packet<LoadMode>(rowId, colId)
- );
- _other.template writePacket<LoadMode>(rowId, colId, tmp);
- }
-
- template<typename OtherDerived, int StoreMode, int LoadMode>
- void copyPacket(Index index, const DenseBase<OtherDerived>& other)
- {
- OtherDerived& _other = other.const_cast_derived();
- eigen_internal_assert(index >= 0 && index < m_expression.size());
- Packet tmp = m_expression.template packet<StoreMode>(index);
- m_expression.template writePacket<StoreMode>(index,
- _other.template packet<LoadMode>(index)
- );
- _other.template writePacket<LoadMode>(index, tmp);
- }
-
- EIGEN_DEVICE_FUNC
- ExpressionType& expression() const { return m_expression; }
-
- protected:
- ExpressionType& m_expression;
+protected:
+ typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, swap_assign_op<typename DstEvaluatorTypeT::Scalar>, BuiltIn> Base;
+ typedef typename DstEvaluatorTypeT::PacketScalar PacketScalar;
+ using Base::m_dst;
+ using Base::m_src;
+ using Base::m_functor;
+
+public:
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::DstXprType DstXprType;
+ typedef swap_assign_op<Scalar> Functor;
+
+ EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorTypeT &dst, const SrcEvaluatorTypeT &src, const Functor &func, DstXprType& dstExpr)
+ : Base(dst, src, func, dstExpr)
+ {}
+
+ template<int StoreMode, int LoadMode>
+ void assignPacket(Index row, Index col)
+ {
+ m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(row,col), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(row,col));
+ }
+
+ template<int StoreMode, int LoadMode>
+ void assignPacket(Index index)
+ {
+ m_functor.template swapPacket<StoreMode,LoadMode,PacketScalar>(&m_dst.coeffRef(index), &const_cast<SrcEvaluatorTypeT&>(m_src).coeffRef(index));
+ }
+
+ // TODO find a simple way not to have to copy/paste this function from generic_dense_assignment_kernel, by simple I mean no CRTP (Gael)
+ template<int StoreMode, int LoadMode>
+ void assignPacketByOuterInner(Index outer, Index inner)
+ {
+ Index row = Base::rowIndexByOuterInner(outer, inner);
+ Index col = Base::colIndexByOuterInner(outer, inner);
+ assignPacket<StoreMode,LoadMode>(row, col);
+ }
};
+} // namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SWAP_H
diff --git a/Eigen/src/Core/Transpose.h b/Eigen/src/Core/Transpose.h
index aba3f6670..3bab6092c 100644
--- a/Eigen/src/Core/Transpose.h
+++ b/Eigen/src/Core/Transpose.h
@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -29,9 +29,10 @@ namespace Eigen {
namespace internal {
template<typename MatrixType>
-struct traits<Transpose<MatrixType> > : traits<MatrixType>
+struct traits<Transpose<MatrixType> >
{
- typedef typename MatrixType::Scalar Scalar;
+ typedef typename traits<MatrixType>::Scalar Scalar;
+ typedef typename traits<MatrixType>::Index Index;
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedPlain;
typedef typename traits<MatrixType>::StorageKind StorageKind;
@@ -45,7 +46,6 @@ struct traits<Transpose<MatrixType> > : traits<MatrixType>
Flags0 = MatrixTypeNestedPlain::Flags & ~(LvalueBit | NestByRefBit),
Flags1 = Flags0 | FlagsLvalueBit,
Flags = Flags1 ^ RowMajorBit,
- CoeffReadCost = MatrixTypeNestedPlain::CoeffReadCost,
InnerStrideAtCompileTime = inner_stride_at_compile_time<MatrixType>::ret,
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret
};
@@ -61,9 +61,10 @@ template<typename MatrixType> class Transpose
typedef typename TransposeImpl<MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Transpose)
+ typedef typename internal::remove_all<MatrixType>::type NestedExpression;
EIGEN_DEVICE_FUNC
- inline Transpose(MatrixType& a_matrix) : m_matrix(a_matrix) {}
+ explicit inline Transpose(MatrixType& a_matrix) : m_matrix(a_matrix) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Transpose)
@@ -100,12 +101,22 @@ struct TransposeImpl_base<MatrixType, false>
} // end namespace internal
+// Generic API dispatcher
+template<typename XprType, typename StorageKind>
+class TransposeImpl
+ : public internal::generic_xpr_base<Transpose<XprType> >::type
+{
+public:
+ typedef typename internal::generic_xpr_base<Transpose<XprType> >::type Base;
+};
+
template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
: public internal::TransposeImpl_base<MatrixType>::type
{
public:
typedef typename internal::TransposeImpl_base<MatrixType>::type Base;
+ using Base::coeffRef;
EIGEN_DENSE_PUBLIC_INTERFACE(Transpose<MatrixType>)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(TransposeImpl)
@@ -118,23 +129,10 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
const Scalar
>::type ScalarWithConstIfNotLvalue;
- inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
- inline const Scalar* data() const { return derived().nestedExpression().data(); }
-
- EIGEN_DEVICE_FUNC
- inline ScalarWithConstIfNotLvalue& coeffRef(Index rowId, Index colId)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return derived().nestedExpression().const_cast_derived().coeffRef(colId, rowId);
- }
-
- EIGEN_DEVICE_FUNC
- inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return derived().nestedExpression().const_cast_derived().coeffRef(index);
- }
+ EIGEN_DEVICE_FUNC inline ScalarWithConstIfNotLvalue* data() { return derived().nestedExpression().data(); }
+ EIGEN_DEVICE_FUNC inline const Scalar* data() const { return derived().nestedExpression().data(); }
+ // FIXME: shall we keep the const version of coeffRef?
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
@@ -146,42 +144,6 @@ template<typename MatrixType> class TransposeImpl<MatrixType,Dense>
{
return derived().nestedExpression().coeffRef(index);
}
-
- EIGEN_DEVICE_FUNC
- inline CoeffReturnType coeff(Index rowId, Index colId) const
- {
- return derived().nestedExpression().coeff(colId, rowId);
- }
-
- EIGEN_DEVICE_FUNC
- inline CoeffReturnType coeff(Index index) const
- {
- return derived().nestedExpression().coeff(index);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index rowId, Index colId) const
- {
- return derived().nestedExpression().template packet<LoadMode>(colId, rowId);
- }
-
- template<int LoadMode>
- inline void writePacket(Index rowId, Index colId, const PacketScalar& x)
- {
- derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(colId, rowId, x);
- }
-
- template<int LoadMode>
- inline const PacketScalar packet(Index index) const
- {
- return derived().nestedExpression().template packet<LoadMode>(index);
- }
-
- template<int LoadMode>
- inline void writePacket(Index index, const PacketScalar& x)
- {
- derived().nestedExpression().const_cast_derived().template writePacket<LoadMode>(index, x);
- }
};
/** \returns an expression of the transpose of *this.
@@ -207,7 +169,7 @@ template<typename Derived>
inline Transpose<Derived>
DenseBase<Derived>::transpose()
{
- return derived();
+ return TransposeReturnType(derived());
}
/** This is the const version of transpose().
@@ -245,8 +207,7 @@ template<typename Derived>
inline const typename MatrixBase<Derived>::AdjointReturnType
MatrixBase<Derived>::adjoint() const
{
- return this->transpose(); // in the complex case, the .conjugate() is be implicit here
- // due to implicit conversion to return type
+ return AdjointReturnType(this->transpose());
}
/***************************************************************************
@@ -256,18 +217,39 @@ MatrixBase<Derived>::adjoint() const
namespace internal {
template<typename MatrixType,
- bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic>
+ bool IsSquare = (MatrixType::RowsAtCompileTime == MatrixType::ColsAtCompileTime) && MatrixType::RowsAtCompileTime!=Dynamic,
+ bool MatchPacketSize =
+ (int(MatrixType::RowsAtCompileTime) == int(internal::packet_traits<typename MatrixType::Scalar>::size))
+ && (internal::evaluator<MatrixType>::Flags&PacketAccessBit) >
struct inplace_transpose_selector;
template<typename MatrixType>
-struct inplace_transpose_selector<MatrixType,true> { // square matrix
+struct inplace_transpose_selector<MatrixType,true,false> { // square matrix
static void run(MatrixType& m) {
m.matrix().template triangularView<StrictlyUpper>().swap(m.matrix().transpose());
}
};
+// TODO: vectorized path is currently limited to LargestPacketSize x LargestPacketSize cases only.
template<typename MatrixType>
-struct inplace_transpose_selector<MatrixType,false> { // non square matrix
+struct inplace_transpose_selector<MatrixType,true,true> { // PacketSize x PacketSize
+ static void run(MatrixType& m) {
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename internal::packet_traits<typename MatrixType::Scalar>::type Packet;
+ typedef typename MatrixType::Index Index;
+ const Index PacketSize = internal::packet_traits<Scalar>::size;
+ const Index Alignment = internal::evaluator<MatrixType>::Flags&AlignedBit ? Aligned : Unaligned;
+ PacketBlock<Packet> A;
+ for (Index i=0; i<PacketSize; ++i)
+ A.packet[i] = m.template packetByOuterInner<Alignment>(i,0);
+ internal::ptranspose(A);
+ for (Index i=0; i<PacketSize; ++i)
+ m.template writePacket<Alignment>(m.rowIndexByOuterInner(i,0), m.colIndexByOuterInner(i,0), A.packet[i]);
+ }
+};
+
+template<typename MatrixType,bool MatchPacketSize>
+struct inplace_transpose_selector<MatrixType,false,MatchPacketSize> { // non square matrix
static void run(MatrixType& m) {
if (m.rows()==m.cols())
m.matrix().template triangularView<StrictlyUpper>().swap(m.matrix().transpose());
@@ -413,15 +395,15 @@ struct checkTransposeAliasing_impl<Derived, OtherDerived, false>
}
};
-} // end namespace internal
-
-template<typename Derived>
-template<typename OtherDerived>
-void DenseBase<Derived>::checkTransposeAliasing(const OtherDerived& other) const
+template<typename Dst, typename Src>
+void check_for_aliasing(const Dst &dst, const Src &src)
{
- internal::checkTransposeAliasing_impl<Derived, OtherDerived>::run(derived(), other);
+ internal::checkTransposeAliasing_impl<Dst, Src>::run(dst, src);
}
-#endif
+
+} // end namespace internal
+
+#endif // EIGEN_NO_DEBUG
} // end namespace Eigen
diff --git a/Eigen/src/Core/Transpositions.h b/Eigen/src/Core/Transpositions.h
index 92261118f..77e7d6f45 100644
--- a/Eigen/src/Core/Transpositions.h
+++ b/Eigen/src/Core/Transpositions.h
@@ -240,7 +240,7 @@ class Map<Transpositions<SizeAtCompileTime,MaxSizeAtCompileTime,_StorageIndexTyp
typedef typename IndicesType::Scalar StorageIndexType;
typedef typename IndicesType::Index Index;
- inline Map(const StorageIndexType* indicesPtr)
+ explicit inline Map(const StorageIndexType* indicesPtr)
: m_indices(indicesPtr)
{}
@@ -299,7 +299,7 @@ class TranspositionsWrapper
typedef typename IndicesType::Scalar StorageIndexType;
typedef typename IndicesType::Index Index;
- inline TranspositionsWrapper(IndicesType& a_indices)
+ explicit inline TranspositionsWrapper(IndicesType& a_indices)
: m_indices(a_indices)
{}
@@ -414,7 +414,7 @@ class Transpose<TranspositionsBase<TranspositionsDerived> >
typedef typename TranspositionType::IndicesType IndicesType;
public:
- Transpose(const TranspositionType& t) : m_transpositions(t) {}
+ explicit Transpose(const TranspositionType& t) : m_transpositions(t) {}
inline int size() const { return m_transpositions.size(); }
diff --git a/Eigen/src/Core/TriangularMatrix.h b/Eigen/src/Core/TriangularMatrix.h
index 72792d21b..cf0255bce 100644
--- a/Eigen/src/Core/TriangularMatrix.h
+++ b/Eigen/src/Core/TriangularMatrix.h
@@ -32,17 +32,23 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
enum {
Mode = internal::traits<Derived>::Mode,
- CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime
+ MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
+
+ SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
+ internal::traits<Derived>::ColsAtCompileTime>::ret)
+ /**< This is equal to the number of coefficients, i.e. the number of
+ * rows times the number of columns, or to \a Dynamic if this is not
+ * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
- typedef typename internal::traits<Derived>::DenseMatrixType DenseMatrixType;
+ typedef typename internal::traits<Derived>::FullMatrixType DenseMatrixType;
typedef DenseMatrixType DenseType;
+ typedef Derived const& Nested;
EIGEN_DEVICE_FUNC
inline TriangularBase() { eigen_assert(!((Mode&UnitDiag) && (Mode&ZeroDiag))); }
@@ -55,6 +61,14 @@ template<typename Derived> class TriangularBase : public EigenBase<Derived>
inline Index outerStride() const { return derived().outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return derived().innerStride(); }
+
+ // dummy resize function
+ void resize(Index nbRows, Index nbCols)
+ {
+ EIGEN_UNUSED_VARIABLE(nbRows);
+ EIGEN_UNUSED_VARIABLE(nbCols);
+ eigen_assert(nbRows==rows() && nbCols==nbCols);
+ }
EIGEN_DEVICE_FUNC
inline Scalar coeff(Index row, Index col) const { return derived().coeff(row,col); }
@@ -155,96 +169,209 @@ struct traits<TriangularView<MatrixType, _Mode> > : traits<MatrixType>
typedef typename nested<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type MatrixTypeNestedNonRef;
typedef typename remove_all<MatrixTypeNested>::type MatrixTypeNestedCleaned;
+ typedef typename MatrixType::PlainObject FullMatrixType;
typedef MatrixType ExpressionType;
- typedef typename MatrixType::PlainObject DenseMatrixType;
enum {
Mode = _Mode,
- Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit))) | Mode,
- CoeffReadCost = MatrixTypeNestedCleaned::CoeffReadCost
+ FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
+ Flags = (MatrixTypeNestedCleaned::Flags & (HereditaryBits | FlagsLvalueBit) & (~(PacketAccessBit | DirectAccessBit | LinearAccessBit)))
};
};
}
-template<int Mode, bool LhsIsTriangular,
- typename Lhs, bool LhsIsVector,
- typename Rhs, bool RhsIsVector>
-struct TriangularProduct;
+template<typename _MatrixType, unsigned int _Mode, typename StorageKind> class TriangularViewImpl;
template<typename _MatrixType, unsigned int _Mode> class TriangularView
- : public TriangularBase<TriangularView<_MatrixType, _Mode> >
+ : public TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind >
{
public:
- typedef TriangularBase<TriangularView> Base;
+ typedef TriangularViewImpl<_MatrixType, _Mode, typename internal::traits<_MatrixType>::StorageKind > Base;
typedef typename internal::traits<TriangularView>::Scalar Scalar;
-
typedef _MatrixType MatrixType;
- typedef typename internal::traits<TriangularView>::DenseMatrixType DenseMatrixType;
- typedef DenseMatrixType PlainObject;
protected:
typedef typename internal::traits<TriangularView>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<TriangularView>::MatrixTypeNestedNonRef MatrixTypeNestedNonRef;
- typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned MatrixTypeNestedCleaned;
typedef typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type MatrixConjugateReturnType;
public:
- using Base::evalToLazy;
-
typedef typename internal::traits<TriangularView>::StorageKind StorageKind;
typedef typename internal::traits<TriangularView>::Index Index;
+ typedef typename internal::traits<TriangularView>::MatrixTypeNestedCleaned NestedExpression;
enum {
Mode = _Mode,
+ Flags = internal::traits<TriangularView>::Flags,
TransposeMode = (Mode & Upper ? Lower : 0)
| (Mode & Lower ? Upper : 0)
| (Mode & (UnitDiag))
- | (Mode & (ZeroDiag))
+ | (Mode & (ZeroDiag)),
+ IsVectorAtCompileTime = false
};
+ // FIXME This, combined with const_cast_derived in transpose() leads to a const-correctness loophole
EIGEN_DEVICE_FUNC
- inline TriangularView(const MatrixType& matrix) : m_matrix(matrix)
+ explicit inline TriangularView(MatrixType& matrix) : m_matrix(matrix)
{}
+
+ using Base::operator=;
+ TriangularView& operator=(const TriangularView &other)
+ { return Base::operator=(other); }
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_matrix.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_matrix.cols(); }
+
+ EIGEN_DEVICE_FUNC
+ const NestedExpression& nestedExpression() const { return m_matrix; }
+ EIGEN_DEVICE_FUNC
+ NestedExpression& nestedExpression() { return *const_cast<NestedExpression*>(&m_matrix); }
+
+ /** \sa MatrixBase::conjugate() const */
+ typedef TriangularView<const MatrixConjugateReturnType,Mode> ConjugateReturnType;
+ EIGEN_DEVICE_FUNC
+ inline const ConjugateReturnType conjugate() const
+ { return ConjugateReturnType(m_matrix.conjugate()); }
+
+ typedef TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> AdjointReturnType;
+ /** \sa MatrixBase::adjoint() const */
+ EIGEN_DEVICE_FUNC
+ inline const AdjointReturnType adjoint() const
+ { return AdjointReturnType(m_matrix.adjoint()); }
+
+ typedef TriangularView<typename MatrixType::TransposeReturnType,TransposeMode> TransposeReturnType;
+ /** \sa MatrixBase::transpose() */
+ EIGEN_DEVICE_FUNC
+ inline TransposeReturnType transpose()
+ {
+ EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
+ typename MatrixType::TransposeReturnType tmp(m_matrix.const_cast_derived());
+ return TransposeReturnType(tmp);
+ }
+
+ typedef TriangularView<const typename MatrixType::ConstTransposeReturnType,TransposeMode> ConstTransposeReturnType;
+ /** \sa MatrixBase::transpose() const */
EIGEN_DEVICE_FUNC
- inline Index outerStride() const { return m_matrix.outerStride(); }
+ inline const ConstTransposeReturnType transpose() const
+ {
+ return ConstTransposeReturnType(m_matrix.transpose());
+ }
+
+ template<typename Other>
EIGEN_DEVICE_FUNC
- inline Index innerStride() const { return m_matrix.innerStride(); }
+ inline const Solve<TriangularView, Other>
+ solve(const MatrixBase<Other>& other) const
+ { return Solve<TriangularView, Other>(*this, other.derived()); }
+
+ // workaround MSVC ICE
+ #if EIGEN_COMP_MSVC
+ template<int Side, typename Other>
+ EIGEN_DEVICE_FUNC
+ inline const internal::triangular_solve_retval<Side,TriangularView, Other>
+ solve(const MatrixBase<Other>& other) const
+ { return Base::template solve<Side>(other); }
+ #else
+ using Base::solve;
+ #endif
+
+ EIGEN_DEVICE_FUNC
+ const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
+ {
+ EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
+ return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
+ }
+ EIGEN_DEVICE_FUNC
+ SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
+ {
+ EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
+ return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
+ }
+
+ EIGEN_DEVICE_FUNC
+ Scalar determinant() const
+ {
+ if (Mode & UnitDiag)
+ return 1;
+ else if (Mode & ZeroDiag)
+ return 0;
+ else
+ return m_matrix.diagonal().prod();
+ }
+
+ protected:
+
+ MatrixTypeNested m_matrix;
+};
+
+template<typename _MatrixType, unsigned int _Mode> class TriangularViewImpl<_MatrixType,_Mode,Dense>
+ : public TriangularBase<TriangularView<_MatrixType, _Mode> >
+{
+ public:
+
+ typedef TriangularView<_MatrixType, _Mode> TriangularViewType;
+ typedef TriangularBase<TriangularViewType> Base;
+ typedef typename internal::traits<TriangularViewType>::Scalar Scalar;
+
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::PlainObject DenseMatrixType;
+ typedef DenseMatrixType PlainObject;
+
+ public:
+ using Base::evalToLazy;
+ using Base::derived;
+
+ typedef typename internal::traits<TriangularViewType>::StorageKind StorageKind;
+ typedef typename internal::traits<TriangularViewType>::Index Index;
+
+ enum {
+ Mode = _Mode,
+ Flags = internal::traits<TriangularViewType>::Flags
+ };
+
+ EIGEN_DEVICE_FUNC
+ inline Index outerStride() const { return derived().nestedExpression().outerStride(); }
+ EIGEN_DEVICE_FUNC
+ inline Index innerStride() const { return derived().nestedExpression().innerStride(); }
/** \sa MatrixBase::operator+=() */
template<typename Other>
EIGEN_DEVICE_FUNC
- TriangularView& operator+=(const DenseBase<Other>& other) { return *this = m_matrix + other.derived(); }
+ TriangularViewType& operator+=(const DenseBase<Other>& other) {
+ internal::call_assignment_no_alias(derived(), other.derived(), internal::add_assign_op<Scalar>());
+ return derived();
+ }
/** \sa MatrixBase::operator-=() */
template<typename Other>
EIGEN_DEVICE_FUNC
- TriangularView& operator-=(const DenseBase<Other>& other) { return *this = m_matrix - other.derived(); }
+ TriangularViewType& operator-=(const DenseBase<Other>& other) {
+ internal::call_assignment_no_alias(derived(), other.derived(), internal::sub_assign_op<Scalar>());
+ return derived();
+ }
+
/** \sa MatrixBase::operator*=() */
EIGEN_DEVICE_FUNC
- TriangularView& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix * other; }
+ TriangularViewType& operator*=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() * other; }
/** \sa MatrixBase::operator/=() */
EIGEN_DEVICE_FUNC
- TriangularView& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = m_matrix / other; }
+ TriangularViewType& operator/=(const typename internal::traits<MatrixType>::Scalar& other) { return *this = derived().nestedExpression() / other; }
/** \sa MatrixBase::fill() */
EIGEN_DEVICE_FUNC
void fill(const Scalar& value) { setConstant(value); }
/** \sa MatrixBase::setConstant() */
EIGEN_DEVICE_FUNC
- TriangularView& setConstant(const Scalar& value)
- { return *this = MatrixType::Constant(rows(), cols(), value); }
+ TriangularViewType& setConstant(const Scalar& value)
+ { return *this = MatrixType::Constant(derived().rows(), derived().cols(), value); }
/** \sa MatrixBase::setZero() */
EIGEN_DEVICE_FUNC
- TriangularView& setZero() { return setConstant(Scalar(0)); }
+ TriangularViewType& setZero() { return setConstant(Scalar(0)); }
/** \sa MatrixBase::setOnes() */
EIGEN_DEVICE_FUNC
- TriangularView& setOnes() { return setConstant(Scalar(1)); }
+ TriangularViewType& setOnes() { return setConstant(Scalar(1)); }
/** \sa MatrixBase::coeff()
* \warning the coordinates must fit into the referenced triangular part
@@ -253,7 +380,7 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
inline Scalar coeff(Index row, Index col) const
{
Base::check_coordinates_internal(row, col);
- return m_matrix.coeff(row, col);
+ return derived().nestedExpression().coeff(row, col);
}
/** \sa MatrixBase::coeffRef()
@@ -262,27 +389,23 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index row, Index col)
{
+ EIGEN_STATIC_ASSERT_LVALUE(TriangularViewType);
Base::check_coordinates_internal(row, col);
- return m_matrix.const_cast_derived().coeffRef(row, col);
+ return derived().nestedExpression().const_cast_derived().coeffRef(row, col);
}
- EIGEN_DEVICE_FUNC
- const MatrixTypeNestedCleaned& nestedExpression() const { return m_matrix; }
- EIGEN_DEVICE_FUNC
- MatrixTypeNestedCleaned& nestedExpression() { return *const_cast<MatrixTypeNestedCleaned*>(&m_matrix); }
-
/** Assigns a triangular matrix to a triangular part of a dense matrix */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- TriangularView& operator=(const TriangularBase<OtherDerived>& other);
+ TriangularViewType& operator=(const TriangularBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- TriangularView& operator=(const MatrixBase<OtherDerived>& other);
+ TriangularViewType& operator=(const MatrixBase<OtherDerived>& other);
EIGEN_DEVICE_FUNC
- TriangularView& operator=(const TriangularView& other)
- { return *this = other.nestedExpression(); }
+ TriangularViewType& operator=(const TriangularViewImpl& other)
+ { return *this = other.derived().nestedExpression(); }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
@@ -290,378 +413,88 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- void lazyAssign(const MatrixBase<OtherDerived>& other);
-
- /** \sa MatrixBase::conjugate() */
- EIGEN_DEVICE_FUNC
- inline TriangularView<MatrixConjugateReturnType,Mode> conjugate()
- { return m_matrix.conjugate(); }
- /** \sa MatrixBase::conjugate() const */
- EIGEN_DEVICE_FUNC
- inline const TriangularView<MatrixConjugateReturnType,Mode> conjugate() const
- { return m_matrix.conjugate(); }
-
- /** \sa MatrixBase::adjoint() const */
- EIGEN_DEVICE_FUNC
- inline const TriangularView<const typename MatrixType::AdjointReturnType,TransposeMode> adjoint() const
- { return m_matrix.adjoint(); }
-
- /** \sa MatrixBase::transpose() */
- EIGEN_DEVICE_FUNC
- inline TriangularView<Transpose<MatrixType>,TransposeMode> transpose()
- {
- EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
- return m_matrix.const_cast_derived().transpose();
- }
- /** \sa MatrixBase::transpose() const */
- EIGEN_DEVICE_FUNC
- inline const TriangularView<Transpose<MatrixType>,TransposeMode> transpose() const
- {
- return m_matrix.transpose();
- }
+ void lazyAssign(const MatrixBase<OtherDerived>& other);
/** Efficient triangular matrix times vector/matrix product */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
- TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
+ const Product<TriangularViewType,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
- return TriangularProduct
- <Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
- (m_matrix, rhs.derived());
+ return Product<TriangularViewType,OtherDerived>(derived(), rhs.derived());
}
/** Efficient vector/matrix times triangular matrix product */
template<typename OtherDerived> friend
EIGEN_DEVICE_FUNC
- TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
- operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
+ const Product<OtherDerived,TriangularViewType>
+ operator*(const MatrixBase<OtherDerived>& lhs, const TriangularViewImpl& rhs)
{
- return TriangularProduct
- <Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
- (lhs.derived(),rhs.m_matrix);
+ return Product<OtherDerived,TriangularViewType>(lhs.derived(),rhs.derived());
}
template<int Side, typename Other>
EIGEN_DEVICE_FUNC
- inline const internal::triangular_solve_retval<Side,TriangularView, Other>
+ inline const internal::triangular_solve_retval<Side,TriangularViewType, Other>
solve(const MatrixBase<Other>& other) const;
template<int Side, typename OtherDerived>
EIGEN_DEVICE_FUNC
void solveInPlace(const MatrixBase<OtherDerived>& other) const;
- template<typename Other>
- EIGEN_DEVICE_FUNC
- inline const internal::triangular_solve_retval<OnTheLeft,TriangularView, Other>
- solve(const MatrixBase<Other>& other) const
- { return solve<OnTheLeft>(other); }
-
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void solveInPlace(const MatrixBase<OtherDerived>& other) const
{ return solveInPlace<OnTheLeft>(other); }
- EIGEN_DEVICE_FUNC
- const SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView() const
- {
- EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
- return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
- }
- EIGEN_DEVICE_FUNC
- SelfAdjointView<MatrixTypeNestedNonRef,Mode> selfadjointView()
- {
- EIGEN_STATIC_ASSERT((Mode&UnitDiag)==0,PROGRAMMING_ERROR);
- return SelfAdjointView<MatrixTypeNestedNonRef,Mode>(m_matrix);
- }
-
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(TriangularBase<OtherDerived> const & other)
{
- TriangularView<SwapWrapper<MatrixType>,Mode>(const_cast<MatrixType&>(m_matrix)).lazyAssign(other.derived());
+ call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
+ // TODO: this overload is ambiguous and it should be deprecated (Gael)
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(MatrixBase<OtherDerived> const & other)
{
- SwapWrapper<MatrixType> swaper(const_cast<MatrixType&>(m_matrix));
- TriangularView<SwapWrapper<MatrixType>,Mode>(swaper).lazyAssign(other.derived());
+ call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
+ template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
- Scalar determinant() const
- {
- if (Mode & UnitDiag)
- return 1;
- else if (Mode & ZeroDiag)
- return 0;
- else
- return m_matrix.diagonal().prod();
- }
-
- // TODO simplify the following:
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- setZero();
- return assignProduct(other,1);
- }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- return assignProduct(other,1);
- }
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
- {
- return assignProduct(other,-1);
- }
-
-
- template<typename ProductDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator=(const ScaledProduct<ProductDerived>& other)
- {
- setZero();
- return assignProduct(other,other.alpha());
- }
-
- template<typename ProductDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator+=(const ScaledProduct<ProductDerived>& other)
- {
- return assignProduct(other,other.alpha());
- }
-
- template<typename ProductDerived>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& operator-=(const ScaledProduct<ProductDerived>& other)
- {
- return assignProduct(other,-other.alpha());
+ EIGEN_STRONG_INLINE void _solve_impl(const RhsType &rhs, DstType &dst) const {
+ if(!(internal::is_same<RhsType,DstType>::value && internal::extract_data(dst) == internal::extract_data(rhs)))
+ dst = rhs;
+ this->solveInPlace(dst);
}
-
- protected:
-
- template<typename ProductDerived, typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE TriangularView& assignProduct(const ProductBase<ProductDerived, Lhs,Rhs>& prod, const Scalar& alpha);
- MatrixTypeNested m_matrix;
+ template<typename ProductType>
+ EIGEN_DEVICE_FUNC
+ EIGEN_STRONG_INLINE TriangularViewType& _assignProduct(const ProductType& prod, const Scalar& alpha);
};
/***************************************************************************
* Implementation of triangular evaluation/assignment
***************************************************************************/
-namespace internal {
-
-template<typename Derived1, typename Derived2, unsigned int Mode, int UnrollCount, bool ClearOpposite>
-struct triangular_assignment_selector
-{
- enum {
- col = (UnrollCount-1) / Derived1::RowsAtCompileTime,
- row = (UnrollCount-1) % Derived1::RowsAtCompileTime
- };
-
- typedef typename Derived1::Scalar Scalar;
-
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- triangular_assignment_selector<Derived1, Derived2, Mode, UnrollCount-1, ClearOpposite>::run(dst, src);
-
- eigen_assert( Mode == Upper || Mode == Lower
- || Mode == StrictlyUpper || Mode == StrictlyLower
- || Mode == UnitUpper || Mode == UnitLower);
- if((Mode == Upper && row <= col)
- || (Mode == Lower && row >= col)
- || (Mode == StrictlyUpper && row < col)
- || (Mode == StrictlyLower && row > col)
- || (Mode == UnitUpper && row < col)
- || (Mode == UnitLower && row > col))
- dst.copyCoeff(row, col, src);
- else if(ClearOpposite)
- {
- if (Mode&UnitDiag && row==col)
- dst.coeffRef(row, col) = Scalar(1);
- else
- dst.coeffRef(row, col) = Scalar(0);
- }
- }
-};
-
-// prevent buggy user code from causing an infinite recursion
-template<typename Derived1, typename Derived2, unsigned int Mode, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Mode, 0, ClearOpposite>
-{
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &, const Derived2 &) {}
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Upper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- typedef typename Derived1::Scalar Scalar;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows()-1);
- for(Index i = 0; i <= maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = Scalar(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, Lower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = j; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- Index maxi = (std::min)(j, dst.rows());
- if (ClearOpposite)
- for(Index i = 0; i < maxi; ++i)
- dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, StrictlyUpper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- typedef typename Derived1::Scalar Scalar;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = 0; i < maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- for(Index i = maxi; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = Scalar(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, StrictlyLower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- for(Index i = j+1; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- Index maxi = (std::min)(j, dst.rows()-1);
- if (ClearOpposite)
- for(Index i = 0; i <= maxi; ++i)
- dst.coeffRef(i, j) = static_cast<typename Derived1::Scalar>(0);
- }
- }
-};
-
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, UnitUpper, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = 0; i < maxi; ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- {
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.coeffRef(i, j) = 0;
- }
- }
- dst.diagonal().setOnes();
- }
-};
-template<typename Derived1, typename Derived2, bool ClearOpposite>
-struct triangular_assignment_selector<Derived1, Derived2, UnitLower, Dynamic, ClearOpposite>
-{
- typedef typename Derived1::Index Index;
- EIGEN_DEVICE_FUNC
- static inline void run(Derived1 &dst, const Derived2 &src)
- {
- for(Index j = 0; j < dst.cols(); ++j)
- {
- Index maxi = (std::min)(j, dst.rows());
- for(Index i = maxi+1; i < dst.rows(); ++i)
- dst.copyCoeff(i, j, src);
- if (ClearOpposite)
- {
- for(Index i = 0; i < maxi; ++i)
- dst.coeffRef(i, j) = 0;
- }
- }
- dst.diagonal().setOnes();
- }
-};
-
-} // end namespace internal
-
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
-TriangularView<MatrixType, Mode>::operator=(const MatrixBase<OtherDerived>& other)
+TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const MatrixBase<OtherDerived>& other)
{
- if(OtherDerived::Flags & EvalBeforeAssigningBit)
- {
- typename internal::plain_matrix_type<OtherDerived>::type other_evaluated(other.rows(), other.cols());
- other_evaluated.template triangularView<Mode>().lazyAssign(other.derived());
- lazyAssign(other_evaluated);
- }
- else
- lazyAssign(other.derived());
- return *this;
+ internal::call_assignment_no_alias(derived(), other.derived(), internal::assign_op<Scalar>());
+ return derived();
}
// FIXME should we keep that possibility
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
-void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>& other)
+void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const MatrixBase<OtherDerived>& other)
{
- enum {
- unroll = MatrixType::SizeAtCompileTime != Dynamic
- && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
- && MatrixType::SizeAtCompileTime*internal::traits<OtherDerived>::CoeffReadCost/2 <= EIGEN_UNROLLING_LIMIT
- };
- eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
-
- internal::triangular_assignment_selector
- <MatrixType, OtherDerived, int(Mode),
- unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
- false // do not change the opposite triangular part
- >::run(m_matrix.const_cast_derived(), other.derived());
+ internal::call_assignment(derived().noalias(), other.template triangularView<Mode>());
}
@@ -669,37 +502,19 @@ void TriangularView<MatrixType, Mode>::lazyAssign(const MatrixBase<OtherDerived>
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
inline TriangularView<MatrixType, Mode>&
-TriangularView<MatrixType, Mode>::operator=(const TriangularBase<OtherDerived>& other)
+TriangularViewImpl<MatrixType, Mode, Dense>::operator=(const TriangularBase<OtherDerived>& other)
{
eigen_assert(Mode == int(OtherDerived::Mode));
- if(internal::traits<OtherDerived>::Flags & EvalBeforeAssigningBit)
- {
- typename OtherDerived::DenseMatrixType other_evaluated(other.rows(), other.cols());
- other_evaluated.template triangularView<Mode>().lazyAssign(other.derived().nestedExpression());
- lazyAssign(other_evaluated);
- }
- else
- lazyAssign(other.derived().nestedExpression());
- return *this;
+ internal::call_assignment(derived(), other.derived());
+ return derived();
}
template<typename MatrixType, unsigned int Mode>
template<typename OtherDerived>
-void TriangularView<MatrixType, Mode>::lazyAssign(const TriangularBase<OtherDerived>& other)
+void TriangularViewImpl<MatrixType, Mode, Dense>::lazyAssign(const TriangularBase<OtherDerived>& other)
{
- enum {
- unroll = MatrixType::SizeAtCompileTime != Dynamic
- && internal::traits<OtherDerived>::CoeffReadCost != Dynamic
- && MatrixType::SizeAtCompileTime * internal::traits<OtherDerived>::CoeffReadCost / 2
- <= EIGEN_UNROLLING_LIMIT
- };
- eigen_assert(m_matrix.rows() == other.rows() && m_matrix.cols() == other.cols());
-
- internal::triangular_assignment_selector
- <MatrixType, OtherDerived, int(Mode),
- unroll ? int(MatrixType::SizeAtCompileTime) : Dynamic,
- false // preserve the opposite triangular part
- >::run(m_matrix.const_cast_derived(), other.derived().nestedExpression());
+ eigen_assert(Mode == int(OtherDerived::Mode));
+ internal::call_assignment(derived().noalias(), other.derived());
}
/***************************************************************************
@@ -722,27 +537,6 @@ void TriangularBase<Derived>::evalTo(MatrixBase<DenseDerived> &other) const
evalToLazy(other.derived());
}
-/** Assigns a triangular or selfadjoint matrix to a dense matrix.
- * If the matrix is triangular, the opposite part is set to zero. */
-template<typename Derived>
-template<typename DenseDerived>
-void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
-{
- enum {
- unroll = DenseDerived::SizeAtCompileTime != Dynamic
- && internal::traits<Derived>::CoeffReadCost != Dynamic
- && DenseDerived::SizeAtCompileTime * internal::traits<Derived>::CoeffReadCost / 2
- <= EIGEN_UNROLLING_LIMIT
- };
- other.derived().resize(this->rows(), this->cols());
-
- internal::triangular_assignment_selector
- <DenseDerived, typename internal::traits<Derived>::MatrixTypeNestedCleaned, Derived::Mode,
- unroll ? int(DenseDerived::SizeAtCompileTime) : Dynamic,
- true // clear the opposite triangular part
- >::run(other.derived(), derived().nestedExpression());
-}
-
/***************************************************************************
* Implementation of TriangularView methods
***************************************************************************/
@@ -767,7 +561,7 @@ template<unsigned int Mode>
typename MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView()
{
- return derived();
+ return typename TriangularViewReturnType<Mode>::Type(derived());
}
/** This is the const version of MatrixBase::triangularView() */
@@ -776,7 +570,7 @@ template<unsigned int Mode>
typename MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type
MatrixBase<Derived>::triangularView() const
{
- return derived();
+ return typename ConstTriangularViewReturnType<Mode>::Type(derived());
}
/** \returns true if *this is approximately equal to an upper triangular matrix,
@@ -831,6 +625,293 @@ bool MatrixBase<Derived>::isLowerTriangular(const RealScalar& prec) const
return true;
}
+
+/***************************************************************************
+****************************************************************************
+* Evaluators and Assignment of triangular expressions
+***************************************************************************
+***************************************************************************/
+
+namespace internal {
+
+
+// TODO currently a triangular expression has the form TriangularView<.,.>
+// in the future triangular-ness should be defined by the expression traits
+// such that Transpose<TriangularView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
+template<typename MatrixType, unsigned int Mode>
+struct evaluator_traits<TriangularView<MatrixType,Mode> >
+{
+ typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
+ typedef typename glue_shapes<typename evaluator_traits<MatrixType>::Shape, TriangularShape>::type Shape;
+
+ // 1 if assignment A = B assumes aliasing when B is of type T and thus B needs to be evaluated into a
+ // temporary; 0 if not.
+ static const int AssumeAliasing = 0;
+};
+
+template<typename MatrixType, unsigned int Mode>
+struct unary_evaluator<TriangularView<MatrixType,Mode>, IndexBased>
+ : evaluator<typename internal::remove_all<MatrixType>::type>
+{
+ typedef TriangularView<MatrixType,Mode> XprType;
+ typedef evaluator<typename internal::remove_all<MatrixType>::type> Base;
+ typedef evaluator<XprType> type;
+ unary_evaluator(const XprType &xpr) : Base(xpr.nestedExpression()) {}
+};
+
+// Additional assignment kinds:
+struct Triangular2Triangular {};
+struct Triangular2Dense {};
+struct Dense2Triangular {};
+
+
+template<typename Kernel, unsigned int Mode, int UnrollCount, bool ClearOpposite> struct triangular_assignment_loop;
+
+
+/** \internal Specialization of the dense assignment kernel for triangular matrices.
+ * The main difference is that the triangular, diagonal, and opposite parts are processed through three different functions.
+ * \tparam UpLo must be either Lower or Upper
+ * \tparam Mode must be either 0, UnitDiag, ZeroDiag, or SelfAdjoint
+ */
+template<int UpLo, int Mode, int SetOpposite, typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
+class triangular_dense_assignment_kernel : public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version>
+{
+protected:
+ typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, Version> Base;
+ typedef typename Base::DstXprType DstXprType;
+ typedef typename Base::SrcXprType SrcXprType;
+ using Base::m_dst;
+ using Base::m_src;
+ using Base::m_functor;
+public:
+
+ typedef typename Base::DstEvaluatorType DstEvaluatorType;
+ typedef typename Base::SrcEvaluatorType SrcEvaluatorType;
+ typedef typename Base::Scalar Scalar;
+ typedef typename Base::Index Index;
+ typedef typename Base::AssignmentTraits AssignmentTraits;
+
+
+ EIGEN_DEVICE_FUNC triangular_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
+ : Base(dst, src, func, dstExpr)
+ {}
+
+#ifdef EIGEN_INTERNAL_DEBUGGING
+ EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
+ {
+ eigen_internal_assert(row!=col);
+ Base::assignCoeff(row,col);
+ }
+#else
+ using Base::assignCoeff;
+#endif
+
+ EIGEN_DEVICE_FUNC void assignDiagonalCoeff(Index id)
+ {
+ if(Mode==UnitDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(1));
+ else if(Mode==ZeroDiag && SetOpposite) m_functor.assignCoeff(m_dst.coeffRef(id,id), Scalar(0));
+ else if(Mode==0) Base::assignCoeff(id,id);
+ }
+
+ EIGEN_DEVICE_FUNC void assignOppositeCoeff(Index row, Index col)
+ {
+ eigen_internal_assert(row!=col);
+ if(SetOpposite)
+ m_functor.assignCoeff(m_dst.coeffRef(row,col), Scalar(0));
+ }
+};
+
+template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType, typename Functor>
+EIGEN_DEVICE_FUNC void call_triangular_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func)
+{
+ eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
+
+ typedef typename evaluator<DstXprType>::type DstEvaluatorType;
+ typedef typename evaluator<SrcXprType>::type SrcEvaluatorType;
+
+ DstEvaluatorType dstEvaluator(dst);
+ SrcEvaluatorType srcEvaluator(src);
+
+ typedef triangular_dense_assignment_kernel< Mode&(Lower|Upper),Mode&(UnitDiag|ZeroDiag|SelfAdjoint),SetOpposite,
+ DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
+ Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
+
+ enum {
+ unroll = DstXprType::SizeAtCompileTime != Dynamic
+ && SrcEvaluatorType::CoeffReadCost != Dynamic
+ && DstXprType::SizeAtCompileTime * SrcEvaluatorType::CoeffReadCost / 2 <= EIGEN_UNROLLING_LIMIT
+ };
+
+ triangular_assignment_loop<Kernel, Mode, unroll ? int(DstXprType::SizeAtCompileTime) : Dynamic, SetOpposite>::run(kernel);
+}
+
+template<int Mode, bool SetOpposite, typename DstXprType, typename SrcXprType>
+EIGEN_DEVICE_FUNC void call_triangular_assignment_loop(const DstXprType& dst, const SrcXprType& src)
+{
+ call_triangular_assignment_loop<Mode,SetOpposite>(dst, src, internal::assign_op<typename DstXprType::Scalar>());
+}
+
+template<> struct AssignmentKind<TriangularShape,TriangularShape> { typedef Triangular2Triangular Kind; };
+template<> struct AssignmentKind<DenseShape,TriangularShape> { typedef Triangular2Dense Kind; };
+template<> struct AssignmentKind<TriangularShape,DenseShape> { typedef Dense2Triangular Kind; };
+
+
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Triangular, Scalar>
+{
+ EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ eigen_assert(int(DstXprType::Mode) == int(SrcXprType::Mode));
+
+ call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
+ }
+};
+
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Triangular2Dense, Scalar>
+{
+ EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ call_triangular_assignment_loop<SrcXprType::Mode, (SrcXprType::Mode&SelfAdjoint)==0>(dst, src, func);
+ }
+};
+
+template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
+struct Assignment<DstXprType, SrcXprType, Functor, Dense2Triangular, Scalar>
+{
+ EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
+ {
+ call_triangular_assignment_loop<DstXprType::Mode, false>(dst, src, func);
+ }
+};
+
+
+template<typename Kernel, unsigned int Mode, int UnrollCount, bool SetOpposite>
+struct triangular_assignment_loop
+{
+ // FIXME: this is not very clean, perhaps this information should be provided by the kernel?
+ typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
+ typedef typename DstEvaluatorType::XprType DstXprType;
+
+ enum {
+ col = (UnrollCount-1) / DstXprType::RowsAtCompileTime,
+ row = (UnrollCount-1) % DstXprType::RowsAtCompileTime
+ };
+
+ typedef typename Kernel::Scalar Scalar;
+
+ EIGEN_DEVICE_FUNC
+ static inline void run(Kernel &kernel)
+ {
+ triangular_assignment_loop<Kernel, Mode, UnrollCount-1, SetOpposite>::run(kernel);
+
+ if(row==col)
+ kernel.assignDiagonalCoeff(row);
+ else if( ((Mode&Lower) && row>col) || ((Mode&Upper) && row<col) )
+ kernel.assignCoeff(row,col);
+ else if(SetOpposite)
+ kernel.assignOppositeCoeff(row,col);
+ }
+};
+
+// prevent buggy user code from causing an infinite recursion
+template<typename Kernel, unsigned int Mode, bool SetOpposite>
+struct triangular_assignment_loop<Kernel, Mode, 0, SetOpposite>
+{
+ EIGEN_DEVICE_FUNC
+ static inline void run(Kernel &) {}
+};
+
+
+
+// TODO: experiment with a recursive assignment procedure splitting the current
+// triangular part into one rectangular and two triangular parts.
+
+
+template<typename Kernel, unsigned int Mode, bool SetOpposite>
+struct triangular_assignment_loop<Kernel, Mode, Dynamic, SetOpposite>
+{
+ typedef typename Kernel::Index Index;
+ typedef typename Kernel::Scalar Scalar;
+ EIGEN_DEVICE_FUNC
+ static inline void run(Kernel &kernel)
+ {
+ for(Index j = 0; j < kernel.cols(); ++j)
+ {
+ Index maxi = (std::min)(j, kernel.rows());
+ Index i = 0;
+ if (((Mode&Lower) && SetOpposite) || (Mode&Upper))
+ {
+ for(; i < maxi; ++i)
+ if(Mode&Upper) kernel.assignCoeff(i, j);
+ else kernel.assignOppositeCoeff(i, j);
+ }
+ else
+ i = maxi;
+
+ if(i<kernel.rows()) // then i==j
+ kernel.assignDiagonalCoeff(i++);
+
+ if (((Mode&Upper) && SetOpposite) || (Mode&Lower))
+ {
+ for(; i < kernel.rows(); ++i)
+ if(Mode&Lower) kernel.assignCoeff(i, j);
+ else kernel.assignOppositeCoeff(i, j);
+ }
+ }
+ }
+};
+
+} // end namespace internal
+
+/** Assigns a triangular or selfadjoint matrix to a dense matrix.
+ * If the matrix is triangular, the opposite part is set to zero. */
+template<typename Derived>
+template<typename DenseDerived>
+void TriangularBase<Derived>::evalToLazy(MatrixBase<DenseDerived> &other) const
+{
+ other.derived().resize(this->rows(), this->cols());
+ internal::call_triangular_assignment_loop<Derived::Mode,(Derived::Mode&SelfAdjoint)==0 /* SetOpposite */>(other.derived(), derived().nestedExpression());
+}
+
+namespace internal {
+
+// Triangular = Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::assign_op<Scalar>, Dense2Triangular, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
+ {
+ dst.setZero();
+ dst._assignProduct(src, 1);
+ }
+};
+
+// Triangular += Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::add_assign_op<Scalar>, Dense2Triangular, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar> &)
+ {
+ dst._assignProduct(src, 1);
+ }
+};
+
+// Triangular -= Product
+template< typename DstXprType, typename Lhs, typename Rhs, typename Scalar>
+struct Assignment<DstXprType, Product<Lhs,Rhs,DefaultProduct>, internal::sub_assign_op<Scalar>, Dense2Triangular, Scalar>
+{
+ typedef Product<Lhs,Rhs,DefaultProduct> SrcXprType;
+ static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar> &)
+ {
+ dst._assignProduct(src, -1);
+ }
+};
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_TRIANGULARMATRIX_H
diff --git a/Eigen/src/Core/VectorwiseOp.h b/Eigen/src/Core/VectorwiseOp.h
index 52eb4f604..a626310ec 100644
--- a/Eigen/src/Core/VectorwiseOp.h
+++ b/Eigen/src/Core/VectorwiseOp.h
@@ -48,25 +48,15 @@ struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
ColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::ColsAtCompileTime,
MaxRowsAtCompileTime = Direction==Vertical ? 1 : MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
- Flags0 = (unsigned int)_MatrixTypeNested::Flags & HereditaryBits,
- Flags = (Flags0 & ~RowMajorBit) | (RowsAtCompileTime == 1 ? RowMajorBit : 0),
+ Flags = RowsAtCompileTime == 1 ? RowMajorBit : 0,
TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime
};
- #if EIGEN_GNUC_AT_LEAST(3,4)
- typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
- #else
- typedef typename MemberOp::template Cost<InputScalar,TraversalSize> CostOpType;
- #endif
- enum {
- CoeffReadCost = TraversalSize==Dynamic ? Dynamic
- : TraversalSize * traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
- };
};
}
template< typename MatrixType, typename MemberOp, int Direction>
-class PartialReduxExpr : internal::no_assignment_operator,
- public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type
+class PartialReduxExpr : public internal::dense_xpr_base< PartialReduxExpr<MatrixType, MemberOp, Direction> >::type,
+ internal::no_assignment_operator
{
public:
@@ -75,7 +65,7 @@ class PartialReduxExpr : internal::no_assignment_operator,
typedef typename internal::traits<PartialReduxExpr>::MatrixTypeNested MatrixTypeNested;
typedef typename internal::traits<PartialReduxExpr>::_MatrixTypeNested _MatrixTypeNested;
- PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
+ explicit PartialReduxExpr(const MatrixType& mat, const MemberOp& func = MemberOp())
: m_matrix(mat), m_functor(func) {}
Index rows() const { return (Direction==Vertical ? 1 : m_matrix.rows()); }
@@ -138,7 +128,7 @@ struct member_redux {
>::type result_type;
template<typename _Scalar, int Size> struct Cost
{ enum { value = (Size-1) * functor_traits<BinaryOp>::Cost }; };
- member_redux(const BinaryOp func) : m_functor(func) {}
+ explicit member_redux(const BinaryOp func) : m_functor(func) {}
template<typename Derived>
inline result_type operator()(const DenseBase<Derived>& mat) const
{ return mat.redux(m_functor); }
@@ -175,10 +165,10 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
typedef typename internal::remove_all<ExpressionTypeNested>::type ExpressionTypeNestedCleaned;
template<template<typename _Scalar> class Functor,
- typename Scalar=typename internal::traits<ExpressionType>::Scalar> struct ReturnType
+ typename Scalar_=Scalar> struct ReturnType
{
typedef PartialReduxExpr<ExpressionType,
- Functor<Scalar>,
+ Functor<Scalar_>,
Direction
> Type;
};
@@ -186,7 +176,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
template<typename BinaryOp> struct ReduxReturnType
{
typedef PartialReduxExpr<ExpressionType,
- internal::member_redux<BinaryOp,typename internal::traits<ExpressionType>::Scalar>,
+ internal::member_redux<BinaryOp,Scalar>,
Direction
> Type;
};
@@ -259,7 +249,7 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
public:
- inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
+ explicit inline VectorwiseOp(ExpressionType& matrix) : m_matrix(matrix) {}
/** \internal */
inline const ExpressionType& _expression() const { return m_matrix; }
@@ -274,7 +264,22 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
template<typename BinaryOp>
const typename ReduxReturnType<BinaryOp>::Type
redux(const BinaryOp& func = BinaryOp()) const
- { return typename ReduxReturnType<BinaryOp>::Type(_expression(), func); }
+ { return typename ReduxReturnType<BinaryOp>::Type(_expression(), internal::member_redux<BinaryOp,Scalar>(func)); }
+
+ typedef typename ReturnType<internal::member_minCoeff>::Type MinCoeffReturnType;
+ typedef typename ReturnType<internal::member_maxCoeff>::Type MaxCoeffReturnType;
+ typedef typename ReturnType<internal::member_squaredNorm,RealScalar>::Type SquaredNormReturnType;
+ typedef typename ReturnType<internal::member_norm,RealScalar>::Type NormReturnType;
+ typedef typename ReturnType<internal::member_blueNorm,RealScalar>::Type BlueNormReturnType;
+ typedef typename ReturnType<internal::member_stableNorm,RealScalar>::Type StableNormReturnType;
+ typedef typename ReturnType<internal::member_hypotNorm,RealScalar>::Type HypotNormReturnType;
+ typedef typename ReturnType<internal::member_sum>::Type SumReturnType;
+ typedef typename ReturnType<internal::member_mean>::Type MeanReturnType;
+ typedef typename ReturnType<internal::member_all>::Type AllReturnType;
+ typedef typename ReturnType<internal::member_any>::Type AnyReturnType;
+ typedef PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> CountReturnType;
+ typedef typename ReturnType<internal::member_prod>::Type ProdReturnType;
+ typedef Reverse<ExpressionType, Direction> ReverseReturnType;
/** \returns a row (or column) vector expression of the smallest coefficient
* of each column (or row) of the referenced expression.
@@ -285,8 +290,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude PartialRedux_minCoeff.out
*
* \sa DenseBase::minCoeff() */
- const typename ReturnType<internal::member_minCoeff>::Type minCoeff() const
- { return _expression(); }
+ const MinCoeffReturnType minCoeff() const
+ { return MinCoeffReturnType(_expression()); }
/** \returns a row (or column) vector expression of the largest coefficient
* of each column (or row) of the referenced expression.
@@ -297,8 +302,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude PartialRedux_maxCoeff.out
*
* \sa DenseBase::maxCoeff() */
- const typename ReturnType<internal::member_maxCoeff>::Type maxCoeff() const
- { return _expression(); }
+ const MaxCoeffReturnType maxCoeff() const
+ { return MaxCoeffReturnType(_expression()); }
/** \returns a row (or column) vector expression of the squared norm
* of each column (or row) of the referenced expression.
@@ -308,8 +313,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude PartialRedux_squaredNorm.out
*
* \sa DenseBase::squaredNorm() */
- const typename ReturnType<internal::member_squaredNorm,RealScalar>::Type squaredNorm() const
- { return _expression(); }
+ const SquaredNormReturnType squaredNorm() const
+ { return SquaredNormReturnType(_expression()); }
/** \returns a row (or column) vector expression of the norm
* of each column (or row) of the referenced expression.
@@ -319,8 +324,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude PartialRedux_norm.out
*
* \sa DenseBase::norm() */
- const typename ReturnType<internal::member_norm,RealScalar>::Type norm() const
- { return _expression(); }
+ const NormReturnType norm() const
+ { return NormReturnType(_expression()); }
/** \returns a row (or column) vector expression of the norm
@@ -329,8 +334,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* This is a vector with real entries, even if the original matrix has complex entries.
*
* \sa DenseBase::blueNorm() */
- const typename ReturnType<internal::member_blueNorm,RealScalar>::Type blueNorm() const
- { return _expression(); }
+ const BlueNormReturnType blueNorm() const
+ { return BlueNormReturnType(_expression()); }
/** \returns a row (or column) vector expression of the norm
@@ -339,8 +344,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* This is a vector with real entries, even if the original matrix has complex entries.
*
* \sa DenseBase::stableNorm() */
- const typename ReturnType<internal::member_stableNorm,RealScalar>::Type stableNorm() const
- { return _expression(); }
+ const StableNormReturnType stableNorm() const
+ { return StableNormReturnType(_expression()); }
/** \returns a row (or column) vector expression of the norm
@@ -349,8 +354,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* This is a vector with real entries, even if the original matrix has complex entries.
*
* \sa DenseBase::hypotNorm() */
- const typename ReturnType<internal::member_hypotNorm,RealScalar>::Type hypotNorm() const
- { return _expression(); }
+ const HypotNormReturnType hypotNorm() const
+ { return HypotNormReturnType(_expression()); }
/** \returns a row (or column) vector expression of the sum
* of each column (or row) of the referenced expression.
@@ -359,31 +364,31 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude PartialRedux_sum.out
*
* \sa DenseBase::sum() */
- const typename ReturnType<internal::member_sum>::Type sum() const
- { return _expression(); }
+ const SumReturnType sum() const
+ { return SumReturnType(_expression()); }
/** \returns a row (or column) vector expression of the mean
* of each column (or row) of the referenced expression.
*
* \sa DenseBase::mean() */
- const typename ReturnType<internal::member_mean>::Type mean() const
- { return _expression(); }
+ const MeanReturnType mean() const
+ { return MeanReturnType(_expression()); }
/** \returns a row (or column) vector expression representing
* whether \b all coefficients of each respective column (or row) are \c true.
* This expression can be assigned to a vector with entries of type \c bool.
*
* \sa DenseBase::all() */
- const typename ReturnType<internal::member_all>::Type all() const
- { return _expression(); }
+ const AllReturnType all() const
+ { return AllReturnType(_expression()); }
/** \returns a row (or column) vector expression representing
* whether \b at \b least one coefficient of each respective column (or row) is \c true.
* This expression can be assigned to a vector with entries of type \c bool.
*
* \sa DenseBase::any() */
- const typename ReturnType<internal::member_any>::Type any() const
- { return _expression(); }
+ const AnyReturnType any() const
+ { return Any(_expression()); }
/** \returns a row (or column) vector expression representing
* the number of \c true coefficients of each respective column (or row).
@@ -394,8 +399,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude PartialRedux_count.out
*
* \sa DenseBase::count() */
- const PartialReduxExpr<ExpressionType, internal::member_count<Index>, Direction> count() const
- { return _expression(); }
+ const CountReturnType count() const
+ { return CountReturnType(_expression()); }
/** \returns a row (or column) vector expression of the product
* of each column (or row) of the referenced expression.
@@ -404,8 +409,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude PartialRedux_prod.out
*
* \sa DenseBase::prod() */
- const typename ReturnType<internal::member_prod>::Type prod() const
- { return _expression(); }
+ const ProdReturnType prod() const
+ { return ProdReturnType(_expression()); }
/** \returns a matrix expression
@@ -415,8 +420,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
* Output: \verbinclude Vectorwise_reverse.out
*
* \sa DenseBase::reverse() */
- const Reverse<ExpressionType, Direction> reverse() const
- { return Reverse<ExpressionType, Direction>( _expression() ); }
+ const ReverseReturnType reverse() const
+ { return ReverseReturnType( _expression() ); }
typedef Replicate<ExpressionType,Direction==Vertical?Dynamic:1,Direction==Horizontal?Dynamic:1> ReplicateReturnType;
const ReplicateReturnType replicate(Index factor) const;
@@ -560,7 +565,8 @@ template<typename ExpressionType, int Direction> class VectorwiseOp
/////////// Geometry module ///////////
- Homogeneous<ExpressionType,Direction> homogeneous() const;
+ typedef Homogeneous<ExpressionType,Direction> HomogeneousReturnType;
+ HomogeneousReturnType homogeneous() const;
typedef typename ExpressionType::PlainObject CrossReturnType;
template<typename OtherDerived>
@@ -605,7 +611,7 @@ template<typename Derived>
inline const typename DenseBase<Derived>::ConstColwiseReturnType
DenseBase<Derived>::colwise() const
{
- return derived();
+ return ConstColwiseReturnType(derived());
}
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
@@ -616,7 +622,7 @@ template<typename Derived>
inline typename DenseBase<Derived>::ColwiseReturnType
DenseBase<Derived>::colwise()
{
- return derived();
+ return ColwiseReturnType(derived());
}
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
@@ -630,7 +636,7 @@ template<typename Derived>
inline const typename DenseBase<Derived>::ConstRowwiseReturnType
DenseBase<Derived>::rowwise() const
{
- return derived();
+ return ConstRowwiseReturnType(derived());
}
/** \returns a writable VectorwiseOp wrapper of *this providing additional partial reduction operations
@@ -641,7 +647,7 @@ template<typename Derived>
inline typename DenseBase<Derived>::RowwiseReturnType
DenseBase<Derived>::rowwise()
{
- return derived();
+ return RowwiseReturnType(derived());
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/Visitor.h b/Eigen/src/Core/Visitor.h
index 6f4b9ec35..02bd4eff3 100644
--- a/Eigen/src/Core/Visitor.h
+++ b/Eigen/src/Core/Visitor.h
@@ -53,6 +53,33 @@ struct visitor_impl<Visitor, Derived, Dynamic>
}
};
+// evaluator adaptor
+template<typename XprType>
+class visitor_evaluator
+{
+public:
+ explicit visitor_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {}
+
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+
+ enum {
+ RowsAtCompileTime = XprType::RowsAtCompileTime,
+ CoeffReadCost = internal::evaluator<XprType>::CoeffReadCost
+ };
+
+ Index rows() const { return m_xpr.rows(); }
+ Index cols() const { return m_xpr.cols(); }
+ Index size() const { return m_xpr.size(); }
+
+ CoeffReturnType coeff(Index row, Index col) const
+ { return m_evaluator.coeff(row, col); }
+
+protected:
+ typename internal::evaluator<XprType>::nestedType m_evaluator;
+ const XprType &m_xpr;
+};
} // end namespace internal
/** Applies the visitor \a visitor to the whole coefficients of the matrix or vector.
@@ -76,14 +103,17 @@ template<typename Derived>
template<typename Visitor>
void DenseBase<Derived>::visit(Visitor& visitor) const
{
- enum { unroll = SizeAtCompileTime != Dynamic
- && CoeffReadCost != Dynamic
- && (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
- && SizeAtCompileTime * CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
- <= EIGEN_UNROLLING_LIMIT };
- return internal::visitor_impl<Visitor, Derived,
+ typedef typename internal::visitor_evaluator<Derived> ThisEvaluator;
+ ThisEvaluator thisEval(derived());
+
+ enum { unroll = SizeAtCompileTime != Dynamic
+ && ThisEvaluator::CoeffReadCost != Dynamic
+ && (SizeAtCompileTime == 1 || internal::functor_traits<Visitor>::Cost != Dynamic)
+ && SizeAtCompileTime * ThisEvaluator::CoeffReadCost + (SizeAtCompileTime-1) * internal::functor_traits<Visitor>::Cost
+ <= EIGEN_UNROLLING_LIMIT };
+ return internal::visitor_impl<Visitor, ThisEvaluator,
unroll ? int(SizeAtCompileTime) : Dynamic
- >::run(derived(), visitor);
+ >::run(thisEval, visitor);
}
namespace internal {
diff --git a/Eigen/src/Core/arch/AVX/PacketMath.h b/Eigen/src/Core/arch/AVX/PacketMath.h
index 1591458a7..e66d50649 100644
--- a/Eigen/src/Core/arch/AVX/PacketMath.h
+++ b/Eigen/src/Core/arch/AVX/PacketMath.h
@@ -22,9 +22,9 @@ namespace internal {
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
#endif
-#ifdef EIGEN_VECTORIZE_FMA
-#ifndef EIGEN_HAS_FUSED_MADD
-#define EIGEN_HAS_FUSED_MADD 1
+#ifdef __FMA__
+#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
#endif
@@ -137,7 +137,7 @@ template<> EIGEN_STRONG_INLINE Packet8i pdiv<Packet8i>(const Packet8i& /*a*/, co
#ifdef EIGEN_VECTORIZE_FMA
template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f& b, const Packet8f& c) {
-#if defined(__clang__) || defined(__GNUC__)
+#if EIGEN_COMP_GNUC || EIGEN_COMP_CLANG
// clang stupidly generates a vfmadd213ps instruction plus some vmovaps on registers,
// and gcc stupidly generates a vfmadd132ps instruction,
// so let's enforce it to generate a vfmadd231ps instruction since the most common use case is to accumulate
@@ -150,7 +150,7 @@ template<> EIGEN_STRONG_INLINE Packet8f pmadd(const Packet8f& a, const Packet8f&
#endif
}
template<> EIGEN_STRONG_INLINE Packet4d pmadd(const Packet4d& a, const Packet4d& b, const Packet4d& c) {
-#if defined(__clang__) || defined(__GNUC__)
+#if EIGEN_COMP_GNUC || EIGEN_COMP_CLANG
// see above
Packet4d res = c;
__asm__("vfmadd231pd %[a], %[b], %[c]" : [c] "+x" (res) : [a] "x" (a), [b] "x" (b));
diff --git a/Eigen/src/Core/arch/AltiVec/Complex.h b/Eigen/src/Core/arch/AltiVec/Complex.h
index 13b874d0c..f9b93a42b 100644
--- a/Eigen/src/Core/arch/AltiVec/Complex.h
+++ b/Eigen/src/Core/arch/AltiVec/Complex.h
@@ -7,23 +7,21 @@
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-#ifndef EIGEN_COMPLEX_ALTIVEC_H
-#define EIGEN_COMPLEX_ALTIVEC_H
+#ifndef EIGEN_COMPLEX32_ALTIVEC_H
+#define EIGEN_COMPLEX32_ALTIVEC_H
namespace Eigen {
namespace internal {
static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 };
-static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
-static Packet16uc p16uc_COMPLEX_IM = vec_sld(p16uc_DUPLICATE, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
-static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
-static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
-static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_COMPLEX_RE, (Packet4ui)p16uc_COMPLEX_IM);//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
-static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_COMPLEX_RE, (Packet4ui)p16uc_COMPLEX_IM);//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
-static Packet16uc p16uc_COMPLEX_MASK16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8);//{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
-static Packet16uc p16uc_COMPLEX_TRANSPOSE_0 = vec_add(p16uc_PSET_HI, p16uc_COMPLEX_MASK16);//{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
-static Packet16uc p16uc_COMPLEX_TRANSPOSE_1 = vec_add(p16uc_PSET_LO, p16uc_COMPLEX_MASK16);//{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
+#ifdef _BIG_ENDIAN
+static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2d_ZERO_, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
+static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_ZERO_, 8);//{ 0x8000000000000000, 0x0000000000000000 };
+#else
+static Packet2ul p2ul_CONJ_XOR1 = (Packet2ul) vec_sld((Packet4ui) p2l_ZERO, (Packet4ui) p2d_ZERO_, 8);//{ 0x8000000000000000, 0x0000000000000000 };
+static Packet2ul p2ul_CONJ_XOR2 = (Packet2ul) vec_sld((Packet4ui) p2d_ZERO_, (Packet4ui) p2l_ZERO, 8);//{ 0x8000000000000000, 0x0000000000000000 };
+#endif
//---------- float ----------
struct Packet2cf
@@ -65,7 +63,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<flo
res.v = pload<Packet4f>((const float *)&from);
else
res.v = ploadu<Packet4f>((const float *)&from);
- res.v = vec_perm(res.v, res.v, p16uc_PSET_HI);
+ res.v = vec_perm(res.v, res.v, p16uc_PSET64_HI);
return res;
}
@@ -95,16 +93,16 @@ template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, con
Packet4f v1, v2;
// Permute and multiply the real parts of a and b
- v1 = vec_perm(a.v, a.v, p16uc_COMPLEX_RE);
+ v1 = vec_perm(a.v, a.v, p16uc_PSET32_WODD);
// Get the imaginary parts of a
- v2 = vec_perm(a.v, a.v, p16uc_COMPLEX_IM);
+ v2 = vec_perm(a.v, a.v, p16uc_PSET32_WEVEN);
// multiply a_re * b
v1 = vec_madd(v1, b.v, p4f_ZERO);
// multiply a_im * b and get the conjugate result
v2 = vec_madd(v2, b.v, p4f_ZERO);
v2 = (Packet4f) vec_xor((Packet4ui)v2, p4ui_CONJ_XOR);
// permute back to a proper order
- v2 = vec_perm(v2, v2, p16uc_COMPLEX_REV);
+ v2 = vec_perm(v2, v2, p16uc_COMPLEX32_REV);
return Packet2cf(vec_add(v1, v2));
}
@@ -138,7 +136,7 @@ template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Pack
template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a)
{
Packet4f rev_a;
- rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX_REV2);
+ rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX32_REV2);
return Packet2cf(rev_a);
}
@@ -153,9 +151,13 @@ template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packe
template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
{
Packet4f b1, b2;
-
+#ifdef _BIG_ENDIAN
b1 = (Packet4f) vec_sld(vecs[0].v, vecs[1].v, 8);
b2 = (Packet4f) vec_sld(vecs[1].v, vecs[0].v, 8);
+#else
+ b1 = (Packet4f) vec_sld(vecs[1].v, vecs[0].v, 8);
+ b2 = (Packet4f) vec_sld(vecs[0].v, vecs[1].v, 8);
+#endif
b2 = (Packet4f) vec_sld(b2, b2, 8);
b2 = padd(b1, b2);
@@ -179,7 +181,11 @@ struct palign_impl<Offset,Packet2cf>
{
if (Offset==1)
{
+#ifdef _BIG_ENDIAN
first.v = vec_sld(first.v, second.v, 8);
+#else
+ first.v = vec_sld(second.v, first.v, 8);
+#endif
}
}
};
@@ -222,23 +228,203 @@ template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, con
// TODO optimize it for AltiVec
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
Packet4f s = vec_madd(b.v, b.v, p4f_ZERO);
- return Packet2cf(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX_REV))));
+ return Packet2cf(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX32_REV))));
}
template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip<Packet2cf>(const Packet2cf& x)
{
- return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX_REV));
+ return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX32_REV));
}
EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet2cf,2>& kernel)
{
- Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_COMPLEX_TRANSPOSE_0);
- kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_COMPLEX_TRANSPOSE_1);
+ Packet4f tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
+ kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
kernel.packet[0].v = tmp;
}
+//---------- double ----------
+#ifdef __VSX__
+struct Packet1cd
+{
+ EIGEN_STRONG_INLINE Packet1cd() {}
+ EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
+ Packet2d v;
+};
+
+template<> struct packet_traits<std::complex<double> > : default_packet_traits
+{
+ typedef Packet1cd type;
+ typedef Packet1cd half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 0,
+ size = 1,
+ HasHalfPacket = 0,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1}; typedef Packet1cd half; };
+
+template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
+template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
+{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
+
+template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, DenseIndex stride)
+{
+ std::complex<double> EIGEN_ALIGN16 af[2];
+ af[0] = from[0*stride];
+ af[1] = from[1*stride];
+ return pload<Packet1cd>(af);
+}
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, DenseIndex stride)
+{
+ std::complex<double> EIGEN_ALIGN16 af[2];
+ pstore<std::complex<double> >(af, from);
+ to[0*stride] = af[0];
+ to[1*stride] = af[1];
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_add(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_sub(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(Packet2d(a.v))); }
+template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd((Packet2d)vec_xor((Packet2d)a.v, (Packet2d)p2ul_CONJ_XOR2)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ Packet2d a_re, a_im, v1, v2;
+
+ // Permute and multiply the real parts of a and b
+ a_re = vec_perm(a.v, a.v, p16uc_PSET64_HI);
+ // Get the imaginary parts of a
+ a_im = vec_perm(a.v, a.v, p16uc_PSET64_LO);
+ // multiply a_re * b
+ v1 = vec_madd(a_re, b.v, p2d_ZERO);
+ // multiply a_im * b and get the conjugate result
+ v2 = vec_madd(a_im, b.v, p2d_ZERO);
+ v2 = (Packet2d) vec_sld((Packet4ui)v2, (Packet4ui)v2, 8);
+ v2 = (Packet2d) vec_xor((Packet2d)v2, (Packet2d) p2ul_CONJ_XOR1);
+
+ return Packet1cd(vec_add(v1, v2));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_or(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_xor(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(vec_and(a.v, vec_nor(b.v,b.v))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from)
+{
+ return pset1<Packet1cd>(*from);
+}
+
+template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { vec_dstt((long *)addr, DST_CTRL(2,2,32), DST_CHAN); }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
+{
+ std::complex<double> EIGEN_ALIGN16 res[2];
+ pstore<std::complex<double> >(res, a);
+
+ return res[0];
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a)
+{
+ return pfirst(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs)
+{
+ return vecs[0];
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a)
+{
+ return pfirst(a);
+}
+
+template<int Offset>
+struct palign_impl<Offset,Packet1cd>
+{
+ static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
+ {
+ // FIXME is it sure we never have to align a Packet1cd?
+ // Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ return internal::pmul(a, pconj(b));
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ return internal::pmul(pconj(a), b);
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ return pconj(internal::pmul(a, b));
+ }
+};
+
+template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ // TODO optimize it for AltiVec
+ Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
+ Packet2d s = vec_madd(b.v, b.v, p2d_ZERO_);
+ return Packet1cd(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX32_REV))));
+}
+
+EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
+{
+ return Packet1cd(preverse(Packet2d(x.v)));
+}
+
+EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
+{
+ Packet2d tmp = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_HI);
+ kernel.packet[1].v = vec_perm(kernel.packet[0].v, kernel.packet[1].v, p16uc_TRANSPOSE64_LO);
+ kernel.packet[0].v = tmp;
+}
+#endif // __VSX__
} // end namespace internal
} // end namespace Eigen
-#endif // EIGEN_COMPLEX_ALTIVEC_H
+#endif // EIGEN_COMPLEX32_ALTIVEC_H
diff --git a/Eigen/src/Core/arch/AltiVec/PacketMath.h b/Eigen/src/Core/arch/AltiVec/PacketMath.h
index b43e8ace3..6b68fc7a5 100755
--- a/Eigen/src/Core/arch/AltiVec/PacketMath.h
+++ b/Eigen/src/Core/arch/AltiVec/PacketMath.h
@@ -18,17 +18,17 @@ namespace internal {
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 4
#endif
-#ifndef EIGEN_HAS_FUSED_MADD
-#define EIGEN_HAS_FUSED_MADD 1
+#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
#endif
-#ifndef EIGEN_HAS_FUSE_CJMADD
-#define EIGEN_HAS_FUSE_CJMADD 1
+#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
+#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
#endif
// NOTE Altivec has 32 registers, but Eigen only accepts a value of 8 or 16
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
-#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
+#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 32
#endif
typedef __vector float Packet4f;
@@ -50,22 +50,20 @@ typedef __vector unsigned char Packet16uc;
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
Packet4f p4f_##NAME = pset1<Packet4f>(X)
-#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
- Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
-
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
Packet4i p4i_##NAME = pset1<Packet4i>(X)
+#define _EIGEN_DECLARE_CONST_Packet2d(NAME,X) \
+ Packet2d p2d_##NAME = pset1<Packet2d>(X)
+
+#define _EIGEN_DECLARE_CONST_Packet2l(NAME,X) \
+ Packet2l p2l_##NAME = pset1<Packet2l>(X)
+
#define DST_CHAN 1
#define DST_CTRL(size, count, stride) (((size) << 24) | ((count) << 16) | (stride))
-// Define global static constants:
-static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 };
-static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
-static Packet16uc p16uc_REVERSE = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
-static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0); //{ 0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15}
-static Packet16uc p16uc_DUPLICATE = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7};
+// These constants are endian-agnostic
static _EIGEN_DECLARE_CONST_FAST_Packet4f(ZERO, 0); //{ 0.0, 0.0, 0.0, 0.0}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ZERO, 0); //{ 0, 0, 0, 0,}
static _EIGEN_DECLARE_CONST_FAST_Packet4i(ONE,1); //{ 1, 1, 1, 1}
@@ -74,6 +72,50 @@ static _EIGEN_DECLARE_CONST_FAST_Packet4i(MINUS1,-1); //{ -1, -1, -1, -1}
static Packet4f p4f_ONE = vec_ctf(p4i_ONE, 0); //{ 1.0, 1.0, 1.0, 1.0}
static Packet4f p4f_ZERO_ = (Packet4f) vec_sl((Packet4ui)p4i_MINUS1, (Packet4ui)p4i_MINUS1); //{ 0x80000000, 0x80000000, 0x80000000, 0x80000000}
+static Packet4f p4f_COUNTDOWN = { 0.0, 1.0, 2.0, 3.0 };
+static Packet4i p4i_COUNTDOWN = { 0, 1, 2, 3 };
+
+static Packet16uc p16uc_REVERSE32 = { 12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3 };
+static Packet16uc p16uc_DUPLICATE32_HI = { 0,1,2,3, 0,1,2,3, 4,5,6,7, 4,5,6,7 };
+
+// Mask alignment
+#ifdef __PPC64__
+#define _EIGEN_MASK_ALIGNMENT 0xfffffffffffffff0
+#else
+#define _EIGEN_MASK_ALIGNMENT 0xfffffff0
+#endif
+
+#define _EIGEN_ALIGNED_PTR(x) ((ptrdiff_t)(x) & _EIGEN_MASK_ALIGNMENT)
+
+// Handle endianness properly while loading constants
+// Define global static constants:
+#ifdef _BIG_ENDIAN
+static Packet16uc p16uc_FORWARD = vec_lvsl(0, (float*)0);
+static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
+static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
+static Packet16uc p16uc_PSET32_WEVEN = vec_sld(p16uc_DUPLICATE32_HI, (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
+static Packet16uc p16uc_HALF64_0_16 = vec_sld((Packet16uc)p4i_ZERO, vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 3), 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
+#else
+static Packet16uc p16uc_FORWARD = p16uc_REVERSE32;
+static Packet16uc p16uc_REVERSE64 = { 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
+static Packet16uc p16uc_PSET32_WODD = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 };
+static Packet16uc p16uc_PSET32_WEVEN = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 };
+static Packet16uc p16uc_HALF64_0_16 = vec_sld(vec_splat((Packet16uc) vec_abs(p4i_MINUS16), 0), (Packet16uc)p4i_ZERO, 8); //{ 0,0,0,0, 0,0,0,0, 16,16,16,16, 16,16,16,16};
+#endif // _BIG_ENDIAN
+
+static Packet16uc p16uc_PSET64_HI = (Packet16uc) vec_mergeh((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 };
+static Packet16uc p16uc_PSET64_LO = (Packet16uc) vec_mergel((Packet4ui)p16uc_PSET32_WODD, (Packet4ui)p16uc_PSET32_WEVEN); //{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 };
+static Packet16uc p16uc_TRANSPOSE64_HI = vec_add(p16uc_PSET64_HI, p16uc_HALF64_0_16); //{ 0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
+static Packet16uc p16uc_TRANSPOSE64_LO = vec_add(p16uc_PSET64_LO, p16uc_HALF64_0_16); //{ 8,9,10,11, 12,13,14,15, 24,25,26,27, 28,29,30,31};
+
+static Packet16uc p16uc_COMPLEX32_REV = vec_sld(p16uc_REVERSE32, p16uc_REVERSE32, 8); //{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 };
+
+#ifdef _BIG_ENDIAN
+static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
+#else
+static Packet16uc p16uc_COMPLEX32_REV2 = vec_sld(p16uc_PSET64_HI, p16uc_PSET64_LO, 8); //{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 };
+#endif // _BIG_ENDIAN
+
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
@@ -105,9 +147,22 @@ template<> struct packet_traits<int> : default_packet_traits
};
};
+
template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; typedef Packet4f half; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; typedef Packet4i half; };
-/*
+
+inline std::ostream & operator <<(std::ostream & s, const Packet16uc & v)
+{
+ union {
+ Packet16uc v;
+ unsigned char n[16];
+ } vt;
+ vt.v = v;
+ for (int i=0; i< 16; i++)
+ s << (int)vt.n[i] << ", ";
+ return s;
+}
+
inline std::ostream & operator <<(std::ostream & s, const Packet4f & v)
{
union {
@@ -140,7 +195,7 @@ inline std::ostream & operator <<(std::ostream & s, const Packet4ui & v)
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
}
-
+/*
inline std::ostream & operator <<(std::ostream & s, const Packetbi & v)
{
union {
@@ -150,14 +205,21 @@ inline std::ostream & operator <<(std::ostream & s, const Packetbi & v)
vt.v = v;
s << vt.n[0] << ", " << vt.n[1] << ", " << vt.n[2] << ", " << vt.n[3];
return s;
-}
-*/
+}*/
+
+
+// Need to define them first or we get specialization after instantiation errors
+template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
+template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
+
+template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
+template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) {
// Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
float EIGEN_ALIGN16 af[4];
af[0] = from;
- Packet4f vc = vec_ld(0, af);
+ Packet4f vc = pload<Packet4f>(af);
vc = vec_splat(vc, 0);
return vc;
}
@@ -165,17 +227,15 @@ template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) {
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) {
int EIGEN_ALIGN16 ai[4];
ai[0] = from;
- Packet4i vc = vec_ld(0, ai);
+ Packet4i vc = pload<Packet4i>(ai);
vc = vec_splat(vc, 0);
return vc;
}
-
-
template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4f>(const float *a,
Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3)
{
- a3 = vec_ld(0,a);
+ a3 = pload<Packet4f>(a);
a0 = vec_splat(a3, 0);
a1 = vec_splat(a3, 1);
a2 = vec_splat(a3, 2);
@@ -185,7 +245,7 @@ template<> EIGEN_STRONG_INLINE void
pbroadcast4<Packet4i>(const int *a,
Packet4i& a0, Packet4i& a1, Packet4i& a2, Packet4i& a3)
{
- a3 = vec_ld(0,a);
+ a3 = pload<Packet4i>(a);
a0 = vec_splat(a3, 0);
a1 = vec_splat(a3, 1);
a2 = vec_splat(a3, 2);
@@ -199,7 +259,7 @@ template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const floa
af[1] = from[1*stride];
af[2] = from[2*stride];
af[3] = from[3*stride];
- return vec_ld(0, af);
+ return pload<Packet4f>(af);
}
template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, DenseIndex stride)
{
@@ -208,12 +268,12 @@ template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* f
ai[1] = from[1*stride];
ai[2] = from[2*stride];
ai[3] = from[3*stride];
- return vec_ld(0, ai);
+ return pload<Packet4i>(ai);
}
template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, DenseIndex stride)
{
float EIGEN_ALIGN16 af[4];
- vec_st(from, 0, af);
+ pstore<float>(af, from);
to[0*stride] = af[0];
to[1*stride] = af[1];
to[2*stride] = af[2];
@@ -222,7 +282,7 @@ template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, co
template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, DenseIndex stride)
{
int EIGEN_ALIGN16 ai[4];
- vec_st(from, 0, ai);
+ pstore<int>((int *)ai, from);
to[0*stride] = ai[0];
to[1*stride] = ai[1];
to[2*stride] = ai[2];
@@ -283,7 +343,8 @@ template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const
*/
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
- Packet4f t, y_0, y_1, res;
+#ifndef __VSX__ // VSX actually provides a div instruction
+ Packet4f t, y_0, y_1;
// Altivec does not offer a divide instruction, we have to do a reciprocal approximation
y_0 = vec_re(b);
@@ -292,8 +353,10 @@ template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const
t = vec_nmsub(y_0, b, p4f_ONE);
y_1 = vec_madd(y_0, t, y_0);
- res = vec_madd(a, y_1, p4f_ZERO);
- return res;
+ return vec_madd(a, y_1, p4f_ZERO);
+#else
+ return vec_div(a, b);
+#endif
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
@@ -311,7 +374,6 @@ template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const
template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_max(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_max(a, b); }
-// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, b); }
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, b); }
@@ -324,13 +386,10 @@ template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const
template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return vec_and(a, vec_nor(b, b)); }
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vec_and(a, vec_nor(b, b)); }
-template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
-template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return vec_ld(0, from); }
-
+#ifdef _BIG_ENDIAN
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
{
EIGEN_DEBUG_ALIGNED_LOAD
- // Taken from http://developer.apple.com/hardwaredrivers/ve/alignment.html
Packet16uc MSQ, LSQ;
Packet16uc mask;
MSQ = vec_ld(0, (unsigned char *)from); // most significant quadword
@@ -350,25 +409,36 @@ template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
mask = vec_lvsl(0, from); // create the permute mask
return (Packet4i) vec_perm(MSQ, LSQ, mask); // align the data
}
+#else
+// We also need ot redefine little endian loading of Packet4i/Packet4f using VSX
+template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
+{
+ EIGEN_DEBUG_ALIGNED_LOAD
+ return (Packet4i) vec_vsx_ld((long)from & 15, (const int*) _EIGEN_ALIGNED_PTR(from));
+}
+template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
+{
+ EIGEN_DEBUG_ALIGNED_LOAD
+ return (Packet4f) vec_vsx_ld((long)from & 15, (const float*) _EIGEN_ALIGNED_PTR(from));
+}
+#endif
template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
{
Packet4f p;
if((ptrdiff_t(from) % 16) == 0) p = pload<Packet4f>(from);
else p = ploadu<Packet4f>(from);
- return vec_perm(p, p, p16uc_DUPLICATE);
+ return vec_perm(p, p, p16uc_DUPLICATE32_HI);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
{
Packet4i p;
if((ptrdiff_t(from) % 16) == 0) p = pload<Packet4i>(from);
else p = ploadu<Packet4i>(from);
- return vec_perm(p, p, p16uc_DUPLICATE);
+ return vec_perm(p, p, p16uc_DUPLICATE32_HI);
}
-template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
-template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st(from, 0, to); }
-
+#ifdef _BIG_ENDIAN
template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from)
{
EIGEN_DEBUG_UNALIGNED_STORE
@@ -405,15 +475,30 @@ template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& f
vec_st( LSQ, 15, (unsigned char *)to ); // Store the LSQ part first
vec_st( MSQ, 0, (unsigned char *)to ); // Store the MSQ part
}
+#else
+// We also need ot redefine little endian loading of Packet4i/Packet4f using VSX
+template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from)
+{
+ EIGEN_DEBUG_ALIGNED_STORE
+ vec_vsx_st(from, (long)to & 15, (int*) _EIGEN_ALIGNED_PTR(to));
+}
+template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from)
+{
+ EIGEN_DEBUG_ALIGNED_STORE
+ vec_vsx_st(from, (long)to & 15, (float*) _EIGEN_ALIGNED_PTR(to));
+}
+#endif
+#ifndef __VSX__
template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { vec_dstt(addr, DST_CTRL(2,2,32), DST_CHAN); }
+#endif
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int EIGEN_ALIGN16 x[4]; vec_st(a, 0, x); return x[0]; }
-template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return (Packet4f)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
-template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return (Packet4i)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE); }
+template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return (Packet4f)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE32); }
+template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return (Packet4i)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE32); }
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vec_abs(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vec_abs(a); }
@@ -460,7 +545,11 @@ template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
Packet4i sum;
sum = vec_sums(a, p4i_ZERO);
+#ifdef _BIG_ENDIAN
sum = vec_sld(sum, p4i_ZERO, 12);
+#else
+ sum = vec_sld(p4i_ZERO, sum, 4);
+#endif
return pfirst(sum);
}
@@ -547,8 +636,25 @@ struct palign_impl<Offset,Packet4f>
{
static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
{
- if (Offset!=0)
- first = vec_sld(first, second, Offset*4);
+#ifdef _BIG_ENDIAN
+ switch (Offset % 4) {
+ case 1:
+ first = vec_sld(first, second, 4); break;
+ case 2:
+ first = vec_sld(first, second, 8); break;
+ case 3:
+ first = vec_sld(first, second, 12); break;
+ }
+#else
+ switch (Offset % 4) {
+ case 1:
+ first = vec_sld(second, first, 12); break;
+ case 2:
+ first = vec_sld(second, first, 8); break;
+ case 3:
+ first = vec_sld(second, first, 4); break;
+ }
+#endif
}
};
@@ -557,8 +663,25 @@ struct palign_impl<Offset,Packet4i>
{
static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
{
- if (Offset!=0)
- first = vec_sld(first, second, Offset*4);
+#ifdef _BIG_ENDIAN
+ switch (Offset % 4) {
+ case 1:
+ first = vec_sld(first, second, 4); break;
+ case 2:
+ first = vec_sld(first, second, 8); break;
+ case 3:
+ first = vec_sld(first, second, 12); break;
+ }
+#else
+ switch (Offset % 4) {
+ case 1:
+ first = vec_sld(second, first, 12); break;
+ case 2:
+ first = vec_sld(second, first, 8); break;
+ case 3:
+ first = vec_sld(second, first, 4); break;
+ }
+#endif
}
};
@@ -588,6 +711,222 @@ ptranspose(PacketBlock<Packet4i,4>& kernel) {
kernel.packet[3] = vec_mergel(t1, t3);
}
+
+//---------- double ----------
+#ifdef __VSX__
+typedef __vector double Packet2d;
+typedef __vector unsigned long long Packet2ul;
+typedef __vector long long Packet2l;
+
+static Packet2l p2l_ZERO = (Packet2l) p4i_ZERO;
+static Packet2d p2d_ONE = { 1.0, 1.0 };
+static Packet2d p2d_ZERO = (Packet2d) p4f_ZERO;
+static Packet2d p2d_ZERO_ = { -0.0, -0.0 };
+
+#ifdef _BIG_ENDIAN
+static Packet2d p2d_COUNTDOWN = (Packet2d) vec_sld((Packet16uc) p2d_ZERO, (Packet16uc) p2d_ONE, 8);
+#else
+static Packet2d p2d_COUNTDOWN = (Packet2d) vec_sld((Packet16uc) p2d_ONE, (Packet16uc) p2d_ZERO, 8);
+#endif
+
+static EIGEN_STRONG_INLINE Packet2d vec_splat_dbl(Packet2d& a, int index)
+{
+ switch (index) {
+ case 0:
+ return (Packet2d) vec_perm(a, a, p16uc_PSET64_HI);
+ case 1:
+ return (Packet2d) vec_perm(a, a, p16uc_PSET64_LO);
+ }
+ return a;
+}
+
+template<> struct packet_traits<double> : default_packet_traits
+{
+ typedef Packet2d type;
+ typedef Packet2d half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size=2,
+ HasHalfPacket = 0,
+
+ HasDiv = 1,
+ HasExp = 0,
+ HasSqrt = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; typedef Packet2d half; };
+
+
+inline std::ostream & operator <<(std::ostream & s, const Packet2d & v)
+{
+ union {
+ Packet2d v;
+ double n[2];
+ } vt;
+ vt.v = v;
+ s << vt.n[0] << ", " << vt.n[1];
+ return s;
+}
+
+// Need to define them first or we get specialization after instantiation errors
+template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return (Packet2d) vec_ld(0, (const float *) from); } //FIXME
+
+template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE vec_st((Packet4f)from, 0, (float *)to); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) {
+ double EIGEN_ALIGN16 af[2];
+ af[0] = from;
+ Packet2d vc = pload<Packet2d>(af);
+ vc = vec_splat_dbl(vc, 0);
+ return vc;
+}
+template<> EIGEN_STRONG_INLINE void
+pbroadcast4<Packet2d>(const double *a,
+ Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3)
+{
+ a1 = pload<Packet2d>(a);
+ a0 = vec_splat_dbl(a1, 0);
+ a1 = vec_splat_dbl(a1, 1);
+ a3 = pload<Packet2d>(a+2);
+ a2 = vec_splat_dbl(a3, 0);
+ a3 = vec_splat_dbl(a3, 1);
+}
+template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, DenseIndex stride)
+{
+ double EIGEN_ALIGN16 af[2];
+ af[0] = from[0*stride];
+ af[1] = from[1*stride];
+ return pload<Packet2d>(af);
+}
+template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, DenseIndex stride)
+{
+ double EIGEN_ALIGN16 af[2];
+ pstore<double>(af, from);
+ to[0*stride] = af[0];
+ to[1*stride] = af[1];
+}
+template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return vec_add(pset1<Packet2d>(a), p2d_COUNTDOWN); }
+
+template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_add(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_sub(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return psub<Packet2d>(p2d_ZERO, a); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_madd(a,b,p2d_ZERO); }
+template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_div(a,b); }
+
+// for some weird raisons, it has to be overloaded for packet of integers
+template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vec_madd(a, b, c); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_min(a, b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_max(a, b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_or(a, b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_xor(a, b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return vec_and(a, vec_nor(b, b)); }
+
+template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
+{
+ EIGEN_DEBUG_ALIGNED_LOAD
+ return (Packet2d) vec_vsx_ld((long)from & 15, (const float*) _EIGEN_ALIGNED_PTR(from));
+}
+template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
+{
+ Packet2d p;
+ if((ptrdiff_t(from) % 16) == 0) p = pload<Packet2d>(from);
+ else p = ploadu<Packet2d>(from);
+ return vec_perm(p, p, p16uc_PSET64_HI);
+}
+
+template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from)
+{
+ EIGEN_DEBUG_ALIGNED_STORE
+ vec_vsx_st((Packet4f)from, (long)to & 15, (float*) _EIGEN_ALIGNED_PTR(to));
+}
+
+template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { vec_dstt((const float *) addr, DST_CTRL(2,2,32), DST_CHAN); }
+
+template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double EIGEN_ALIGN16 x[2]; pstore(x, a); return x[0]; }
+
+template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return (Packet2d)vec_perm((Packet16uc)a,(Packet16uc)a, p16uc_REVERSE64); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vec_abs(a); }
+
+template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
+{
+ Packet2d b, sum;
+ b = (Packet2d) vec_sld((Packet4ui) a, (Packet4ui)a, 8);
+ sum = vec_add(a, b);
+ return pfirst(sum);
+}
+
+template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
+{
+ Packet2d v[2], sum;
+ v[0] = vec_add(vecs[0], (Packet2d) vec_sld((Packet4ui) vecs[0], (Packet4ui) vecs[0], 8));
+ v[1] = vec_add(vecs[1], (Packet2d) vec_sld((Packet4ui) vecs[1], (Packet4ui) vecs[1], 8));
+
+#ifdef _BIG_ENDIAN
+ sum = (Packet2d) vec_sld((Packet4ui) v[0], (Packet4ui) v[1], 8);
+#else
+ sum = (Packet2d) vec_sld((Packet4ui) v[1], (Packet4ui) v[0], 8);
+#endif
+
+ return sum;
+}
+// Other reduction functions:
+// mul
+template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
+{
+ return pfirst(pmul(a, (Packet2d)vec_sld((Packet4ui) a, (Packet4ui) a, 8)));
+}
+
+// min
+template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
+{
+ return pfirst(vec_min(a, (Packet2d) vec_sld((Packet4ui) a, (Packet4ui) a, 8)));
+}
+
+// max
+template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
+{
+ return pfirst(vec_max(a, (Packet2d) vec_sld((Packet4ui) a, (Packet4ui) a, 8)));
+}
+
+template<int Offset>
+struct palign_impl<Offset,Packet2d>
+{
+ static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
+ {
+ if (Offset == 1)
+#ifdef _BIG_ENDIAN
+ first = (Packet2d) vec_sld((Packet4ui) first, (Packet4ui) second, 8);
+#else
+ first = (Packet2d) vec_sld((Packet4ui) second, (Packet4ui) first, 8);
+#endif
+ }
+};
+
+EIGEN_DEVICE_FUNC inline void
+ptranspose(PacketBlock<Packet2d,2>& kernel) {
+ Packet2d t0, t1;
+ t0 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_HI);
+ t1 = vec_perm(kernel.packet[0], kernel.packet[1], p16uc_TRANSPOSE64_LO);
+ kernel.packet[0] = t0;
+ kernel.packet[1] = t1;
+}
+
+#endif // __VSX__
} // end namespace internal
} // end namespace Eigen
diff --git a/Eigen/src/Core/arch/NEON/Complex.h b/Eigen/src/Core/arch/NEON/Complex.h
index 42e7733d7..0fdcb0741 100644
--- a/Eigen/src/Core/arch/NEON/Complex.h
+++ b/Eigen/src/Core/arch/NEON/Complex.h
@@ -33,6 +33,7 @@ template<> struct packet_traits<std::complex<float> > : default_packet_traits
Vectorizable = 1,
AlignedOnScalar = 1,
size = 2,
+ HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
@@ -88,7 +89,7 @@ template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, con
template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
- return Packet2cf(vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
+ return Packet2cf(vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a.v),vreinterpretq_u32_f32(b.v))));
}
template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
@@ -252,7 +253,7 @@ template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
{
- // TODO optimize it for AltiVec
+ // TODO optimize it for NEON
Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
Packet4f s, rev_s;
@@ -265,11 +266,198 @@ template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, con
EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet2cf,2>& kernel) {
- float32x4_t tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v));
+ Packet4f tmp = vcombine_f32(vget_high_f32(kernel.packet[0].v), vget_high_f32(kernel.packet[1].v));
kernel.packet[0].v = vcombine_f32(vget_low_f32(kernel.packet[0].v), vget_low_f32(kernel.packet[1].v));
kernel.packet[1].v = tmp;
}
+//---------- double ----------
+#if EIGEN_ARCH_ARM64
+
+static uint64x2_t p2ul_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x0, 0x8000000000000000);
+
+struct Packet1cd
+{
+ EIGEN_STRONG_INLINE Packet1cd() {}
+ EIGEN_STRONG_INLINE explicit Packet1cd(const Packet2d& a) : v(a) {}
+ Packet2d v;
+};
+
+template<> struct packet_traits<std::complex<double> > : default_packet_traits
+{
+ typedef Packet1cd type;
+ typedef Packet1cd half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 0,
+ size = 1,
+ HasHalfPacket = 0,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1}; typedef Packet1cd half; };
+
+template<> EIGEN_STRONG_INLINE Packet1cd pload<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
+template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
+{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(padd<Packet2d>(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(psub<Packet2d>(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate<Packet2d>(a.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a) { return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v), p2ul_CONJ_XOR))); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ Packet2d v1, v2;
+
+ // Get the real values of a
+ v1 = vdupq_lane_f64(vget_low_f64(a.v), 0);
+ // Get the real values of a
+ v2 = vdupq_lane_f64(vget_high_f64(a.v), 1);
+ // Multiply the real a with b
+ v1 = vmulq_f64(v1, b.v);
+ // Multiply the imag a with b
+ v2 = vmulq_f64(v2, b.v);
+ // Conjugate v2
+ v2 = vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(v2), p2ul_CONJ_XOR));
+ // Swap real/imag elements in v2.
+ v2 = preverse<Packet2d>(v2);
+ // Add and return the result
+ return Packet1cd(vaddq_f64(v1, v2));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ return Packet1cd(vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
+}
+template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ return Packet1cd(vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
+}
+template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ return Packet1cd(vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
+}
+template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ return Packet1cd(vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a.v),vreinterpretq_u64_f64(b.v))));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
+
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
+
+template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { EIGEN_ARM_PREFETCH((double *)addr); }
+
+template<> EIGEN_DEVICE_FUNC inline Packet1cd pgather<std::complex<double>, Packet1cd>(const std::complex<double>* from, DenseIndex stride)
+{
+ Packet2d res;
+ res = vsetq_lane_f64(std::real(from[0*stride]), res, 0);
+ res = vsetq_lane_f64(std::imag(from[0*stride]), res, 1);
+ return Packet1cd(res);
+}
+
+template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet1cd>(std::complex<double>* to, const Packet1cd& from, DenseIndex stride)
+{
+ to[stride*0] = std::complex<double>(vgetq_lane_f64(from.v, 0), vgetq_lane_f64(from.v, 1));
+}
+
+
+template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
+{
+ std::complex<double> EIGEN_ALIGN16 res;
+ pstore<std::complex<double> >(&res, a);
+
+ return res;
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs) { return vecs[0]; }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a) { return pfirst(a); }
+
+template<int Offset>
+struct palign_impl<Offset,Packet1cd>
+{
+ static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
+ {
+ // FIXME is it sure we never have to align a Packet1cd?
+ // Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ return internal::pmul(a, pconj(b));
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ return internal::pmul(pconj(a), b);
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ return pconj(internal::pmul(a, b));
+ }
+};
+
+template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ // TODO optimize it for NEON
+ Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
+ Packet2d s = pmul<Packet2d>(b.v, b.v);
+ Packet2d rev_s = preverse<Packet2d>(s);
+
+ return Packet1cd(pdiv(res.v, padd<Packet2d>(s,rev_s)));
+}
+
+EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
+{
+ return Packet1cd(preverse(Packet2d(x.v)));
+}
+
+EIGEN_STRONG_INLINE void ptranspose(PacketBlock<Packet1cd,2>& kernel)
+{
+ Packet2d tmp = vcombine_f64(vget_high_f64(kernel.packet[0].v), vget_high_f64(kernel.packet[1].v));
+ kernel.packet[0].v = vcombine_f64(vget_low_f64(kernel.packet[0].v), vget_low_f64(kernel.packet[1].v));
+ kernel.packet[1].v = tmp;
+}
+#endif // EIGEN_ARCH_ARM64
} // end namespace internal
diff --git a/Eigen/src/Core/arch/NEON/PacketMath.h b/Eigen/src/Core/arch/NEON/PacketMath.h
index 0504c095c..9afd86bec 100644
--- a/Eigen/src/Core/arch/NEON/PacketMath.h
+++ b/Eigen/src/Core/arch/NEON/PacketMath.h
@@ -20,14 +20,24 @@ namespace internal {
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif
+#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+#endif
+
+#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
+#define EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
+#endif
+
// FIXME NEON has 16 quad registers, but since the current register allocator
// is so bad, it is much better to reduce it to 8
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
-#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
+#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 16
#endif
+typedef float32x2_t Packet2f;
typedef float32x4_t Packet4f;
typedef int32x4_t Packet4i;
+typedef int32x2_t Packet2i;
typedef uint32x4_t Packet4ui;
#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
@@ -39,7 +49,7 @@ typedef uint32x4_t Packet4ui;
#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
const Packet4i p4i_##NAME = pset1<Packet4i>(X)
-#if defined(__llvm__) && !defined(__clang__)
+#if EIGEN_COMP_LLVM && !EIGEN_COMP_CLANG
//Special treatment for Apple's llvm-gcc, its NEON packet types are unions
#define EIGEN_INIT_NEON_PACKET2(X, Y) {{X, Y}}
#define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
@@ -52,11 +62,11 @@ typedef uint32x4_t Packet4ui;
// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
// which available on LLVM and GCC (at least)
-#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
+#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || EIGEN_COMP_GNUC
#define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#elif defined __pld
#define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
-#elif !defined(__aarch64__)
+#elif !EIGEN_ARCH_ARM64
#define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( " pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#else
// by default no explicit prefetching
@@ -66,11 +76,12 @@ typedef uint32x4_t Packet4ui;
template<> struct packet_traits<float> : default_packet_traits
{
typedef Packet4f type;
- typedef Packet4f half;
+ typedef Packet2f half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
size = 4,
+ HasHalfPacket=1,
HasDiv = 1,
// FIXME check the Has*
@@ -84,16 +95,17 @@ template<> struct packet_traits<float> : default_packet_traits
template<> struct packet_traits<int> : default_packet_traits
{
typedef Packet4i type;
- typedef Packet4i half;
+ typedef Packet2i half;
enum {
Vectorizable = 1,
AlignedOnScalar = 1,
- size=4
+ size=4,
+ HasHalfPacket=1
// FIXME check the Has*
};
};
-#if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
+#if EIGEN_GNUC_AT_MOST(4,4) && !EIGEN_COMP_LLVM
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
@@ -136,6 +148,9 @@ template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const
template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
+#if EIGEN_ARCH_ARM64
+ return vdivq_f32(a,b);
+#else
Packet4f inv, restep, div;
// NEON does not offer a divide instruction, we have to do a reciprocal approximation
@@ -154,14 +169,27 @@ template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const
div = vmulq_f32(a, inv);
return div;
+#endif
}
+
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by NEON");
return pset1<Packet4i>(0);
}
-// for some weird raisons, it has to be overloaded for packet of integers
+#ifdef __ARM_FEATURE_FMA
+// See bug 936.
+// FMA is available on VFPv4 i.e. when compiling with -mfpu=neon-vfpv4.
+// FMA is a true fused multiply-add i.e. only 1 rounding at the end, no intermediate rounding.
+// MLA is not fused i.e. does 2 roundings.
+// In addition to giving better accuracy, FMA also gives better performance here on a Krait (Nexus 4):
+// MLA: 10 GFlop/s ; FMA: 12 GFlops/s.
+template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vfmaq_f32(c,a,b); }
+#else
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
+#endif
+
+// No FMA instruction for int, so use MLA unconditionally.
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
@@ -472,6 +500,193 @@ ptranspose(PacketBlock<Packet4i,4>& kernel) {
kernel.packet[3] = vcombine_s32(vget_high_s32(tmp1.val[1]), vget_high_s32(tmp2.val[1]));
}
+//---------- double ----------
+#if EIGEN_ARCH_ARM64
+
+#if (EIGEN_COMP_GNUC_STRICT && defined(__ANDROID__)) || defined(__apple_build_version__)
+// Bug 907: workaround missing declarations of the following two functions in the ADK
+__extension__ static __inline uint64x2_t __attribute__ ((__always_inline__))
+vreinterpretq_u64_f64 (float64x2_t __a)
+{
+ return (uint64x2_t) __a;
+}
+
+__extension__ static __inline float64x2_t __attribute__ ((__always_inline__))
+vreinterpretq_f64_u64 (uint64x2_t __a)
+{
+ return (float64x2_t) __a;
+}
+#endif
+
+typedef float64x2_t Packet2d;
+typedef float64x1_t Packet1d;
+
+template<> struct packet_traits<double> : default_packet_traits
+{
+ typedef Packet2d type;
+ typedef Packet1d half;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size = 2,
+ HasHalfPacket=1,
+
+ HasDiv = 1,
+ // FIXME check the Has*
+ HasSin = 0,
+ HasCos = 0,
+ HasLog = 0,
+ HasExp = 0,
+ HasSqrt = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; typedef Packet2d half; };
+
+template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return vdupq_n_f64(from); }
+
+template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a)
+{
+ Packet2d countdown = EIGEN_INIT_NEON_PACKET2(0, 1);
+ return vaddq_f64(pset1<Packet2d>(a), countdown);
+}
+template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return vaddq_f64(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return vsubq_f64(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) { return vnegq_f64(a); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmulq_f64(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return vdivq_f64(a,b); }
+
+#ifdef __ARM_FEATURE_FMA
+// See bug 936. See above comment about FMA for float.
+template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vfmaq_f64(c,a,b); }
+#else
+template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return vmlaq_f64(c,a,b); }
+#endif
+
+template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return vminq_f64(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return vmaxq_f64(a,b); }
+
+// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
+template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b)
+{
+ return vreinterpretq_f64_u64(vandq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b)
+{
+ return vreinterpretq_f64_u64(vorrq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b)
+{
+ return vreinterpretq_f64_u64(veorq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b)
+{
+ return vreinterpretq_f64_u64(vbicq_u64(vreinterpretq_u64_f64(a),vreinterpretq_u64_f64(b)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f64(from); }
+
+template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f64(from); }
+
+template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
+{
+ return vld1q_dup_f64(from);
+}
+template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f64(to, from); }
+
+template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f64(to, from); }
+
+template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, DenseIndex stride)
+{
+ Packet2d res;
+ res = vsetq_lane_f64(from[0*stride], res, 0);
+ res = vsetq_lane_f64(from[1*stride], res, 1);
+ return res;
+}
+template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, DenseIndex stride)
+{
+ to[stride*0] = vgetq_lane_f64(from, 0);
+ to[stride*1] = vgetq_lane_f64(from, 1);
+}
+template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { EIGEN_ARM_PREFETCH(addr); }
+
+// FIXME only store the 2 first elements ?
+template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(a, 0); }
+
+template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return vcombine_f64(vget_high_f64(a), vget_low_f64(a)); }
+
+template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) { return vabsq_f64(a); }
+
+#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
+// workaround ICE, see bug 907
+template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) + vget_high_f64(a))[0]; }
+#else
+template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) + vget_high_f64(a), 0); }
+#endif
+
+template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
+{
+ float64x2_t trn1, trn2;
+
+ // NEON zip performs interleaving of the supplied vectors.
+ // We perform two interleaves in a row to acquire the transposed vector
+ trn1 = vzip1q_f64(vecs[0], vecs[1]);
+ trn2 = vzip2q_f64(vecs[0], vecs[1]);
+
+ // Do the addition of the resulting vectors
+ return vaddq_f64(trn1, trn2);
+}
+// Other reduction functions:
+// mul
+#if EIGEN_COMP_CLANG && defined(__apple_build_version__)
+template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return (vget_low_f64(a) * vget_high_f64(a))[0]; }
+#else
+template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) { return vget_lane_f64(vget_low_f64(a) * vget_high_f64(a), 0); }
+#endif
+
+// min
+template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpminq_f64(a, a), 0); }
+
+// max
+template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a) { return vgetq_lane_f64(vpmaxq_f64(a, a), 0); }
+
+// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
+// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
+#define PALIGN_NEON(Offset,Type,Command) \
+template<>\
+struct palign_impl<Offset,Type>\
+{\
+ EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
+ {\
+ if (Offset!=0)\
+ first = Command(first, second, Offset);\
+ }\
+};\
+
+PALIGN_NEON(0,Packet2d,vextq_f64)
+PALIGN_NEON(1,Packet2d,vextq_f64)
+#undef PALIGN_NEON
+
+EIGEN_DEVICE_FUNC inline void
+ptranspose(PacketBlock<Packet2d,2>& kernel) {
+ float64x2_t trn1 = vzip1q_f64(kernel.packet[0], kernel.packet[1]);
+ float64x2_t trn2 = vzip2q_f64(kernel.packet[0], kernel.packet[1]);
+
+ kernel.packet[0] = trn1;
+ kernel.packet[1] = trn2;
+}
+#endif // EIGEN_ARCH_ARM64
+
} // end namespace internal
} // end namespace Eigen
diff --git a/Eigen/src/Core/arch/SSE/MathFunctions.h b/Eigen/src/Core/arch/SSE/MathFunctions.h
index 8f78b3a6c..9ffba5b41 100644
--- a/Eigen/src/Core/arch/SSE/MathFunctions.h
+++ b/Eigen/src/Core/arch/SSE/MathFunctions.h
@@ -52,7 +52,7 @@ Packet4f plog<Packet4f>(const Packet4f& _x)
Packet4i emm0;
- Packet4f invalid_mask = _mm_cmplt_ps(x, _mm_setzero_ps());
+ Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN
Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());
x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
@@ -167,7 +167,7 @@ Packet4f pexp<Packet4f>(const Packet4f& _x)
emm0 = _mm_cvttps_epi32(fx);
emm0 = _mm_add_epi32(emm0, p4i_0x7f);
emm0 = _mm_slli_epi32(emm0, 23);
- return pmul(y, Packet4f(_mm_castsi128_ps(emm0)));
+ return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d pexp<Packet2d>(const Packet2d& _x)
@@ -241,7 +241,7 @@ Packet2d pexp<Packet2d>(const Packet2d& _x)
emm0 = _mm_add_epi32(emm0, p4i_1023_0);
emm0 = _mm_slli_epi32(emm0, 20);
emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
- return pmul(x, Packet2d(_mm_castsi128_pd(emm0)));
+ return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x);
}
/* evaluation of 4 sines at onces, using SSE2 intrinsics.
diff --git a/Eigen/src/Core/arch/SSE/PacketMath.h b/Eigen/src/Core/arch/SSE/PacketMath.h
index 6923c88ec..3befd4c25 100755
--- a/Eigen/src/Core/arch/SSE/PacketMath.h
+++ b/Eigen/src/Core/arch/SSE/PacketMath.h
@@ -22,13 +22,13 @@ namespace internal {
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
#endif
-#ifdef EIGEN_VECTORIZE_FMA
-#ifndef EIGEN_HAS_FUSED_MADD
-#define EIGEN_HAS_FUSED_MADD 1
+#ifdef __FMA__
+#ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
+#define EIGEN_HAS_SINGLE_INSTRUCTION_MADD 1
#endif
#endif
-#if defined EIGEN_VECTORIZE_AVX && defined __GNUC__ && !(defined __clang__ || defined __INTEL_COMPILER)
+#if defined EIGEN_VECTORIZE_AVX && EIGEN_COMP_GNUC_STRICT
// With GCC's default ABI version, a __m128 or __m256 are the same types and therefore we cannot
// have overloads for both types without linking error.
// One solution is to increase ABI version using -fabi-version=4 (or greater).
@@ -147,7 +147,7 @@ template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}
template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; typedef Packet2d half; };
template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; typedef Packet4i half; };
-#if defined(_MSC_VER) && (_MSC_VER==1500)
+#if EIGEN_COMP_MSVC==1500
// Workaround MSVC 9 internal compiler error.
// TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode
// TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)).
@@ -165,7 +165,7 @@ template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { re
// Using inline assembly is also not an option because then gcc fails to reorder properly the instructions.
// Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply.
// Also note that with AVX, we want it to generate a vbroadcastss.
-#if (defined __GNUC__) && (!defined __INTEL_COMPILER) && (!defined __clang__) && (!defined __AVX__)
+#if EIGEN_COMP_GNUC_STRICT && (!defined __AVX__)
template<> EIGEN_STRONG_INLINE Packet4f pload1<Packet4f>(const float *from) {
return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0);
}
@@ -282,10 +282,10 @@ template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { E
template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); }
-#if defined(_MSC_VER)
+#if EIGEN_COMP_MSVC
template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) {
EIGEN_DEBUG_UNALIGNED_LOAD
- #if (_MSC_VER==1600)
+ #if (EIGEN_COMP_MSVC==1600)
// NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
// (i.e., it does not generate an unaligned load!!
// TODO On most architectures this version should also be faster than a single _mm_loadu_ps
@@ -307,11 +307,11 @@ template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { E
// TODO: do the same for MSVC (ICC is compatible)
// NOTE: with the code below, MSVC's compiler crashes!
-#if defined(__GNUC__) && (defined(__i386__) || (defined(__x86_64) && EIGEN_GNUC_AT_LEAST(4, 8)))
+#if EIGEN_COMP_GNUC && (EIGEN_ARCH_i386 || (EIGEN_ARCH_x86_64 && EIGEN_GNUC_AT_LEAST(4, 8)))
// bug 195: gcc/i386 emits weird x87 fldl/fstpl instructions for _mm_load_sd
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
#define EIGEN_AVOID_CUSTOM_UNALIGNED_STORES 1
-#elif defined(__clang__)
+#elif EIGEN_COMP_CLANG
// bug 201: Segfaults in __mm_loadh_pd with clang 2.8
#define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
#define EIGEN_AVOID_CUSTOM_UNALIGNED_STORES 0
@@ -439,13 +439,13 @@ template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_p
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
#endif
-#if defined(_MSC_VER) && defined(_WIN64) && !defined(__INTEL_COMPILER)
+#if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
// Direct of the struct members fixed bug #62.
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
-#elif defined(_MSC_VER) && !defined(__INTEL_COMPILER)
+#elif EIGEN_COMP_MSVC_STRICT
// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
@@ -680,7 +680,7 @@ template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
#endif // EIGEN_VECTORIZE_SSE4_1
}
-#if (defined __GNUC__)
+#if EIGEN_COMP_GNUC
// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
// {
// Packet4f res = b;
diff --git a/Eigen/src/Core/functors/AssignmentFunctors.h b/Eigen/src/Core/functors/AssignmentFunctors.h
index ae264aa64..161b0aa93 100644
--- a/Eigen/src/Core/functors/AssignmentFunctors.h
+++ b/Eigen/src/Core/functors/AssignmentFunctors.h
@@ -31,7 +31,7 @@ template<typename Scalar>
struct functor_traits<assign_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::ReadCost,
- PacketAccess = packet_traits<Scalar>::IsVectorized
+ PacketAccess = packet_traits<Scalar>::Vectorizable
};
};
@@ -73,7 +73,7 @@ template<typename Scalar>
struct functor_traits<sub_assign_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::ReadCost + NumTraits<Scalar>::AddCost,
- PacketAccess = packet_traits<Scalar>::HasAdd
+ PacketAccess = packet_traits<Scalar>::HasSub
};
};
@@ -81,22 +81,24 @@ struct functor_traits<sub_assign_op<Scalar> > {
* \brief Template functor for scalar/packet assignment with multiplication
*
*/
-template<typename Scalar> struct mul_assign_op {
+template<typename DstScalar, typename SrcScalar=DstScalar>
+struct mul_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(mul_assign_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const { a *= b; }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(DstScalar& a, const SrcScalar& b) const { a *= b; }
template<int Alignment, typename Packet>
- EIGEN_STRONG_INLINE void assignPacket(Scalar* a, const Packet& b) const
- { internal::pstoret<Scalar,Packet,Alignment>(a,internal::pmul(internal::ploadt<Packet,Alignment>(a),b)); }
+ EIGEN_STRONG_INLINE void assignPacket(DstScalar* a, const Packet& b) const
+ { internal::pstoret<DstScalar,Packet,Alignment>(a,internal::pmul(internal::ploadt<Packet,Alignment>(a),b)); }
};
-template<typename Scalar>
-struct functor_traits<mul_assign_op<Scalar> > {
+template<typename DstScalar, typename SrcScalar>
+struct functor_traits<mul_assign_op<DstScalar,SrcScalar> > {
enum {
- Cost = NumTraits<Scalar>::ReadCost + NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasMul
+ Cost = NumTraits<DstScalar>::ReadCost + NumTraits<DstScalar>::MulCost,
+ PacketAccess = is_same<DstScalar,SrcScalar>::value && packet_traits<DstScalar>::HasMul
};
};
+template<typename DstScalar,typename SrcScalar> struct functor_is_product_like<mul_assign_op<DstScalar,SrcScalar> > { enum { ret = 1 }; };
/** \internal
* \brief Template functor for scalar/packet assignment with diviving
@@ -115,13 +117,13 @@ template<typename Scalar>
struct functor_traits<div_assign_op<Scalar> > {
enum {
Cost = NumTraits<Scalar>::ReadCost + NumTraits<Scalar>::MulCost,
- PacketAccess = packet_traits<Scalar>::HasMul
+ PacketAccess = packet_traits<Scalar>::HasDiv
};
};
/** \internal
- * \brief Template functor for scalar/packet assignment with swaping
+ * \brief Template functor for scalar/packet assignment with swapping
*
* It works as follow. For a non-vectorized evaluation loop, we have:
* for(i) func(A.coeffRef(i), B.coeff(i));
@@ -140,8 +142,13 @@ template<typename Scalar> struct swap_assign_op {
EIGEN_EMPTY_STRUCT_CTOR(swap_assign_op)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Scalar& a, const Scalar& b) const
{
+#ifdef __CUDACC__
+ // FIXME is there some kind of cuda::swap?
+ Scalar t=b; const_cast<Scalar&>(b)=a; a=t;
+#else
using std::swap;
swap(a,const_cast<Scalar&>(b));
+#endif
}
template<int LhsAlignment, int RhsAlignment, typename Packet>
@@ -156,7 +163,7 @@ template<typename Scalar>
struct functor_traits<swap_assign_op<Scalar> > {
enum {
Cost = 3 * NumTraits<Scalar>::ReadCost,
- PacketAccess = packet_traits<Scalar>::IsVectorized
+ PacketAccess = packet_traits<Scalar>::Vectorizable
};
};
diff --git a/Eigen/src/Core/functors/BinaryFunctors.h b/Eigen/src/Core/functors/BinaryFunctors.h
index 157d075a7..9c96181c7 100644
--- a/Eigen/src/Core/functors/BinaryFunctors.h
+++ b/Eigen/src/Core/functors/BinaryFunctors.h
@@ -115,7 +115,7 @@ struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
*/
template<typename Scalar> struct scalar_min_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { EIGEN_USING_STD_MATH(min); return (min)(a, b); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return numext::mini(a, b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmin(a,b); }
@@ -138,7 +138,7 @@ struct functor_traits<scalar_min_op<Scalar> > {
*/
template<typename Scalar> struct scalar_max_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { EIGEN_USING_STD_MATH(max); return (max)(a, b); }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return numext::maxi(a, b); }
template<typename Packet>
EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
{ return internal::pmax(a,b); }
@@ -164,8 +164,6 @@ template<typename Scalar> struct scalar_hypot_op {
// typedef typename NumTraits<Scalar>::Real result_type;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
{
- EIGEN_USING_STD_MATH(max);
- EIGEN_USING_STD_MATH(min);
using std::sqrt;
Scalar p, qp;
if(_x>_y)
diff --git a/Eigen/src/Core/products/CoeffBasedProduct.h b/Eigen/src/Core/products/CoeffBasedProduct.h
deleted file mode 100644
index 637513132..000000000
--- a/Eigen/src/Core/products/CoeffBasedProduct.h
+++ /dev/null
@@ -1,452 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COEFFBASED_PRODUCT_H
-#define EIGEN_COEFFBASED_PRODUCT_H
-
-namespace Eigen {
-
-namespace internal {
-
-/*********************************************************************************
-* Coefficient based product implementation.
-* It is designed for the following use cases:
-* - small fixed sizes
-* - lazy products
-*********************************************************************************/
-
-/* Since the all the dimensions of the product are small, here we can rely
- * on the generic Assign mechanism to evaluate the product per coeff (or packet).
- *
- * Note that here the inner-loops should always be unrolled.
- */
-
-template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl;
-
-template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl;
-
-template<typename LhsNested, typename RhsNested, int NestingFlags>
-struct traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
-{
- typedef MatrixXpr XprKind;
- typedef typename remove_all<LhsNested>::type _LhsNested;
- typedef typename remove_all<RhsNested>::type _RhsNested;
- typedef typename scalar_product_traits<typename _LhsNested::Scalar, typename _RhsNested::Scalar>::ReturnType Scalar;
- typedef typename promote_storage_type<typename traits<_LhsNested>::StorageKind,
- typename traits<_RhsNested>::StorageKind>::ret StorageKind;
- typedef typename promote_index_type<typename traits<_LhsNested>::Index,
- typename traits<_RhsNested>::Index>::type Index;
-
- enum {
- LhsCoeffReadCost = _LhsNested::CoeffReadCost,
- RhsCoeffReadCost = _RhsNested::CoeffReadCost,
- LhsFlags = _LhsNested::Flags,
- RhsFlags = _RhsNested::Flags,
-
- RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
- ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
- InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
-
- MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
-
- LhsRowMajor = LhsFlags & RowMajorBit,
- RhsRowMajor = RhsFlags & RowMajorBit,
-
- SameType = is_same<typename _LhsNested::Scalar,typename _RhsNested::Scalar>::value,
-
- CanVectorizeRhs = RhsRowMajor && (RhsFlags & PacketAccessBit)
- && (ColsAtCompileTime == Dynamic
- || ( (ColsAtCompileTime % packet_traits<Scalar>::size) == 0
- && (RhsFlags&AlignedBit)
- )
- ),
-
- CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit)
- && (RowsAtCompileTime == Dynamic
- || ( (RowsAtCompileTime % packet_traits<Scalar>::size) == 0
- && (LhsFlags&AlignedBit)
- )
- ),
-
- EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
- : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
- : (RhsRowMajor && !CanVectorizeLhs),
-
- Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
- | (EvalToRowMajor ? RowMajorBit : 0)
- | NestingFlags
- | (CanVectorizeLhs ? (LhsFlags & AlignedBit) : 0)
- | (CanVectorizeRhs ? (RhsFlags & AlignedBit) : 0)
- // TODO enable vectorization for mixed types
- | (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0),
-
- CoeffReadCost = InnerSize == Dynamic ? Dynamic
- : InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
- + (InnerSize - 1) * NumTraits<Scalar>::AddCost,
-
- /* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
- * of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
- * loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
- * the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
- */
- CanVectorizeInner = SameType
- && LhsRowMajor
- && (!RhsRowMajor)
- && (LhsFlags & RhsFlags & ActualPacketAccessBit)
- && (LhsFlags & RhsFlags & AlignedBit)
- && (InnerSize % packet_traits<Scalar>::size == 0)
- };
-};
-
-} // end namespace internal
-
-template<typename LhsNested, typename RhsNested, int NestingFlags>
-class CoeffBasedProduct
- : internal::no_assignment_operator,
- public MatrixBase<CoeffBasedProduct<LhsNested, RhsNested, NestingFlags> >
-{
- public:
-
- typedef MatrixBase<CoeffBasedProduct> Base;
- EIGEN_DENSE_PUBLIC_INTERFACE(CoeffBasedProduct)
- typedef typename Base::PlainObject PlainObject;
-
- private:
-
- typedef typename internal::traits<CoeffBasedProduct>::_LhsNested _LhsNested;
- typedef typename internal::traits<CoeffBasedProduct>::_RhsNested _RhsNested;
-
- enum {
- PacketSize = internal::packet_traits<Scalar>::size,
- InnerSize = internal::traits<CoeffBasedProduct>::InnerSize,
- Unroll = CoeffReadCost != Dynamic && CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
- CanVectorizeInner = internal::traits<CoeffBasedProduct>::CanVectorizeInner
- };
-
- typedef internal::product_coeff_impl<CanVectorizeInner ? InnerVectorizedTraversal : DefaultTraversal,
- Unroll ? InnerSize-1 : Dynamic,
- _LhsNested, _RhsNested, Scalar> ScalarCoeffImpl;
-
- typedef CoeffBasedProduct<LhsNested,RhsNested,NestByRefBit> LazyCoeffBasedProductType;
-
- public:
-
- EIGEN_DEVICE_FUNC
- inline CoeffBasedProduct(const CoeffBasedProduct& other)
- : Base(), m_lhs(other.m_lhs), m_rhs(other.m_rhs)
- {}
-
- template<typename Lhs, typename Rhs>
- EIGEN_DEVICE_FUNC
- inline CoeffBasedProduct(const Lhs& lhs, const Rhs& rhs)
- : m_lhs(lhs), m_rhs(rhs)
- {
- // we don't allow taking products of matrices of different real types, as that wouldn't be vectorizable.
- // We still allow to mix T and complex<T>.
- EIGEN_STATIC_ASSERT((internal::scalar_product_traits<typename Lhs::RealScalar, typename Rhs::RealScalar>::Defined),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- eigen_assert(lhs.cols() == rhs.rows()
- && "invalid matrix product"
- && "if you wanted a coeff-wise or a dot product use the respective explicit functions");
- }
-
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
-
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
- {
- Scalar res;
- ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- /* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
- * which is why we don't set the LinearAccessBit.
- */
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
- {
- Scalar res;
- const Index row = RowsAtCompileTime == 1 ? 0 : index;
- const Index col = RowsAtCompileTime == 1 ? index : 0;
- ScalarCoeffImpl::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- template<int LoadMode>
- EIGEN_STRONG_INLINE const PacketScalar packet(Index row, Index col) const
- {
- PacketScalar res;
- internal::product_packet_impl<Flags&RowMajorBit ? RowMajor : ColMajor,
- Unroll ? InnerSize-1 : Dynamic,
- _LhsNested, _RhsNested, PacketScalar, LoadMode>
- ::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
-
- // Implicit conversion to the nested type (trigger the evaluation of the product)
- EIGEN_DEVICE_FUNC
- EIGEN_STRONG_INLINE operator const PlainObject& () const
- {
- m_result.lazyAssign(*this);
- return m_result;
- }
-
- EIGEN_DEVICE_FUNC const _LhsNested& lhs() const { return m_lhs; }
- EIGEN_DEVICE_FUNC const _RhsNested& rhs() const { return m_rhs; }
-
- EIGEN_DEVICE_FUNC
- const Diagonal<const LazyCoeffBasedProductType,0> diagonal() const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
-
- template<int DiagonalIndex>
- EIGEN_DEVICE_FUNC
- const Diagonal<const LazyCoeffBasedProductType,DiagonalIndex> diagonal() const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this); }
-
- EIGEN_DEVICE_FUNC
- const Diagonal<const LazyCoeffBasedProductType,Dynamic> diagonal(Index index) const
- { return reinterpret_cast<const LazyCoeffBasedProductType&>(*this).diagonal(index); }
-
- protected:
- typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
- typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
-
- mutable PlainObject m_result;
-};
-
-namespace internal {
-
-// here we need to overload the nested rule for products
-// such that the nested type is a const reference to a plain matrix
-template<typename Lhs, typename Rhs, int N, typename PlainObject>
-struct nested<CoeffBasedProduct<Lhs,Rhs,EvalBeforeNestingBit|EvalBeforeAssigningBit>, N, PlainObject>
-{
- typedef PlainObject const& type;
-};
-
-/***************************************************************************
-* Normal product .coeff() implementation (with meta-unrolling)
-***************************************************************************/
-
-/**************************************
-*** Scalar path - no vectorization ***
-**************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- product_coeff_impl<DefaultTraversal, UnrollingIndex-1, Lhs, Rhs, RetScalar>::run(row, col, lhs, rhs, res);
- res += lhs.coeff(row, UnrollingIndex) * rhs.coeff(UnrollingIndex, col);
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, 0, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<DefaultTraversal, Dynamic, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- EIGEN_DEVICE_FUNC
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = lhs.coeff(row, 0) * rhs.coeff(0, col);
- for(Index i = 1; i < lhs.cols(); ++i)
- res += lhs.coeff(row, i) * rhs.coeff(i, col);
- }
-};
-
-/*******************************************
-*** Scalar path with inner vectorization ***
-*******************************************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet>
-struct product_coeff_vectorized_unroller
-{
- typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
- {
- product_coeff_vectorized_unroller<UnrollingIndex-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
- pres = padd(pres, pmul( lhs.template packet<Aligned>(row, UnrollingIndex) , rhs.template packet<Aligned>(UnrollingIndex, col) ));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet>
-struct product_coeff_vectorized_unroller<0, Lhs, Rhs, Packet>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::PacketScalar &pres)
- {
- pres = pmul(lhs.template packet<Aligned>(row, 0) , rhs.template packet<Aligned>(0, col));
- }
-};
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<InnerVectorizedTraversal, UnrollingIndex, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::PacketScalar Packet;
- typedef typename Lhs::Index Index;
- enum { PacketSize = packet_traits<typename Lhs::Scalar>::size };
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, RetScalar &res)
- {
- Packet pres;
- product_coeff_vectorized_unroller<UnrollingIndex+1-PacketSize, Lhs, Rhs, Packet>::run(row, col, lhs, rhs, pres);
- res = predux(pres);
- }
-};
-
-template<typename Lhs, typename Rhs, int LhsRows = Lhs::RowsAtCompileTime, int RhsCols = Rhs::ColsAtCompileTime>
-struct product_coeff_vectorized_dyn_selector
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.row(row).transpose().cwiseProduct(rhs.col(col)).sum();
- }
-};
-
-// NOTE the 3 following specializations are because taking .col(0) on a vector is a bit slower
-// NOTE maybe they are now useless since we have a specialization for Block<Matrix>
-template<typename Lhs, typename Rhs, int RhsCols>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,RhsCols>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.transpose().cwiseProduct(rhs.col(col)).sum();
- }
-};
-
-template<typename Lhs, typename Rhs, int LhsRows>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,LhsRows,1>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.row(row).transpose().cwiseProduct(rhs).sum();
- }
-};
-
-template<typename Lhs, typename Rhs>
-struct product_coeff_vectorized_dyn_selector<Lhs,Rhs,1,1>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- res = lhs.transpose().cwiseProduct(rhs).sum();
- }
-};
-
-template<typename Lhs, typename Rhs, typename RetScalar>
-struct product_coeff_impl<InnerVectorizedTraversal, Dynamic, Lhs, Rhs, RetScalar>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, typename Lhs::Scalar &res)
- {
- product_coeff_vectorized_dyn_selector<Lhs,Rhs>::run(row, col, lhs, rhs, res);
- }
-};
-
-/*******************
-*** Packet path ***
-*******************/
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
- res = pmadd(pset1<Packet>(lhs.coeff(row, UnrollingIndex)), rhs.template packet<LoadMode>(UnrollingIndex, col), res);
- }
-};
-
-template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, res);
- res = pmadd(lhs.template packet<LoadMode>(row, UnrollingIndex), pset1<Packet>(rhs.coeff(UnrollingIndex, col)), res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet &res)
- {
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = pmul(pset1<Packet>(lhs.coeff(row, 0)),rhs.template packet<LoadMode>(0, col));
- for(Index i = 1; i < lhs.cols(); ++i)
- res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode>(i, col), res);
- }
-};
-
-template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
-struct product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
-{
- typedef typename Lhs::Index Index;
- static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Packet& res)
- {
- eigen_assert(lhs.cols()>0 && "you are using a non initialized matrix");
- res = pmul(lhs.template packet<LoadMode>(row, 0), pset1<Packet>(rhs.coeff(0, col)));
- for(Index i = 1; i < lhs.cols(); ++i)
- res = pmadd(lhs.template packet<LoadMode>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
- }
-};
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_COEFFBASED_PRODUCT_H
diff --git a/Eigen/src/Core/products/GeneralBlockPanelKernel.h b/Eigen/src/Core/products/GeneralBlockPanelKernel.h
index b91786037..11e5f591d 100644
--- a/Eigen/src/Core/products/GeneralBlockPanelKernel.h
+++ b/Eigen/src/Core/products/GeneralBlockPanelKernel.h
@@ -158,8 +158,8 @@ inline void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n, i
computeProductBlockingSizes<LhsScalar,RhsScalar,1>(k, m, n, num_threads);
}
-#ifdef EIGEN_HAS_FUSE_CJMADD
- #define MADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C);
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_CJMADD
+ #define CJMADD(CJ,A,B,C,T) C = CJ.pmadd(A,B,C);
#else
// FIXME (a bit overkill maybe ?)
@@ -184,8 +184,8 @@ inline void computeProductBlockingSizes(SizeType& k, SizeType& m, SizeType& n, i
gebp_madd_selector<CJ,A,B,C,T>::run(cj,a,b,c,t);
}
- #define MADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T);
-// #define MADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T);
+ #define CJMADD(CJ,A,B,C,T) gebp_madd(CJ,A,B,C,T);
+// #define CJMADD(CJ,A,B,C,T) T = B; T = CJ.pmul(A,T); C = padd(C,T);
#endif
/* Vectorization logic
@@ -220,7 +220,7 @@ public:
nr = 4,
// register block size along the M direction (currently, this one cannot be modified)
-#if defined(EIGEN_HAS_FUSED_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC)
+#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
// we assume 16 registers
mr = 3*LhsPacketSize,
#else
@@ -286,7 +286,7 @@ public:
// let gcc allocate the register in which to store the result of the pmul
// (in the case where there is no FMA) gcc fails to figure out how to avoid
// spilling register.
-#ifdef EIGEN_HAS_FUSED_MADD
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
EIGEN_UNUSED_VARIABLE(tmp);
c = pmadd(a,b,c);
#else
@@ -328,7 +328,7 @@ public:
NumberOfRegisters = EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS,
nr = 4,
-#if defined(EIGEN_HAS_FUSED_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC)
+#if defined(EIGEN_HAS_SINGLE_INSTRUCTION_MADD) && !defined(EIGEN_VECTORIZE_ALTIVEC) && !defined(EIGEN_VECTORIZE_VSX)
// we assume 16 registers
mr = 3*LhsPacketSize,
#else
@@ -391,7 +391,7 @@ public:
EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
{
-#ifdef EIGEN_HAS_FUSED_MADD
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
EIGEN_UNUSED_VARIABLE(tmp);
c.v = pmadd(a.v,b,c.v);
#else
@@ -675,7 +675,7 @@ public:
EIGEN_STRONG_INLINE void madd_impl(const LhsPacket& a, const RhsPacket& b, AccPacket& c, RhsPacket& tmp, const true_type&) const
{
-#ifdef EIGEN_HAS_FUSED_MADD
+#ifdef EIGEN_HAS_SINGLE_INSTRUCTION_MADD
EIGEN_UNUSED_VARIABLE(tmp);
c.v = pmadd(a,b.v,c.v);
#else
@@ -801,31 +801,36 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
for(Index k=0; k<peeled_kc; k+=pk)
{
- EIGEN_ASM_COMMENT("begin gegp micro kernel 3p x 4");
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX4");
RhsPacket B_0, T0;
LhsPacket A2;
#define EIGEN_GEBGP_ONESTEP(K) \
- internal::prefetch(blA+(3*K+16)*LhsProgress); \
- traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
- traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
- traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
- traits.loadRhs(&blB[(0+4*K)*RhsProgress], B_0); \
- traits.madd(A0, B_0, C0, T0); \
- traits.madd(A1, B_0, C4, T0); \
- traits.madd(A2, B_0, C8, B_0); \
- traits.loadRhs(&blB[1+4*K*RhsProgress], B_0); \
- traits.madd(A0, B_0, C1, T0); \
- traits.madd(A1, B_0, C5, T0); \
- traits.madd(A2, B_0, C9, B_0); \
- traits.loadRhs(&blB[2+4*K*RhsProgress], B_0); \
- traits.madd(A0, B_0, C2, T0); \
- traits.madd(A1, B_0, C6, T0); \
- traits.madd(A2, B_0, C10, B_0); \
- traits.loadRhs(&blB[3+4*K*RhsProgress], B_0); \
- traits.madd(A0, B_0, C3 , T0); \
- traits.madd(A1, B_0, C7, T0); \
- traits.madd(A2, B_0, C11, B_0)
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX4"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ internal::prefetch(blA+(3*K+16)*LhsProgress); \
+ traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
+ traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
+ traits.loadRhs(&blB[(0+4*K)*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C0, T0); \
+ traits.madd(A1, B_0, C4, T0); \
+ traits.madd(A2, B_0, C8, B_0); \
+ traits.loadRhs(&blB[1+4*K*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C1, T0); \
+ traits.madd(A1, B_0, C5, T0); \
+ traits.madd(A2, B_0, C9, B_0); \
+ traits.loadRhs(&blB[2+4*K*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C2, T0); \
+ traits.madd(A1, B_0, C6, T0); \
+ traits.madd(A2, B_0, C10, B_0); \
+ traits.loadRhs(&blB[3+4*K*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C3 , T0); \
+ traits.madd(A1, B_0, C7, T0); \
+ traits.madd(A2, B_0, C11, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX4"); \
+ } while(false)
internal::prefetch(blB+(48+0));
EIGEN_GEBGP_ONESTEP(0);
@@ -840,6 +845,8 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
blB += pk*4*RhsProgress;
blA += pk*3*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 3pX4");
}
// process remaining peeled loop
for(Index k=peeled_kc; k<depth; k++)
@@ -918,16 +925,21 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
for(Index k=0; k<peeled_kc; k+=pk)
{
- EIGEN_ASM_COMMENT("begin gegp micro kernel 3p x 1");
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 3pX1");
RhsPacket B_0;
#define EIGEN_GEBGP_ONESTEP(K) \
- traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
- traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
- traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
- traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
- traits.madd(A0, B_0, C0, B_0); \
- traits.madd(A1, B_0, C4, B_0); \
- traits.madd(A2, B_0, C8, B_0)
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 3pX1"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+3*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+3*K)*LhsProgress], A1); \
+ traits.loadLhs(&blA[(2+3*K)*LhsProgress], A2); \
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C0, B_0); \
+ traits.madd(A1, B_0, C4, B_0); \
+ traits.madd(A2, B_0, C8, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 3pX1"); \
+ } while(false)
EIGEN_GEBGP_ONESTEP(0);
EIGEN_GEBGP_ONESTEP(1);
@@ -940,6 +952,8 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
blB += pk*RhsProgress;
blA += pk*3*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 3pX1");
}
// process remaining peeled loop
@@ -1005,22 +1019,27 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
for(Index k=0; k<peeled_kc; k+=pk)
{
- EIGEN_ASM_COMMENT("begin gegp micro kernel 2pX4");
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX4");
RhsPacket B_0, B1, B2, B3, T0;
#define EIGEN_GEBGP_ONESTEP(K) \
- traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
- traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
- traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
- traits.madd(A0, B_0, C0, T0); \
- traits.madd(A1, B_0, C4, B_0); \
- traits.madd(A0, B1, C1, T0); \
- traits.madd(A1, B1, C5, B1); \
- traits.madd(A0, B2, C2, T0); \
- traits.madd(A1, B2, C6, B2); \
- traits.madd(A0, B3, C3, T0); \
- traits.madd(A1, B3, C7, B3)
-
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX4"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
+ traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
+ traits.madd(A0, B_0, C0, T0); \
+ traits.madd(A1, B_0, C4, B_0); \
+ traits.madd(A0, B1, C1, T0); \
+ traits.madd(A1, B1, C5, B1); \
+ traits.madd(A0, B2, C2, T0); \
+ traits.madd(A1, B2, C6, B2); \
+ traits.madd(A0, B3, C3, T0); \
+ traits.madd(A1, B3, C7, B3); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX4"); \
+ } while(false)
+
internal::prefetch(blB+(48+0));
EIGEN_GEBGP_ONESTEP(0);
EIGEN_GEBGP_ONESTEP(1);
@@ -1034,6 +1053,8 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
blB += pk*4*RhsProgress;
blA += pk*(2*Traits::LhsProgress);
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 2pX4");
}
// process remaining peeled loop
for(Index k=peeled_kc; k<depth; k++)
@@ -1096,15 +1117,20 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
for(Index k=0; k<peeled_kc; k+=pk)
{
- EIGEN_ASM_COMMENT("begin gegp micro kernel 2p x 1");
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX1");
RhsPacket B_0, B1;
#define EIGEN_GEBGP_ONESTEP(K) \
- traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
- traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
- traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
- traits.madd(A0, B_0, C0, B1); \
- traits.madd(A1, B_0, C4, B_0)
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX1"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+2*K)*LhsProgress], A0); \
+ traits.loadLhs(&blA[(1+2*K)*LhsProgress], A1); \
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C0, B1); \
+ traits.madd(A1, B_0, C4, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1"); \
+ } while(false)
EIGEN_GEBGP_ONESTEP(0);
EIGEN_GEBGP_ONESTEP(1);
@@ -1117,6 +1143,8 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
blB += pk*RhsProgress;
blA += pk*2*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1");
}
// process remaining peeled loop
@@ -1179,16 +1207,21 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
for(Index k=0; k<peeled_kc; k+=pk)
{
- EIGEN_ASM_COMMENT("begin gegp micro kernel 1pX4");
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 1pX4");
RhsPacket B_0, B1, B2, B3;
#define EIGEN_GEBGP_ONESTEP(K) \
- traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
- traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
- traits.madd(A0, B_0, C0, B_0); \
- traits.madd(A0, B1, C1, B1); \
- traits.madd(A0, B2, C2, B2); \
- traits.madd(A0, B3, C3, B3);
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 1pX4"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
+ traits.broadcastRhs(&blB[(0+4*K)*RhsProgress], B_0, B1, B2, B3); \
+ traits.madd(A0, B_0, C0, B_0); \
+ traits.madd(A0, B1, C1, B1); \
+ traits.madd(A0, B2, C2, B2); \
+ traits.madd(A0, B3, C3, B3); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 1pX4"); \
+ } while(false)
internal::prefetch(blB+(48+0));
EIGEN_GEBGP_ONESTEP(0);
@@ -1203,6 +1236,8 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
blB += pk*4*RhsProgress;
blA += pk*1*LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 1pX4");
}
// process remaining peeled loop
for(Index k=peeled_kc; k<depth; k++)
@@ -1251,14 +1286,19 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
for(Index k=0; k<peeled_kc; k+=pk)
{
- EIGEN_ASM_COMMENT("begin gegp micro kernel 2p x 1");
+ EIGEN_ASM_COMMENT("begin gebp micro kernel 2pX1");
RhsPacket B_0;
#define EIGEN_GEBGP_ONESTEP(K) \
- traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
- traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
- traits.madd(A0, B_0, C0, B_0); \
-
+ do { \
+ EIGEN_ASM_COMMENT("begin step of gebp micro kernel 2pX1"); \
+ EIGEN_ASM_COMMENT("Note: these asm comments work around bug 935!"); \
+ traits.loadLhs(&blA[(0+1*K)*LhsProgress], A0); \
+ traits.loadRhs(&blB[(0+K)*RhsProgress], B_0); \
+ traits.madd(A0, B_0, C0, B_0); \
+ EIGEN_ASM_COMMENT("end step of gebp micro kernel 2pX1"); \
+ } while(false);
+
EIGEN_GEBGP_ONESTEP(0);
EIGEN_GEBGP_ONESTEP(1);
EIGEN_GEBGP_ONESTEP(2);
@@ -1270,6 +1310,8 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
blB += pk*RhsProgress;
blA += pk*1*Traits::LhsProgress;
+
+ EIGEN_ASM_COMMENT("end gebp micro kernel 2pX1");
}
// process remaining peeled loop
@@ -1402,14 +1444,14 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
B_0 = blB[0];
B_1 = blB[1];
- MADD(cj,A0,B_0,C0, B_0);
- MADD(cj,A0,B_1,C1, B_1);
-
+ CJMADD(cj,A0,B_0,C0, B_0);
+ CJMADD(cj,A0,B_1,C1, B_1);
+
B_0 = blB[2];
B_1 = blB[3];
- MADD(cj,A0,B_0,C2, B_0);
- MADD(cj,A0,B_1,C3, B_1);
-
+ CJMADD(cj,A0,B_0,C2, B_0);
+ CJMADD(cj,A0,B_1,C3, B_1);
+
blB += 4;
}
res(i, j2 + 0) += alpha * C0;
@@ -1434,7 +1476,7 @@ void gebp_kernel<LhsScalar,RhsScalar,Index,DataMapper,mr,nr,ConjugateLhs,Conjuga
{
LhsScalar A0 = blA[k];
RhsScalar B_0 = blB[k];
- MADD(cj, A0, B_0, C0, B_0);
+ CJMADD(cj, A0, B_0, C0, B_0);
}
res(i, j2) += alpha * C0;
}
diff --git a/Eigen/src/Core/products/GeneralMatrixMatrix.h b/Eigen/src/Core/products/GeneralMatrixMatrix.h
index 49362adbe..fd9443cd2 100644
--- a/Eigen/src/Core/products/GeneralMatrixMatrix.h
+++ b/Eigen/src/Core/products/GeneralMatrixMatrix.h
@@ -228,8 +228,8 @@ struct gemm_functor
cols = m_rhs.cols();
Gemm::run(rows, cols, m_lhs.cols(),
- /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
- /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
+ &m_lhs.coeffRef(row,0), m_lhs.outerStride(),
+ &m_rhs.coeffRef(0,col), m_rhs.outerStride(),
(Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
m_actualAlpha, m_blocking, info);
}
@@ -379,84 +379,92 @@ class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, M
} // end namespace internal
+namespace internal {
+
template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, GemmProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
+struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct>
+ : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> >
{
- enum {
- MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
- };
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
- typedef Scalar ResScalar;
-
- GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {
- typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
- EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
- }
-
- template<typename Dest>
- inline void evalTo(Dest& dst) const
- {
- if((m_rhs.rows()+dst.rows()+dst.cols())<20 && m_rhs.rows()>0)
- dst.noalias() = m_lhs .lazyProduct( m_rhs );
- else
- {
- dst.setZero();
- scaleAndAddTo(dst,Scalar(1));
- }
- }
-
- template<typename Dest>
- inline void addTo(Dest& dst) const
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ typedef typename Product<Lhs,Rhs>::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
+
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ enum {
+ MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
+ };
+
+ typedef generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> lazyproduct;
+
+ template<typename Dst>
+ static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
+ lazyproduct::evalTo(dst, lhs, rhs);
+ else
{
- if((m_rhs.rows()+dst.rows()+dst.cols())<20 && m_rhs.rows()>0)
- dst.noalias() += m_lhs .lazyProduct( m_rhs );
- else
- scaleAndAddTo(dst,Scalar(1));
+ dst.setZero();
+ scaleAndAddTo(dst, lhs, rhs, Scalar(1));
}
+ }
- template<typename Dest>
- inline void subTo(Dest& dst) const
- {
- if((m_rhs.rows()+dst.rows()+dst.cols())<20 && m_rhs.rows()>0)
- dst.noalias() -= m_lhs .lazyProduct( m_rhs );
- else
- scaleAndAddTo(dst,Scalar(-1));
- }
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
+ template<typename Dst>
+ static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
+ lazyproduct::addTo(dst, lhs, rhs);
+ else
+ scaleAndAddTo(dst,lhs, rhs, Scalar(1));
+ }
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ template<typename Dst>
+ static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
+ {
+ if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0)
+ lazyproduct::subTo(dst, lhs, rhs);
+ else
+ scaleAndAddTo(dst, lhs, rhs, Scalar(-1));
+ }
+
+ template<typename Dest>
+ static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha)
+ {
+ eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
- Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
- typedef internal::gemm_functor<
- Scalar, Index,
- internal::general_matrix_matrix_product<
- Index,
- LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
- RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
- (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
- _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
+ typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
+ Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
- BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
+ typedef internal::gemm_functor<
+ Scalar, Index,
+ internal::general_matrix_matrix_product<
+ Index,
+ LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
+ RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
+ (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
+ ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor;
- internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
- }
+ BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true);
+ internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>
+ (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), Dest::Flags&RowMajorBit);
+ }
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_GENERAL_MATRIX_MATRIX_H
diff --git a/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h b/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
index 8de39f76f..e55994900 100644
--- a/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
+++ b/Eigen/src/Core/products/GeneralMatrixMatrixTriangular.h
@@ -20,7 +20,7 @@ namespace internal {
/**********************************************************************
* This file implements a general A * B product while
* evaluating only one triangular part of the product.
-* This is more general version of self adjoint product (C += A A^T)
+* This is a more general version of self adjoint product (C += A A^T)
* as the level 3 SYRK Blas routine.
**********************************************************************/
@@ -270,14 +270,14 @@ struct general_product_to_triangular_selector<MatrixType,ProductType,UpLo,false>
};
template<typename MatrixType, unsigned int UpLo>
-template<typename ProductDerived, typename _Lhs, typename _Rhs>
-TriangularView<MatrixType,UpLo>& TriangularView<MatrixType,UpLo>::assignProduct(const ProductBase<ProductDerived, _Lhs,_Rhs>& prod, const Scalar& alpha)
+template<typename ProductType>
+TriangularView<MatrixType,UpLo>& TriangularViewImpl<MatrixType,UpLo,Dense>::_assignProduct(const ProductType& prod, const Scalar& alpha)
{
- eigen_assert(m_matrix.rows() == prod.rows() && m_matrix.cols() == prod.cols());
-
- general_product_to_triangular_selector<MatrixType, ProductDerived, UpLo, (_Lhs::ColsAtCompileTime==1) || (_Rhs::RowsAtCompileTime==1)>::run(m_matrix.const_cast_derived(), prod.derived(), alpha);
+ eigen_assert(derived().nestedExpression().rows() == prod.rows() && derived().cols() == prod.cols());
+
+ general_product_to_triangular_selector<MatrixType, ProductType, UpLo, internal::traits<ProductType>::InnerSize==1>::run(derived().nestedExpression().const_cast_derived(), prod, alpha);
- return *this;
+ return derived();
}
} // end namespace Eigen
diff --git a/Eigen/src/Core/products/Parallelizer.h b/Eigen/src/Core/products/Parallelizer.h
index 837e69415..2b90abf8f 100644
--- a/Eigen/src/Core/products/Parallelizer.h
+++ b/Eigen/src/Core/products/Parallelizer.h
@@ -129,7 +129,7 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
Index blockRows = (rows / threads);
blockRows = (blockRows/Functor::Traits::mr)*Functor::Traits::mr;
- GemmParallelInfo<Index>* info = new GemmParallelInfo<Index>[threads];
+ ei_declare_aligned_stack_constructed_variable(GemmParallelInfo<Index>,info,threads,0);
#pragma omp parallel num_threads(threads)
{
@@ -146,8 +146,6 @@ void parallelize_gemm(const Functor& func, Index rows, Index cols, bool transpos
if(transpose) func(c0, actualBlockCols, 0, rows, info);
else func(0, rows, c0, actualBlockCols, info);
}
-
- delete[] info;
#endif
}
diff --git a/Eigen/src/Core/products/SelfadjointMatrixMatrix.h b/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
index 21f8175d2..e831ee20f 100644
--- a/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
+++ b/Eigen/src/Core/products/SelfadjointMatrixMatrix.h
@@ -469,55 +469,54 @@ EIGEN_DONT_INLINE void product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,f
***************************************************************************/
namespace internal {
+
template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
-struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs> >
-{};
-}
-
-template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
-struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>
- : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,RhsMode,false>, Lhs, Rhs >
+struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,RhsMode,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ typedef typename Product<Lhs,Rhs>::Index Index;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+
enum {
LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
};
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+
+ template<typename Dest>
+ static void run(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
{
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
+ eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
internal::product_selfadjoint_matrix<Scalar, Index,
- EIGEN_LOGICAL_XOR(LhsIsUpper,
- internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
+ EIGEN_LOGICAL_XOR(LhsIsUpper,internal::traits<Lhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, LhsIsSelfAdjoint,
NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
- EIGEN_LOGICAL_XOR(RhsIsUpper,
- internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
+ EIGEN_LOGICAL_XOR(RhsIsUpper,internal::traits<Rhs>::Flags &RowMajorBit) ? RowMajor : ColMajor, RhsIsSelfAdjoint,
NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
internal::traits<Dest>::Flags&RowMajorBit ? RowMajor : ColMajor>
::run(
- lhs.rows(), rhs.cols(), // sizes
- &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
- &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
- &dst.coeffRef(0,0), dst.outerStride(), // result info
- actualAlpha // alpha
+ lhs.rows(), rhs.cols(), // sizes
+ &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
+ &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
+ &dst.coeffRef(0,0), dst.outerStride(), // result info
+ actualAlpha // alpha
);
}
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H
diff --git a/Eigen/src/Core/products/SelfadjointMatrixVector.h b/Eigen/src/Core/products/SelfadjointMatrixVector.h
index 26e787949..372a44e47 100644
--- a/Eigen/src/Core/products/SelfadjointMatrixVector.h
+++ b/Eigen/src/Core/products/SelfadjointMatrixVector.h
@@ -169,45 +169,45 @@ EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrd
***************************************************************************/
namespace internal {
-template<typename Lhs, int LhsMode, typename Rhs>
-struct traits<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs> >
-{};
-}
template<typename Lhs, int LhsMode, typename Rhs>
-struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
- : public ProductBase<SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>, Lhs, Rhs >
+struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,0,true>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- enum {
- LhsUpLo = LhsMode&(Upper|Lower)
- };
-
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ typedef typename Product<Lhs,Rhs>::Index Index;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
+
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ enum { LhsUpLo = LhsMode&(Upper|Lower) };
+
+ template<typename Dest>
+ static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
{
typedef typename Dest::Scalar ResScalar;
- typedef typename Base::RhsScalar RhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
- eigen_assert(dest.rows()==m_lhs.rows() && dest.cols()==m_rhs.cols());
+ eigen_assert(dest.rows()==a_lhs.rows() && dest.cols()==a_rhs.cols());
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
enum {
EvalToDest = (Dest::InnerStrideAtCompileTime==1),
- UseRhs = (_ActualRhsType::InnerStrideAtCompileTime==1)
+ UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
};
internal::gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,!EvalToDest> static_dest;
- internal::gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!UseRhs> static_rhs;
+ internal::gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!UseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
EvalToDest ? dest.data() : static_dest.data());
@@ -230,11 +230,12 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
Index size = rhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, rhs.size()) = rhs;
}
- internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
+ internal::selfadjoint_matrix_vector_product<Scalar, Index, (internal::traits<ActualLhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor,
+ int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
(
lhs.rows(), // size
&lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
@@ -248,34 +249,24 @@ struct SelfadjointProductMatrix<Lhs,LhsMode,false,Rhs,0,true>
}
};
-namespace internal {
-template<typename Lhs, typename Rhs, int RhsMode>
-struct traits<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false> >
- : traits<ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs> >
-{};
-}
-
template<typename Lhs, typename Rhs, int RhsMode>
-struct SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>
- : public ProductBase<SelfadjointProductMatrix<Lhs,0,true,Rhs,RhsMode,false>, Lhs, Rhs >
+struct selfadjoint_product_impl<Lhs,0,true,Rhs,RhsMode,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(SelfadjointProductMatrix)
-
- enum {
- RhsUpLo = RhsMode&(Upper|Lower)
- };
+ typedef typename Product<Lhs,Rhs>::Scalar Scalar;
+ enum { RhsUpLo = RhsMode&(Upper|Lower) };
- SelfadjointProductMatrix(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
+ template<typename Dest>
+ static void run(Dest& dest, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
{
// let's simply transpose the product
Transpose<Dest> destT(dest);
- SelfadjointProductMatrix<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
- Transpose<const Lhs>, 0, true>(m_rhs.transpose(), m_lhs.transpose()).scaleAndAddTo(destT, alpha);
+ selfadjoint_product_impl<Transpose<const Rhs>, int(RhsUpLo)==Upper ? Lower : Upper, false,
+ Transpose<const Lhs>, 0, true>::run(destT, a_rhs.transpose(), a_lhs.transpose(), alpha);
}
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_SELFADJOINT_MATRIX_VECTOR_H
diff --git a/Eigen/src/Core/products/SelfadjointRank2Update.h b/Eigen/src/Core/products/SelfadjointRank2Update.h
index 8594a97ce..2ae364111 100644
--- a/Eigen/src/Core/products/SelfadjointRank2Update.h
+++ b/Eigen/src/Core/products/SelfadjointRank2Update.h
@@ -79,11 +79,11 @@ SelfAdjointView<MatrixType,UpLo>& SelfAdjointView<MatrixType,UpLo>
if (IsRowMajor)
actualAlpha = numext::conj(actualAlpha);
- internal::selfadjoint_rank2_update_selector<Scalar, Index,
- typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ UBlasTraits::NeedToConjugate,_ActualUType>::type>::type,
- typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ VBlasTraits::NeedToConjugate,_ActualVType>::type>::type,
+ typedef typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ UBlasTraits::NeedToConjugate,_ActualUType>::type>::type UType;
+ typedef typename internal::remove_all<typename internal::conj_expr_if<IsRowMajor ^ VBlasTraits::NeedToConjugate,_ActualVType>::type>::type VType;
+ internal::selfadjoint_rank2_update_selector<Scalar, Index, UType, VType,
(IsRowMajor ? int(UpLo==Upper ? Lower : Upper) : UpLo)>
- ::run(_expression().const_cast_derived().data(),_expression().outerStride(),actualU,actualV,actualAlpha);
+ ::run(_expression().const_cast_derived().data(),_expression().outerStride(),UType(actualU),VType(actualV),actualAlpha);
return *this;
}
diff --git a/Eigen/src/Core/products/TriangularMatrixMatrix.h b/Eigen/src/Core/products/TriangularMatrixMatrix.h
index 4cbb79da0..60c99dcd2 100644
--- a/Eigen/src/Core/products/TriangularMatrixMatrix.h
+++ b/Eigen/src/Core/products/TriangularMatrixMatrix.h
@@ -380,28 +380,29 @@ EIGEN_DONT_INLINE void product_triangular_matrix_matrix<Scalar,Index,Mode,false,
* Wrapper to product_triangular_matrix_matrix
***************************************************************************/
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs> >
-{};
-
} // end namespace internal
+namespace internal {
template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
- : public ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>, Lhs, Rhs >
+struct triangular_product_impl<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+ template<typename Dest> static void run(Dest& dst, const Lhs &a_lhs, const Rhs &a_rhs, const typename Dest::Scalar& alpha)
{
- typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
- typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
+ typedef typename Dest::Index Index;
+ typedef typename Dest::Scalar Scalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
- Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
- * RhsBlasTraits::extractScalarFactor(m_rhs);
+ Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
+ * RhsBlasTraits::extractScalarFactor(a_rhs);
typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,Scalar,Scalar,
Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,4> BlockingType;
@@ -416,19 +417,21 @@ struct TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,false>
internal::product_triangular_matrix_matrix<Scalar, Index,
Mode, LhsIsTriangular,
- (internal::traits<_ActualLhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
- (internal::traits<_ActualRhsType>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
+ (internal::traits<ActualLhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor, LhsBlasTraits::NeedToConjugate,
+ (internal::traits<ActualRhsTypeCleaned>::Flags&RowMajorBit) ? RowMajor : ColMajor, RhsBlasTraits::NeedToConjugate,
(internal::traits<Dest >::Flags&RowMajorBit) ? RowMajor : ColMajor>
::run(
stripedRows, stripedCols, stripedDepth, // sizes
- &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
- &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
+ &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
+ &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
&dst.coeffRef(0,0), dst.outerStride(), // result info
actualAlpha, blocking
);
}
};
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_TRIANGULAR_MATRIX_MATRIX_H
diff --git a/Eigen/src/Core/products/TriangularMatrixVector.h b/Eigen/src/Core/products/TriangularMatrixVector.h
index d33e3f409..4d88a710b 100644
--- a/Eigen/src/Core/products/TriangularMatrixVector.h
+++ b/Eigen/src/Core/products/TriangularMatrixVector.h
@@ -163,83 +163,67 @@ EIGEN_DONT_INLINE void triangular_matrix_vector_product<Index,Mode,LhsScalar,Con
* Wrapper to product_triangular_vector
***************************************************************************/
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,false,Rhs,true>, Lhs, Rhs> >
-{};
-
-template<int Mode, bool LhsIsTriangular, typename Lhs, typename Rhs>
-struct traits<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false> >
- : traits<ProductBase<TriangularProduct<Mode,LhsIsTriangular,Lhs,true,Rhs,false>, Lhs, Rhs> >
-{};
-
-
-template<int StorageOrder>
+template<int Mode,int StorageOrder>
struct trmv_selector;
} // end namespace internal
+namespace internal {
+
template<int Mode, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,true,Lhs,false,Rhs,true>
- : public ProductBase<TriangularProduct<Mode,true,Lhs,false,Rhs,true>, Lhs, Rhs >
+struct triangular_product_impl<Mode,true,Lhs,false,Rhs,true>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+ template<typename Dest> static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha)
{
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
-
- internal::trmv_selector<(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dst, alpha);
+ eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols());
+
+ internal::trmv_selector<Mode,(int(internal::traits<Lhs>::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(lhs, rhs, dst, alpha);
}
};
template<int Mode, typename Lhs, typename Rhs>
-struct TriangularProduct<Mode,false,Lhs,true,Rhs,false>
- : public ProductBase<TriangularProduct<Mode,false,Lhs,true,Rhs,false>, Lhs, Rhs >
+struct triangular_product_impl<Mode,false,Lhs,true,Rhs,false>
{
- EIGEN_PRODUCT_PUBLIC_INTERFACE(TriangularProduct)
-
- TriangularProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) {}
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
+ template<typename Dest> static void run(Dest& dst, const Lhs &lhs, const Rhs &rhs, const typename Dest::Scalar& alpha)
{
- eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
+ eigen_assert(dst.rows()==lhs.rows() && dst.cols()==rhs.cols());
- typedef TriangularProduct<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower),true,Transpose<const Rhs>,false,Transpose<const Lhs>,true> TriangularProductTranspose;
Transpose<Dest> dstT(dst);
- internal::trmv_selector<(int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>::run(
- TriangularProductTranspose(m_rhs.transpose(),m_lhs.transpose()), dstT, alpha);
+ internal::trmv_selector<(Mode & (UnitDiag|ZeroDiag)) | ((Mode & Lower) ? Upper : Lower),
+ (int(internal::traits<Rhs>::Flags)&RowMajorBit) ? ColMajor : RowMajor>
+ ::run(rhs.transpose(),lhs.transpose(), dstT, alpha);
}
};
+} // end namespace internal
+
namespace internal {
// TODO: find a way to factorize this piece of code with gemv_selector since the logic is exactly the same.
-
-template<> struct trmv_selector<ColMajor>
+
+template<int Mode> struct trmv_selector<Mode,ColMajor>
{
- template<int Mode, typename Lhs, typename Rhs, typename Dest>
- static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, const typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::RealScalar RealScalar;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+ typedef typename Dest::RealScalar RealScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
- typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename internal::add_const_on_value_type<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
+ typename internal::add_const_on_value_type<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
+ typename internal::add_const_on_value_type<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
@@ -294,33 +278,33 @@ template<> struct trmv_selector<ColMajor>
}
};
-template<> struct trmv_selector<RowMajor>
+template<int Mode> struct trmv_selector<Mode,RowMajor>
{
- template<int Mode, typename Lhs, typename Rhs, typename Dest>
- static void run(const TriangularProduct<Mode,true,Lhs,false,Rhs,true>& prod, Dest& dest, const typename TriangularProduct<Mode,true,Lhs,false,Rhs,true>::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef TriangularProduct<Mode,true,Lhs,false,Rhs,true> ProductType;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::_ActualRhsType _ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
-
- typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ typedef typename Dest::Index Index;
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
+ typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
+
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
- DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
+ DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
- gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
+ gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
@@ -331,7 +315,7 @@ template<> struct trmv_selector<RowMajor>
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
internal::triangular_matrix_vector_product
diff --git a/Eigen/src/Core/util/BlasUtil.h b/Eigen/src/Core/util/BlasUtil.h
index c4881b8da..3ec55fad2 100644
--- a/Eigen/src/Core/util/BlasUtil.h
+++ b/Eigen/src/Core/util/BlasUtil.h
@@ -334,7 +334,7 @@ struct blas_traits<Transpose<NestedXpr> >
enum {
IsTransposed = Base::IsTransposed ? 0 : 1
};
- static inline ExtractType extract(const XprType& x) { return Base::extract(x.nestedExpression()); }
+ static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); }
static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
};
diff --git a/Eigen/src/Core/util/Constants.h b/Eigen/src/Core/util/Constants.h
index 05107fdfe..9b40093f0 100644
--- a/Eigen/src/Core/util/Constants.h
+++ b/Eigen/src/Core/util/Constants.h
@@ -53,14 +53,13 @@ const int Infinity = -1;
const unsigned int RowMajorBit = 0x1;
/** \ingroup flags
- *
* means the expression should be evaluated by the calling expression */
const unsigned int EvalBeforeNestingBit = 0x2;
/** \ingroup flags
- *
+ * \deprecated
* means the expression should be evaluated before any assignment */
-const unsigned int EvalBeforeAssigningBit = 0x4;
+const unsigned int EvalBeforeAssigningBit = 0x4; // FIXME deprecated
/** \ingroup flags
*
@@ -155,6 +154,16 @@ const unsigned int AlignedBit = 0x80;
const unsigned int NestByRefBit = 0x100;
+/** \ingroup flags
+ *
+ * for an expression, this means that the storage order
+ * can be either row-major or column-major.
+ * The precise choice will be decided at evaluation time or when
+ * combined with other expressions.
+ * \sa \ref RowMajorBit, \ref TopicStorageOrders */
+const unsigned int NoPreferredStorageOrderBit = 0x200;
+
+
// list of flags that are inherited by default
const unsigned int HereditaryBits = RowMajorBit
| EvalBeforeNestingBit
@@ -413,10 +422,16 @@ namespace Architecture
Generic = 0x0,
SSE = 0x1,
AltiVec = 0x2,
+ VSX = 0x3,
+ NEON = 0x4,
#if defined EIGEN_VECTORIZE_SSE
Target = SSE
#elif defined EIGEN_VECTORIZE_ALTIVEC
Target = AltiVec
+#elif defined EIGEN_VECTORIZE_VSX
+ Target = VSX
+#elif defined EIGEN_VECTORIZE_NEON
+ Target = NEON
#else
Target = Generic
#endif
@@ -425,7 +440,7 @@ namespace Architecture
/** \internal \ingroup enums
* Enum used as template parameter in GeneralProduct. */
-enum { CoeffBasedProductMode, LazyCoeffBasedProductMode, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
+enum { DefaultProduct=0, CoeffBasedProductMode, LazyCoeffBasedProductMode, LazyProduct, OuterProduct, InnerProduct, GemvProduct, GemmProduct };
/** \internal \ingroup enums
* Enum used in experimental parallel implementation. */
@@ -434,12 +449,38 @@ enum Action {GetAction, SetAction};
/** The type used to identify a dense storage. */
struct Dense {};
+/** The type used to identify a general sparse storage. */
+struct Sparse {};
+
+/** The type used to identify a permutation storage. */
+struct PermutationStorage {};
+
/** The type used to identify a matrix expression */
struct MatrixXpr {};
/** The type used to identify an array expression */
struct ArrayXpr {};
+// An evaluator must define its shape. By default, it can be one of the following:
+struct DenseShape { static std::string debugName() { return "DenseShape"; } };
+struct HomogeneousShape { static std::string debugName() { return "HomogeneousShape"; } };
+struct DiagonalShape { static std::string debugName() { return "DiagonalShape"; } };
+struct BandShape { static std::string debugName() { return "BandShape"; } };
+struct TriangularShape { static std::string debugName() { return "TriangularShape"; } };
+struct SelfAdjointShape { static std::string debugName() { return "SelfAdjointShape"; } };
+struct PermutationShape { static std::string debugName() { return "PermutationShape"; } };
+struct SparseShape { static std::string debugName() { return "SparseShape"; } };
+
+namespace internal {
+
+ // random access iterators based on coeff*() accessors.
+struct IndexBased {};
+
+// evaluator based on iterators to access coefficients.
+struct IteratorBased {};
+
+} // end namespace internal
+
} // end namespace Eigen
#endif // EIGEN_CONSTANTS_H
diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h
index 33deb88ec..c23892c50 100644
--- a/Eigen/src/Core/util/ForwardDeclarations.h
+++ b/Eigen/src/Core/util/ForwardDeclarations.h
@@ -36,6 +36,10 @@ template<typename Derived> struct accessors_level
};
};
+template<typename T> struct evaluator_traits;
+
+template< typename T> struct evaluator;
+
} // end namespace internal
template<typename T> struct NumTraits;
@@ -51,7 +55,7 @@ class DenseCoeffsBase;
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
-#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
+#if EIGEN_GNUC_AT(3,4)
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
@@ -87,11 +91,19 @@ template<typename NullaryOp, typename MatrixType> class CwiseNullaryOp;
template<typename UnaryOp, typename MatrixType> class CwiseUnaryOp;
template<typename ViewOp, typename MatrixType> class CwiseUnaryView;
template<typename BinaryOp, typename Lhs, typename Rhs> class CwiseBinaryOp;
-template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp;
-template<typename Derived, typename Lhs, typename Rhs> class ProductBase;
-template<typename Lhs, typename Rhs> class Product;
-template<typename Lhs, typename Rhs, int Mode> class GeneralProduct;
-template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct;
+template<typename BinOp, typename Lhs, typename Rhs> class SelfCwiseBinaryOp; // TODO deprecated
+template<typename Derived, typename Lhs, typename Rhs> class ProductBase; // TODO deprecated
+template<typename Decomposition, typename Rhstype> class Solve;
+template<typename XprType> class Inverse;
+
+namespace internal {
+ template<typename Lhs, typename Rhs> struct product_tag;
+}
+
+template<typename Lhs, typename Rhs, int Option = DefaultProduct> class Product;
+
+template<typename Lhs, typename Rhs, int Mode> class GeneralProduct; // TODO deprecated
+template<typename Lhs, typename Rhs, int NestingFlags> class CoeffBasedProduct; // TODO deprecated
template<typename Derived> class DiagonalBase;
template<typename _DiagonalVectorType> class DiagonalWrapper;
@@ -109,7 +121,12 @@ template<typename Derived,
int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
> class MapBase;
template<int InnerStrideAtCompileTime, int OuterStrideAtCompileTime> class Stride;
+template<int Value = Dynamic> class InnerStride;
+template<int Value = Dynamic> class OuterStride;
template<typename MatrixType, int MapOptions=Unaligned, typename StrideType = Stride<0,0> > class Map;
+template<typename Derived> class RefBase;
+template<typename PlainObjectType, int Options = 0,
+ typename StrideType = typename internal::conditional<PlainObjectType::IsVectorAtCompileTime,InnerStride<1>,OuterStride<> >::type > class Ref;
template<typename Derived> class TriangularBase;
template<typename MatrixType, unsigned int Mode> class TriangularView;
@@ -120,10 +137,9 @@ template<typename MatrixType> struct CommaInitializer;
template<typename Derived> class ReturnByValue;
template<typename ExpressionType> class ArrayWrapper;
template<typename ExpressionType> class MatrixWrapper;
+template<typename XprType> class InnerIterator;
namespace internal {
-template<typename DecompositionType, typename Rhs> struct solve_retval_base;
-template<typename DecompositionType, typename Rhs> struct solve_retval;
template<typename DecompositionType> struct kernel_retval_base;
template<typename DecompositionType> struct kernel_retval;
template<typename DecompositionType> struct image_retval_base;
@@ -136,6 +152,18 @@ template<typename _Scalar, int Rows=Dynamic, int Cols=Dynamic, int Supers=Dynami
namespace internal {
template<typename Lhs, typename Rhs> struct product_type;
+/** \internal
+ * \class product_evaluator
+ * Products need their own evaluator with more template arguments allowing for
+ * easier partial template specializations.
+ */
+template< typename T,
+ int ProductTag = internal::product_type<typename T::Lhs,typename T::Rhs>::ret,
+ typename LhsShape = typename evaluator_traits<typename T::Lhs>::Shape,
+ typename RhsShape = typename evaluator_traits<typename T::Rhs>::Shape,
+ typename LhsScalar = typename traits<typename T::Lhs>::Scalar,
+ typename RhsScalar = typename traits<typename T::Rhs>::Scalar
+ > struct product_evaluator;
}
template<typename Lhs, typename Rhs,
@@ -193,7 +221,7 @@ struct IOFormat;
// Array module
template<typename _Scalar, int _Rows, int _Cols,
int _Options = AutoAlign |
-#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==4
+#if EIGEN_GNUC_AT(3,4)
// workaround a bug in at least gcc 3.4.6
// the innermost ?: ternary operator is misparsed. We write it slightly
// differently and this makes gcc 3.4.6 happy, but it's ugly.
@@ -223,6 +251,7 @@ template<typename MatrixType> class HouseholderQR;
template<typename MatrixType> class ColPivHouseholderQR;
template<typename MatrixType> class FullPivHouseholderQR;
template<typename MatrixType, int QRPreconditioner = ColPivHouseholderQRPreconditioner> class JacobiSVD;
+template<typename MatrixType> class BDCSVD;
template<typename MatrixType, int UpLo = Lower> class LLT;
template<typename MatrixType, int UpLo = Lower> class LDLT;
template<typename VectorsType, typename CoeffsType, int Side=OnTheLeft> class HouseholderSequence;
diff --git a/Eigen/src/Core/util/Macros.h b/Eigen/src/Core/util/Macros.h
index 40a28d4d6..dc5f13673 100644
--- a/Eigen/src/Core/util/Macros.h
+++ b/Eigen/src/Core/util/Macros.h
@@ -18,31 +18,280 @@
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
EIGEN_MINOR_VERSION>=z))))
+
+// Compiler identification, EIGEN_COMP_*
+
+/// \internal EIGEN_COMP_GNUC set to 1 for all compilers compatible with GCC
#ifdef __GNUC__
- #define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x)
+ #define EIGEN_COMP_GNUC 1
#else
- #define EIGEN_GNUC_AT_LEAST(x,y) 0
+ #define EIGEN_COMP_GNUC 0
#endif
-
-#ifdef __GNUC__
- #define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__<x)
+
+/// \internal EIGEN_COMP_CLANG set to 1 if the compiler is clang (alias for __clang__)
+#if defined(__clang__)
+ #define EIGEN_COMP_CLANG 1
#else
- #define EIGEN_GNUC_AT_MOST(x,y) 0
+ #define EIGEN_COMP_CLANG 0
#endif
-#if EIGEN_GNUC_AT_MOST(4,3) && !defined(__clang__)
- // see bug 89
- #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 0
+
+/// \internal EIGEN_COMP_LLVM set to 1 if the compiler backend is llvm
+#if defined(__llvm__)
+ #define EIGEN_COMP_LLVM 1
#else
- #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 1
+ #define EIGEN_COMP_LLVM 0
+#endif
+
+/// \internal EIGEN_COMP_ICC set to __INTEL_COMPILER if the compiler is Intel compiler, 0 otherwise
+#if defined(__INTEL_COMPILER)
+ #define EIGEN_COMP_ICC __INTEL_COMPILER
+#else
+ #define EIGEN_COMP_ICC 0
+#endif
+
+/// \internal EIGEN_COMP_MINGW set to 1 if the compiler is mingw
+#if defined(__MINGW32__)
+ #define EIGEN_COMP_MINGW 1
+#else
+ #define EIGEN_COMP_MINGW 0
+#endif
+
+/// \internal EIGEN_COMP_SUNCC set to 1 if the compiler is Solaris Studio
+#if defined(__SUNPRO_CC)
+ #define EIGEN_COMP_SUNCC 1
+#else
+ #define EIGEN_COMP_SUNCC 0
+#endif
+
+/// \internal EIGEN_COMP_MSVC set to _MSC_VER if the compiler is Microsoft Visual C++, 0 otherwise.
+#if defined(_MSC_VER)
+ #define EIGEN_COMP_MSVC _MSC_VER
+#else
+ #define EIGEN_COMP_MSVC 0
+#endif
+
+/// \internal EIGEN_COMP_MSVC_STRICT set to 1 if the compiler is really Microsoft Visual C++ and not ,e.g., ICC
+#if EIGEN_COMP_MSVC && !(EIGEN_COMP_ICC)
+ #define EIGEN_COMP_MSVC_STRICT _MSC_VER
+#else
+ #define EIGEN_COMP_MSVC_STRICT 0
+#endif
+
+/// \internal EIGEN_COMP_IBM set to 1 if the compiler is IBM XL C++
+#if defined(__IBMCPP__) || defined(__xlc__)
+ #define EIGEN_COMP_IBM 1
+#else
+ #define EIGEN_COMP_IBM 0
+#endif
+
+/// \internal EIGEN_COMP_PGI set to 1 if the compiler is Portland Group Compiler
+#if defined(__PGI)
+ #define EIGEN_COMP_PGI 1
+#else
+ #define EIGEN_COMP_PGI 0
+#endif
+
+/// \internal EIGEN_COMP_ARM set to 1 if the compiler is ARM Compiler
+#if defined(__CC_ARM) || defined(__ARMCC_VERSION)
+ #define EIGEN_COMP_ARM 1
+#else
+ #define EIGEN_COMP_ARM 0
+#endif
+
+
+/// \internal EIGEN_GNUC_STRICT set to 1 if the compiler is really GCC and not a compatible compiler (e.g., ICC, clang, mingw, etc.)
+#if EIGEN_COMP_GNUC && !(EIGEN_COMP_CLANG || EIGEN_COMP_CLANG || EIGEN_COMP_MINGW || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM )
+ #define EIGEN_COMP_GNUC_STRICT 1
+#else
+ #define EIGEN_COMP_GNUC_STRICT 0
#endif
-#if defined(__GNUC__) && (__GNUC__ <= 3)
+
+#if EIGEN_COMP_GNUC
+ #define EIGEN_GNUC_AT_LEAST(x,y) ((__GNUC__==x && __GNUC_MINOR__>=y) || __GNUC__>x)
+ #define EIGEN_GNUC_AT_MOST(x,y) ((__GNUC__==x && __GNUC_MINOR__<=y) || __GNUC__<x)
+ #define EIGEN_GNUC_AT(x,y) ( __GNUC__==x && __GNUC_MINOR__==y )
+#else
+ #define EIGEN_GNUC_AT_LEAST(x,y) 0
+ #define EIGEN_GNUC_AT_MOST(x,y) 0
+ #define EIGEN_GNUC_AT(x,y) 0
+#endif
+
+// FIXME: could probably be removed as we do not support gcc 3.x anymore
+#if EIGEN_COMP_GNUC && (__GNUC__ <= 3)
#define EIGEN_GCC3_OR_OLDER 1
#else
#define EIGEN_GCC3_OR_OLDER 0
#endif
+
+// Architecture identification, EIGEN_ARCH_*
+
+#if defined(__x86_64__) || defined(_M_X64) || defined(__amd64)
+ #define EIGEN_ARCH_x86_64 1
+#else
+ #define EIGEN_ARCH_x86_64 0
+#endif
+
+#if defined(__i386__) || defined(_M_IX86) || defined(_X86_) || defined(__i386)
+ #define EIGEN_ARCH_i386 1
+#else
+ #define EIGEN_ARCH_i386 0
+#endif
+
+#if EIGEN_ARCH_x86_64 || EIGEN_ARCH_i386
+ #define EIGEN_ARCH_i386_OR_x86_64 1
+#else
+ #define EIGEN_ARCH_i386_OR_x86_64 0
+#endif
+
+/// \internal EIGEN_ARCH_ARM set to 1 if the architecture is ARM
+#if defined(__arm__)
+ #define EIGEN_ARCH_ARM 1
+#else
+ #define EIGEN_ARCH_ARM 0
+#endif
+
+/// \internal EIGEN_ARCH_ARM64 set to 1 if the architecture is ARM64
+#if defined(__aarch64__)
+ #define EIGEN_ARCH_ARM64 1
+#else
+ #define EIGEN_ARCH_ARM64 0
+#endif
+
+#if EIGEN_ARCH_ARM || EIGEN_ARCH_ARM64
+ #define EIGEN_ARCH_ARM_OR_ARM64 1
+#else
+ #define EIGEN_ARCH_ARM_OR_ARM64 0
+#endif
+
+/// \internal EIGEN_ARCH_MIPS set to 1 if the architecture is MIPS
+#if defined(__mips__) || defined(__mips)
+ #define EIGEN_ARCH_MIPS 1
+#else
+ #define EIGEN_ARCH_MIPS 0
+#endif
+
+/// \internal EIGEN_ARCH_SPARC set to 1 if the architecture is SPARC
+#if defined(__sparc__) || defined(__sparc)
+ #define EIGEN_ARCH_SPARC 1
+#else
+ #define EIGEN_ARCH_SPARC 0
+#endif
+
+/// \internal EIGEN_ARCH_IA64 set to 1 if the architecture is Intel Itanium
+#if defined(__ia64__)
+ #define EIGEN_ARCH_IA64 1
+#else
+ #define EIGEN_ARCH_IA64 0
+#endif
+
+/// \internal EIGEN_ARCH_PPC set to 1 if the architecture is PowerPC
+#if defined(__powerpc__) || defined(__ppc__) || defined(_M_PPC)
+ #define EIGEN_ARCH_PPC 1
+#else
+ #define EIGEN_ARCH_PPC 0
+#endif
+
+
+
+// Operating system identification, EIGEN_OS_*
+
+/// \internal EIGEN_OS_UNIX set to 1 if the OS is a unix variant
+#if defined(__unix__) || defined(__unix)
+ #define EIGEN_OS_UNIX 1
+#else
+ #define EIGEN_OS_UNIX 0
+#endif
+
+/// \internal EIGEN_OS_LINUX set to 1 if the OS is based on Linux kernel
+#if defined(__linux__)
+ #define EIGEN_OS_LINUX 1
+#else
+ #define EIGEN_OS_LINUX 0
+#endif
+
+/// \internal EIGEN_OS_ANDROID set to 1 if the OS is Android
+#if defined(__ANDROID__)
+ #define EIGEN_OS_ANDROID 1
+#else
+ #define EIGEN_OS_ANDROID 0
+#endif
+
+/// \internal EIGEN_OS_GNULINUX set to 1 if the OS is GNU Linux and not Linux-based OS (e.g., not android)
+#if defined(__gnu_linux__) && !(EIGEN_OS_ANDROID)
+ #define EIGEN_OS_GNULINUX 1
+#else
+ #define EIGEN_OS_GNULINUX 0
+#endif
+
+/// \internal EIGEN_OS_BSD set to 1 if the OS is a BSD variant
+#if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__bsdi__) || defined(__DragonFly__)
+ #define EIGEN_OS_BSD 1
+#else
+ #define EIGEN_OS_BSD 0
+#endif
+
+/// \internal EIGEN_OS_MAC set to 1 if the OS is MacOS
+#if defined(__APPLE__)
+ #define EIGEN_OS_MAC 1
+#else
+ #define EIGEN_OS_MAC 0
+#endif
+
+/// \internal EIGEN_OS_QNX set to 1 if the OS is QNX
+#if defined(__QNX__)
+ #define EIGEN_OS_QNX 1
+#else
+ #define EIGEN_OS_QNX 0
+#endif
+
+/// \internal EIGEN_OS_WIN set to 1 if the OS is Windows based
+#if defined(_WIN32)
+ #define EIGEN_OS_WIN 1
+#else
+ #define EIGEN_OS_WIN 0
+#endif
+
+/// \internal EIGEN_OS_WIN64 set to 1 if the OS is Windows 64bits
+#if defined(_WIN64)
+ #define EIGEN_OS_WIN64 1
+#else
+ #define EIGEN_OS_WIN64 0
+#endif
+
+/// \internal EIGEN_OS_WINCE set to 1 if the OS is Windows CE
+#if defined(_WIN32_WCE)
+ #define EIGEN_OS_WINCE 1
+#else
+ #define EIGEN_OS_WINCE 0
+#endif
+
+/// \internal EIGEN_OS_CYGWIN set to 1 if the OS is Windows/Cygwin
+#if defined(__CYGWIN__)
+ #define EIGEN_OS_CYGWIN 1
+#else
+ #define EIGEN_OS_CYGWIN 0
+#endif
+
+/// \internal EIGEN_OS_WIN_STRICT set to 1 if the OS is really Windows and not some variants
+#if EIGEN_OS_WIN && !( EIGEN_OS_WINCE || EIGEN_OS_CYGWIN )
+ #define EIGEN_OS_WIN_STRICT 1
+#else
+ #define EIGEN_OS_WIN_STRICT 0
+#endif
+
+
+
+
+#if EIGEN_GNUC_AT_MOST(4,3) && !EIGEN_COMP_CLANG
+ // see bug 89
+ #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 0
+#else
+ #define EIGEN_SAFE_TO_USE_STANDARD_ASSERT_MACRO 1
+#endif
+
// 16 byte alignment is only useful for vectorization. Since it affects the ABI, we need to enable
// 16 byte alignment on all platforms where vectorization might be enabled. In theory we could always
// enable alignment, but it can be a cause of problems on some platforms, so we just disable it in
@@ -50,7 +299,7 @@
// Only static alignment is really problematic (relies on nonstandard compiler extensions that don't
// work everywhere, for example don't work on GCC/ARM), try to keep heap alignment even
// when we have to disable static alignment.
-#if defined(__GNUC__) && !(defined(__i386__) || defined(__x86_64__) || defined(__powerpc__) || defined(__ppc__) || defined(__ia64__))
+#if EIGEN_COMP_GNUC && !(EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_PPC || EIGEN_ARCH_IA64)
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 1
#else
#define EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT 0
@@ -59,8 +308,8 @@
// static alignment is completely disabled with GCC 3, Sun Studio, and QCC/QNX
#if !EIGEN_GCC_AND_ARCH_DOESNT_WANT_STACK_ALIGNMENT \
&& !EIGEN_GCC3_OR_OLDER \
- && !defined(__SUNPRO_CC) \
- && !defined(__QNXNTO__)
+ && !EIGEN_COMP_SUNCC \
+ && !EIGEN_OS_QNX
#define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 1
#else
#define EIGEN_ARCH_WANTS_STACK_ALIGNMENT 0
@@ -86,6 +335,11 @@
#define EIGEN_ALIGN 0
#endif
+
+// This macro can be used to prevent from macro expansion, e.g.:
+// std::max EIGEN_NOT_A_MACRO(a,b)
+#define EIGEN_NOT_A_MACRO
+
// EIGEN_ALIGN_STATICALLY is the true test whether we want to align arrays on the stack or not. It takes into account both the user choice to explicitly disable
// alignment (EIGEN_DONT_ALIGN_STATICALLY) and the architecture config (EIGEN_ARCH_WANTS_STACK_ALIGNMENT). Henceforth, only EIGEN_ALIGN_STATICALLY should be used.
#if EIGEN_ARCH_WANTS_STACK_ALIGNMENT && !defined(EIGEN_DONT_ALIGN_STATICALLY)
@@ -124,7 +378,7 @@
#if (__has_feature(cxx_rvalue_references) || \
(defined(__cplusplus) && __cplusplus >= 201103L) || \
defined(__GXX_EXPERIMENTAL_CXX0X__) || \
- (defined(_MSC_VER) && _MSC_VER >= 1600))
+ (EIGEN_COMP_MSVC >= 1600))
#define EIGEN_HAVE_RVALUE_REFERENCES
#endif
@@ -161,7 +415,7 @@
// EIGEN_STRONG_INLINE is a stronger version of the inline, using __forceinline on MSVC,
// but it still doesn't use GCC's always_inline. This is useful in (common) situations where MSVC needs forceinline
// but GCC is still doing fine with just inline.
-#if (defined _MSC_VER) || (defined __INTEL_COMPILER)
+#if EIGEN_COMP_MSVC || EIGEN_COMP_ICC
#define EIGEN_STRONG_INLINE __forceinline
#else
#define EIGEN_STRONG_INLINE inline
@@ -180,15 +434,15 @@
#define EIGEN_ALWAYS_INLINE EIGEN_STRONG_INLINE
#endif
-#if (defined __GNUC__)
+#if EIGEN_COMP_GNUC
#define EIGEN_DONT_INLINE __attribute__((noinline))
-#elif (defined _MSC_VER)
+#elif EIGEN_COMP_MSVC
#define EIGEN_DONT_INLINE __declspec(noinline)
#else
#define EIGEN_DONT_INLINE
#endif
-#if (defined __GNUC__)
+#if EIGEN_COMP_GNUC
#define EIGEN_PERMISSIVE_EXPR __extension__
#else
#define EIGEN_PERMISSIVE_EXPR
@@ -257,15 +511,15 @@
#endif
#ifdef EIGEN_NO_DEBUG
-#define EIGEN_ONLY_USED_FOR_DEBUG(x) (void)x
+#define EIGEN_ONLY_USED_FOR_DEBUG(x) EIGEN_UNUSED_VARIABLE(x)
#else
#define EIGEN_ONLY_USED_FOR_DEBUG(x)
#endif
#ifndef EIGEN_NO_DEPRECATED_WARNING
- #if (defined __GNUC__)
+ #if EIGEN_COMP_GNUC
#define EIGEN_DEPRECATED __attribute__((deprecated))
- #elif (defined _MSC_VER)
+ #elif EIGEN_COMP_MSVC
#define EIGEN_DEPRECATED __declspec(deprecated)
#else
#define EIGEN_DEPRECATED
@@ -274,7 +528,7 @@
#define EIGEN_DEPRECATED
#endif
-#if (defined __GNUC__)
+#if EIGEN_COMP_GNUC
#define EIGEN_UNUSED __attribute__((unused))
#else
#define EIGEN_UNUSED
@@ -283,13 +537,13 @@
// Suppresses 'unused variable' warnings.
namespace Eigen {
namespace internal {
- template<typename T> void ignore_unused_variable(const T&) {}
+ template<typename T> EIGEN_DEVICE_FUNC void ignore_unused_variable(const T&) {}
}
}
#define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var);
#if !defined(EIGEN_ASM_COMMENT)
- #if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
+ #if EIGEN_COMP_GNUC && (EIGEN_ARCH_i386_OR_x86_64 || EIGEN_ARCH_ARM_OR_ARM64)
#define EIGEN_ASM_COMMENT(X) __asm__("#" X)
#else
#define EIGEN_ASM_COMMENT(X)
@@ -304,12 +558,12 @@ namespace Eigen {
* vectorized and non-vectorized code.
*/
#if (defined __CUDACC__)
-#define EIGEN_ALIGN_TO_BOUNDARY(n) __align__(n)
-#elif (defined __GNUC__) || (defined __PGI) || (defined __IBMCPP__) || (defined __ARMCC_VERSION)
+ #define EIGEN_ALIGN_TO_BOUNDARY(n) __align__(n)
+#elif EIGEN_COMP_GNUC || EIGEN_COMP_PGI || EIGEN_COMP_IBM || EIGEN_COMP_ARM
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
-#elif (defined _MSC_VER)
+#elif EIGEN_COMP_MSVC
#define EIGEN_ALIGN_TO_BOUNDARY(n) __declspec(align(n))
-#elif (defined __SUNPRO_CC)
+#elif EIGEN_COMP_SUNCC
// FIXME not sure about this one:
#define EIGEN_ALIGN_TO_BOUNDARY(n) __attribute__((aligned(n)))
#else
@@ -357,27 +611,26 @@ namespace Eigen {
// just an empty macro !
#define EIGEN_EMPTY
-#if defined(_MSC_VER) && (!defined(__INTEL_COMPILER))
-#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
- using Base::operator =;
-#elif defined(__clang__) // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653)
-#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
- using Base::operator =; \
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \
- template <typename OtherDerived> \
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase<OtherDerived>& other) { Base::operator=(other.derived()); return *this; }
-#else
-#define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
- using Base::operator =; \
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \
- { \
- Base::operator=(other); \
- return *this; \
- }
+#if EIGEN_COMP_MSVC_STRICT && EIGEN_COMP_MSVC < 1900
+ #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
+ using Base::operator =;
+#elif EIGEN_COMP_CLANG // workaround clang bug (see http://forum.kde.org/viewtopic.php?f=74&t=102653)
+ #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
+ using Base::operator =; \
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) { Base::operator=(other); return *this; } \
+ template <typename OtherDerived> \
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase<OtherDerived>& other) { Base::operator=(other.derived()); return *this; }
+#else
+ #define EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived) \
+ using Base::operator =; \
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const Derived& other) \
+ { \
+ Base::operator=(other); \
+ return *this; \
+ }
#endif
-#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
- EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
+#define EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) EIGEN_INHERIT_ASSIGNMENT_EQUAL_OPERATOR(Derived)
/**
* Just a side note. Commenting within defines works only by documenting
@@ -387,6 +640,8 @@ namespace Eigen {
* documentation in a single line.
**/
+// TODO The EIGEN_DENSE_PUBLIC_INTERFACE should not exists anymore
+
#define EIGEN_GENERIC_PUBLIC_INTERFACE(Derived) \
typedef typename Eigen::internal::traits<Derived>::Scalar Scalar; /*!< \brief Numeric type, e.g. float, double, int or std::complex<float>. */ \
typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; /*!< \brief The underlying numeric type for composed scalar types. \details In cases where Scalar is e.g. std::complex<T>, T were corresponding to RealScalar. */ \
@@ -397,7 +652,6 @@ namespace Eigen {
enum { RowsAtCompileTime = Eigen::internal::traits<Derived>::RowsAtCompileTime, \
ColsAtCompileTime = Eigen::internal::traits<Derived>::ColsAtCompileTime, \
Flags = Eigen::internal::traits<Derived>::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
SizeAtCompileTime = Base::SizeAtCompileTime, \
MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
IsVectorAtCompileTime = Base::IsVectorAtCompileTime };
@@ -416,13 +670,11 @@ namespace Eigen {
MaxRowsAtCompileTime = Eigen::internal::traits<Derived>::MaxRowsAtCompileTime, \
MaxColsAtCompileTime = Eigen::internal::traits<Derived>::MaxColsAtCompileTime, \
Flags = Eigen::internal::traits<Derived>::Flags, \
- CoeffReadCost = Eigen::internal::traits<Derived>::CoeffReadCost, \
SizeAtCompileTime = Base::SizeAtCompileTime, \
MaxSizeAtCompileTime = Base::MaxSizeAtCompileTime, \
IsVectorAtCompileTime = Base::IsVectorAtCompileTime }; \
using Base::derived; \
- using Base::const_cast_derived;
-
+ using Base::const_cast_derived;
#define EIGEN_PLAIN_ENUM_MIN(a,b) (((int)a <= (int)b) ? (int)a : (int)b)
#define EIGEN_PLAIN_ENUM_MAX(a,b) (((int)a >= (int)b) ? (int)a : (int)b)
diff --git a/Eigen/src/Core/util/Memory.h b/Eigen/src/Core/util/Memory.h
index 30133ba67..bacf236fb 100644
--- a/Eigen/src/Core/util/Memory.h
+++ b/Eigen/src/Core/util/Memory.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
@@ -42,15 +42,15 @@
// See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup
// FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures
// See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup
-#if defined(__FreeBSD__) && !defined(__arm__) && !defined(__mips__) && (EIGEN_ALIGN_BYTES == 16)
+#if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_ALIGN_BYTES == 16)
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1
#else
#define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0
#endif
-#if (defined(__APPLE__) && (EIGEN_ALIGN_BYTES == 16)) \
- || (defined(_WIN64) && (EIGEN_ALIGN_BYTES == 16)) \
- || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
+#if (EIGEN_OS_MAC && (EIGEN_ALIGN_BYTES == 16)) \
+ || (EIGEN_OS_WIN64 && (EIGEN_ALIGN_BYTES == 16)) \
+ || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \
|| EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED
#define EIGEN_MALLOC_ALREADY_ALIGNED 1
#else
@@ -62,9 +62,9 @@
// See bug 554 (http://eigen.tuxfamily.org/bz/show_bug.cgi?id=554)
// It seems to be unsafe to check _POSIX_ADVISORY_INFO without including unistd.h first.
// Currently, let's include it only on unix systems:
-#if defined(__unix__) || defined(__unix)
+#if EIGEN_OS_UNIX
#include <unistd.h>
- #if ((defined __QNXNTO__) || (defined _GNU_SOURCE) || (defined __PGI) || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
+ #if (EIGEN_OS_QNX || (defined _GNU_SOURCE) || EIGEN_COMP_PGI || ((defined _XOPEN_SOURCE) && (_XOPEN_SOURCE >= 600))) && (defined _POSIX_ADVISORY_INFO) && (_POSIX_ADVISORY_INFO > 0)
#define EIGEN_HAS_POSIX_MEMALIGN 1
#endif
#endif
@@ -224,7 +224,7 @@ inline void* aligned_malloc(size_t size)
if(posix_memalign(&result, EIGEN_ALIGN_BYTES, size)) result = 0;
#elif EIGEN_HAS_MM_MALLOC
result = _mm_malloc(size, EIGEN_ALIGN_BYTES);
- #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
+ #elif EIGEN_OS_WIN_STRICT
result = _aligned_malloc(size, EIGEN_ALIGN_BYTES);
#else
result = handmade_aligned_malloc(size);
@@ -247,7 +247,7 @@ inline void aligned_free(void *ptr)
std::free(ptr);
#elif EIGEN_HAS_MM_MALLOC
_mm_free(ptr);
- #elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
+ #elif EIGEN_OS_WIN_STRICT
_aligned_free(ptr);
#else
handmade_aligned_free(ptr);
@@ -274,12 +274,12 @@ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
// The defined(_mm_free) is just here to verify that this MSVC version
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
// functions. This may not always be the case and we just try to be safe.
- #if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
+ #if EIGEN_OS_WIN_STRICT && defined(_mm_free)
result = _aligned_realloc(ptr,new_size,EIGEN_ALIGN_BYTES);
#else
result = generic_aligned_realloc(ptr,new_size,old_size);
#endif
-#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
+#elif EIGEN_OS_WIN_STRICT
result = _aligned_realloc(ptr,new_size,EIGEN_ALIGN_BYTES);
#else
result = handmade_aligned_realloc(ptr,new_size,old_size);
@@ -454,6 +454,8 @@ template<typename T, bool Align> inline T* conditional_aligned_realloc_new(T* pt
template<typename T, bool Align> inline T* conditional_aligned_new_auto(size_t size)
{
+ if(size==0)
+ return 0; // short-cut. Also fixes Bug 884
check_size_for_overflow<T>(size);
T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size));
if(NumTraits<T>::RequireInitialization)
@@ -521,9 +523,8 @@ template<typename T, bool Align> inline void conditional_aligned_delete_auto(T *
template<typename Scalar, typename Index>
inline Index first_aligned(const Scalar* array, Index size)
{
- enum { PacketSize = packet_traits<Scalar>::size,
- PacketAlignedMask = PacketSize-1
- };
+ static const Index PacketSize = packet_traits<Scalar>::size;
+ static const Index PacketAlignedMask = PacketSize-1;
if(PacketSize==1)
{
@@ -576,27 +577,27 @@ template<typename T, bool UseMemmove> struct smart_memmove_helper;
template<typename T> void smart_memmove(const T* start, const T* end, T* target)
{
- smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
+ smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target);
}
template<typename T> struct smart_memmove_helper<T,true> {
- static inline void run(const T* start, const T* end, T* target)
- { std::memmove(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
+ static inline void run(const T* start, const T* end, T* target)
+ { std::memmove(target, start, std::ptrdiff_t(end)-std::ptrdiff_t(start)); }
};
template<typename T> struct smart_memmove_helper<T,false> {
- static inline void run(const T* start, const T* end, T* target)
- {
- if (uintptr_t(target) < uintptr_t(start))
- {
- std::copy(start, end, target);
- }
- else
- {
- std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
- std::copy_backward(start, end, target + count);
- }
+ static inline void run(const T* start, const T* end, T* target)
+ {
+ if (uintptr_t(target) < uintptr_t(start))
+ {
+ std::copy(start, end, target);
}
+ else
+ {
+ std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T);
+ std::copy_backward(start, end, target + count);
+ }
+ }
};
@@ -607,16 +608,16 @@ template<typename T> struct smart_memmove_helper<T,false> {
// you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA
// to the appropriate stack allocation function
#ifndef EIGEN_ALLOCA
- #if (defined __linux__) || (defined __APPLE__) || (defined alloca)
+ #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca)
#define EIGEN_ALLOCA alloca
- #elif defined(_MSC_VER)
+ #elif EIGEN_COMP_MSVC
#define EIGEN_ALLOCA _alloca
#endif
#endif
// This helper class construct the allocated memory, and takes care of destructing and freeing the handled data
// at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions.
-template<typename T> class aligned_stack_memory_handler
+template<typename T> class aligned_stack_memory_handler : noncopyable
{
public:
/* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size.
@@ -644,6 +645,30 @@ template<typename T> class aligned_stack_memory_handler
bool m_deallocate;
};
+template<typename T> class scoped_array : noncopyable
+{
+ T* m_ptr;
+public:
+ explicit scoped_array(std::ptrdiff_t size)
+ {
+ m_ptr = new T[size];
+ }
+ ~scoped_array()
+ {
+ delete[] m_ptr;
+ }
+ T& operator[](std::ptrdiff_t i) { return m_ptr[i]; }
+ const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; }
+ T* &ptr() { return m_ptr; }
+ const T* ptr() const { return m_ptr; }
+ operator const T*() const { return m_ptr; }
+};
+
+template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b)
+{
+ std::swap(a.ptr(),b.ptr());
+}
+
} // end namespace internal
/** \internal
@@ -786,12 +811,12 @@ public:
//---------- Cache sizes ----------
#if !defined(EIGEN_NO_CPUID)
-# if defined(__GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
-# if defined(__PIC__) && defined(__i386__)
+# if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64
+# if defined(__PIC__) && EIGEN_ARCH_i386
// Case for x86 with PIC
# define EIGEN_CPUID(abcd,func,id) \
__asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id));
-# elif defined(__PIC__) && defined(__x86_64__)
+# elif defined(__PIC__) && EIGEN_ARCH_x86_64
// Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model.
// However, we cannot detect which code model is used, and the xchg overhead is negligible anyway.
# define EIGEN_CPUID(abcd,func,id) \
@@ -801,8 +826,8 @@ public:
# define EIGEN_CPUID(abcd,func,id) \
__asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) );
# endif
-# elif defined(_MSC_VER)
-# if (_MSC_VER > 1500) && ( defined(_M_IX86) || defined(_M_X64) )
+# elif EIGEN_COMP_MSVC
+# if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64
# define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id)
# endif
# endif
diff --git a/Eigen/src/Core/util/Meta.h b/Eigen/src/Core/util/Meta.h
index b99b8849e..f3bafd5af 100644
--- a/Eigen/src/Core/util/Meta.h
+++ b/Eigen/src/Core/util/Meta.h
@@ -274,18 +274,6 @@ template<typename T> struct scalar_product_traits<std::complex<T>, T>
// typedef typename scalar_product_traits<typename remove_all<ArgType0>::type, typename remove_all<ArgType1>::type>::ReturnType type;
// };
-template<typename T> struct is_diagonal
-{ enum { ret = false }; };
-
-template<typename T> struct is_diagonal<DiagonalBase<T> >
-{ enum { ret = true }; };
-
-template<typename T> struct is_diagonal<DiagonalWrapper<T> >
-{ enum { ret = true }; };
-
-template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
-{ enum { ret = true }; };
-
} // end namespace internal
namespace numext {
diff --git a/Eigen/src/Core/util/StaticAssert.h b/Eigen/src/Core/util/StaticAssert.h
index 59aa0811c..7538a0633 100644
--- a/Eigen/src/Core/util/StaticAssert.h
+++ b/Eigen/src/Core/util/StaticAssert.h
@@ -26,7 +26,7 @@
#ifndef EIGEN_NO_STATIC_ASSERT
- #if defined(__GXX_EXPERIMENTAL_CXX0X__) || (defined(_MSC_VER) && (_MSC_VER >= 1600))
+ #if defined(__GXX_EXPERIMENTAL_CXX0X__) || (EIGEN_COMP_MSVC >= 1600)
// if native static_assert is enabled, let's use it
#define EIGEN_STATIC_ASSERT(X,MSG) static_assert(X,#MSG);
@@ -84,13 +84,16 @@
THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY,
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT,
THIS_METHOD_IS_ONLY_FOR_1x1_EXPRESSIONS,
+ THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL,
THIS_METHOD_IS_ONLY_FOR_ARRAYS_NOT_MATRICES,
YOU_PASSED_A_ROW_VECTOR_BUT_A_COLUMN_VECTOR_WAS_EXPECTED,
YOU_PASSED_A_COLUMN_VECTOR_BUT_A_ROW_VECTOR_WAS_EXPECTED,
THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE,
THE_STORAGE_ORDER_OF_BOTH_SIDES_MUST_MATCH,
- OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG
+ OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG,
+ IMPLICIT_CONVERSION_TO_SCALAR_IS_FOR_INNER_PRODUCT_ONLY,
+ STORAGE_LAYOUT_DOES_NOT_MATCH
};
};
@@ -101,7 +104,7 @@
// Specialized implementation for MSVC to avoid "conditional
// expression is constant" warnings. This implementation doesn't
// appear to work under GCC, hence the multiple implementations.
- #ifdef _MSC_VER
+ #if EIGEN_COMP_MSVC
#define EIGEN_STATIC_ASSERT(CONDITION,MSG) \
{Eigen::internal::static_assertion<bool(CONDITION)>::MSG;}
@@ -157,7 +160,7 @@
#define EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0,TYPE1) \
( \
- (int(TYPE0::SizeAtCompileTime)==0 && int(TYPE1::SizeAtCompileTime)==0) \
+ (int(internal::size_of_xpr_at_compile_time<TYPE0>::ret)==0 && int(internal::size_of_xpr_at_compile_time<TYPE1>::ret)==0) \
|| (\
(int(TYPE0::RowsAtCompileTime)==Eigen::Dynamic \
|| int(TYPE1::RowsAtCompileTime)==Eigen::Dynamic \
diff --git a/Eigen/src/Core/util/XprHelper.h b/Eigen/src/Core/util/XprHelper.h
index 67ca49754..3ac37df58 100644
--- a/Eigen/src/Core/util/XprHelper.h
+++ b/Eigen/src/Core/util/XprHelper.h
@@ -14,7 +14,7 @@
// just a workaround because GCC seems to not really like empty structs
// FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
// so currently we simply disable this optimization for gcc 4.3
-#if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
+#if EIGEN_COMP_GNUC && !EIGEN_GNUC_AT(4,3)
#define EIGEN_EMPTY_STRUCT_CTOR(X) \
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X() {} \
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE X(const X& ) {}
@@ -128,6 +128,17 @@ template<typename _Scalar, int _Rows, int _Cols,
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
class compute_matrix_flags
{
+ enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0 };
+ public:
+ // FIXME currently we still have to handle DirectAccessBit at the expression level to handle DenseCoeffsBase<>
+ // and then propagate this information to the evaluator's flags.
+ // However, I (Gael) think that DirectAccessBit should only matter at the evaluation stage.
+ enum { ret = DirectAccessBit | LvalueBit | NestByRefBit | row_major_bit };
+};
+
+template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
+class compute_matrix_evaluator_flags
+{
enum {
row_major_bit = Options&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
@@ -156,7 +167,7 @@ class compute_matrix_flags
};
public:
- enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
+ enum { ret = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit | aligned_bit };
};
template<int _Rows, int _Cols> struct size_at_compile_time
@@ -164,6 +175,11 @@ template<int _Rows, int _Cols> struct size_at_compile_time
enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
};
+template<typename XprType> struct size_of_xpr_at_compile_time
+{
+ enum { ret = size_at_compile_time<traits<XprType>::RowsAtCompileTime,traits<XprType>::ColsAtCompileTime>::ret };
+};
+
/* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
* whereas eval is a const reference in the case of a matrix
*/
@@ -174,6 +190,10 @@ template<typename T> struct plain_matrix_type<T,Dense>
{
typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
};
+template<typename T> struct plain_matrix_type<T,DiagonalShape>
+{
+ typedef typename T::PlainObject type;
+};
template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
{
@@ -216,6 +236,11 @@ template<typename T> struct eval<T,Dense>
// > type;
};
+template<typename T> struct eval<T,DiagonalShape>
+{
+ typedef typename plain_matrix_type<T>::type type;
+};
+
// for matrices, no need to evaluate, just use a const reference to avoid a useless copy
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
@@ -294,38 +319,42 @@ struct transfer_constness
>::type type;
};
-/** \internal Determines how a given expression should be nested into another one.
+
+// When using evaluators, we never evaluate when assembling the expression!!
+// TODO: get rid of this nested class since it's just an alias for ref_selector.
+template<typename T, int n=1, typename PlainObject = void> struct nested
+{
+ typedef typename ref_selector<T>::type type;
+};
+
+// However, we still need a mechanism to detect whether an expression which is evaluated multiple time
+// has to be evaluated into a temporary.
+// That's the purpose of this new nested_eval helper:
+/** \internal Determines how a given expression should be nested when evaluated multiple times.
* For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
- * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
+ * evaluated into the bigger product expression. The choice is between nesting the expression b+c as-is, or
* evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
* a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
* many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
*
- * \param T the type of the expression being nested
+ * \param T the type of the expression being nested.
* \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
- *
- * Note that if no evaluation occur, then the constness of T is preserved.
- *
- * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
- * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
- * the Product expression uses: nested<S, 3>::type, which turns out to be Matrix3d because the internal logic of
- * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
- * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::type, which turns out to be
- * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
- * in copying it into another matrix.
+ * \param PlainObject the type of the temporary if needed.
*/
-template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
+template<typename T, int n, typename PlainObject = typename eval<T>::type> struct nested_eval
{
enum {
- // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
+ // For the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
// the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
// in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
// (poor choice of temporaries).
- // it's important that this value can still be squared without integer overflowing.
+ // It's important that this value can still be squared without integer overflowing.
DynamicAsInteger = 10000,
ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost),
- CoeffReadCost = traits<T>::CoeffReadCost,
+ CoeffReadCost = evaluator<T>::CoeffReadCost, // TODO What if an evaluator evaluate itself into a tempory?
+ // Then CoeffReadCost will be small but we still have to evaluate if n>1...
+ // The solution might be to ask the evaluator if it creates a temp. Perhaps we could even ask the number of temps?
CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost),
NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
@@ -333,17 +362,16 @@ template<typename T, int n=1, typename PlainObject = typename eval<T>::type> str
};
typedef typename conditional<
- ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
- int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
- ),
- PlainObject,
- typename ref_selector<T>::type
+ ( (int(evaluator<T>::Flags) & EvalBeforeNestingBit) ||
+ (int(CostEvalAsInteger) < int(CostNoEvalAsInteger)) ),
+ PlainObject,
+ typename ref_selector<T>::type
>::type type;
};
template<typename T>
EIGEN_DEVICE_FUNC
-T* const_cast_ptr(const T* ptr)
+inline T* const_cast_ptr(const T* ptr)
{
return const_cast<T*>(ptr);
}
@@ -366,6 +394,15 @@ struct dense_xpr_base<Derived, ArrayXpr>
typedef ArrayBase<Derived> type;
};
+template<typename Derived, typename XprKind = typename traits<Derived>::XprKind, typename StorageKind = typename traits<Derived>::StorageKind>
+struct generic_xpr_base;
+
+template<typename Derived, typename XprKind>
+struct generic_xpr_base<Derived, XprKind, Dense>
+{
+ typedef typename dense_xpr_base<Derived,XprKind>::type type;
+};
+
/** \internal Helper base class to add a scalar multiple operator
* overloads for complex types */
template<typename Derived,typename Scalar,typename OtherScalar,
@@ -424,6 +461,60 @@ template <typename A> struct promote_storage_type<const A, A>
typedef A ret;
};
+/** \internal Specify the "storage kind" of applying a coefficient-wise
+ * binary operations between two expressions of kinds A and B respectively.
+ * The template parameter Functor permits to specialize the resulting storage kind wrt to
+ * the functor.
+ * The default rules are as follows:
+ * \code
+ * A op A -> A
+ * A op dense -> dense
+ * dense op B -> dense
+ * A * dense -> A
+ * dense * B -> B
+ * \endcode
+ */
+template <typename A, typename B, typename Functor> struct cwise_promote_storage_type;
+
+template <typename A, typename Functor> struct cwise_promote_storage_type<A,A,Functor> { typedef A ret; };
+template <typename Functor> struct cwise_promote_storage_type<Dense,Dense,Functor> { typedef Dense ret; };
+template <typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<Dense,Dense,scalar_product_op<ScalarA,ScalarB> > { typedef Dense ret; };
+template <typename A, typename Functor> struct cwise_promote_storage_type<A,Dense,Functor> { typedef Dense ret; };
+template <typename B, typename Functor> struct cwise_promote_storage_type<Dense,B,Functor> { typedef Dense ret; };
+template <typename A, typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<A,Dense,scalar_product_op<ScalarA,ScalarB> > { typedef A ret; };
+template <typename B, typename ScalarA, typename ScalarB> struct cwise_promote_storage_type<Dense,B,scalar_product_op<ScalarA,ScalarB> > { typedef B ret; };
+
+/** \internal Specify the "storage kind" of multiplying an expression of kind A with kind B.
+ * The template parameter ProductTag permits to specialize the resulting storage kind wrt to
+ * some compile-time properties of the product: GemmProduct, GemvProduct, OuterProduct, InnerProduct.
+ * The default rules are as follows:
+ * \code
+ * K * K -> K
+ * dense * K -> dense
+ * K * dense -> dense
+ * diag * K -> K
+ * K * diag -> K
+ * Perm * K -> K
+ * K * Perm -> K
+ * \endcode
+ */
+template <typename A, typename B, int ProductTag> struct product_promote_storage_type;
+
+template <typename A, int ProductTag> struct product_promote_storage_type<A, A, ProductTag> { typedef A ret;};
+template <int ProductTag> struct product_promote_storage_type<Dense, Dense, ProductTag> { typedef Dense ret;};
+template <typename A, int ProductTag> struct product_promote_storage_type<A, Dense, ProductTag> { typedef Dense ret; };
+template <typename B, int ProductTag> struct product_promote_storage_type<Dense, B, ProductTag> { typedef Dense ret; };
+
+template <typename A, int ProductTag> struct product_promote_storage_type<A, DiagonalShape, ProductTag> { typedef A ret; };
+template <typename B, int ProductTag> struct product_promote_storage_type<DiagonalShape, B, ProductTag> { typedef B ret; };
+template <int ProductTag> struct product_promote_storage_type<Dense, DiagonalShape, ProductTag> { typedef Dense ret; };
+template <int ProductTag> struct product_promote_storage_type<DiagonalShape, Dense, ProductTag> { typedef Dense ret; };
+
+template <typename A, int ProductTag> struct product_promote_storage_type<A, PermutationStorage, ProductTag> { typedef A ret; };
+template <typename B, int ProductTag> struct product_promote_storage_type<PermutationStorage, B, ProductTag> { typedef B ret; };
+template <int ProductTag> struct product_promote_storage_type<Dense, PermutationStorage, ProductTag> { typedef Dense ret; };
+template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Dense, ProductTag> { typedef Dense ret; };
+
/** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
* \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
*/
@@ -480,8 +571,36 @@ struct is_lvalue
bool(traits<ExpressionType>::Flags & LvalueBit) };
};
+template<typename T> struct is_diagonal
+{ enum { ret = false }; };
+
+template<typename T> struct is_diagonal<DiagonalBase<T> >
+{ enum { ret = true }; };
+
+template<typename T> struct is_diagonal<DiagonalWrapper<T> >
+{ enum { ret = true }; };
+
+template<typename T, int S> struct is_diagonal<DiagonalMatrix<T,S> >
+{ enum { ret = true }; };
+
+template<typename S1, typename S2> struct glue_shapes;
+template<> struct glue_shapes<DenseShape,TriangularShape> { typedef TriangularShape type; };
+
} // end namespace internal
+// we require Lhs and Rhs to have the same scalar type. Currently there is no example of a binary functor
+// that would take two operands of different types. If there were such an example, then this check should be
+// moved to the BinaryOp functors, on a per-case basis. This would however require a change in the BinaryOp functors, as
+// currently they take only one typename Scalar template parameter.
+// It is tempting to always allow mixing different types but remember that this is often impossible in the vectorized paths.
+// So allowing mixing different types gives very unexpected errors when enabling vectorization, when the user tries to
+// add together a float matrix and a double matrix.
+#define EIGEN_CHECK_BINARY_COMPATIBILIY(BINOP,LHS,RHS) \
+ EIGEN_STATIC_ASSERT((internal::functor_is_product_like<BINOP>::ret \
+ ? int(internal::scalar_product_traits<LHS, RHS>::Defined) \
+ : int(internal::is_same<LHS, RHS>::value)), \
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
} // end namespace Eigen
#endif // EIGEN_XPRHELPER_H