aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Core/CacheFriendlyProduct.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/CacheFriendlyProduct.h')
-rw-r--r--Eigen/src/Core/CacheFriendlyProduct.h353
1 files changed, 353 insertions, 0 deletions
diff --git a/Eigen/src/Core/CacheFriendlyProduct.h b/Eigen/src/Core/CacheFriendlyProduct.h
new file mode 100644
index 000000000..b484b1786
--- /dev/null
+++ b/Eigen/src/Core/CacheFriendlyProduct.h
@@ -0,0 +1,353 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_CACHE_FRIENDLY_PRODUCT_H
+#define EIGEN_CACHE_FRIENDLY_PRODUCT_H
+
+template<typename Scalar>
+static void ei_cache_friendly_product(
+ int _rows, int _cols, int depth,
+ bool _lhsRowMajor, const Scalar* _lhs, int _lhsStride,
+ bool _rhsRowMajor, const Scalar* _rhs, int _rhsStride,
+ bool resRowMajor, Scalar* res, int resStride)
+{
+ const Scalar* __restrict__ lhs;
+ const Scalar* __restrict__ rhs;
+ int lhsStride, rhsStride, rows, cols;
+ bool lhsRowMajor;
+
+ if (resRowMajor)
+ {
+ lhs = _rhs;
+ rhs = _lhs;
+ lhsStride = _rhsStride;
+ rhsStride = _lhsStride;
+ cols = _rows;
+ rows = _cols;
+ lhsRowMajor = _rhsRowMajor;
+ ei_assert(_lhsRowMajor);
+ }
+ else
+ {
+ lhs = _lhs;
+ rhs = _rhs;
+ lhsStride = _lhsStride;
+ rhsStride = _rhsStride;
+ rows = _rows;
+ cols = _cols;
+ lhsRowMajor = _lhsRowMajor;
+ ei_assert(!_rhsRowMajor);
+ }
+
+ typedef typename ei_packet_traits<Scalar>::type PacketType;
+
+ enum {
+ PacketSize = sizeof(PacketType)/sizeof(Scalar),
+ #if (defined __i386__)
+ // i386 architecture provides only 8 xmm registers,
+ // so let's reduce the max number of rows processed at once.
+ MaxBlockRows = 4,
+ MaxBlockRows_ClampingMask = 0xFFFFFC,
+ #else
+ MaxBlockRows = 8,
+ MaxBlockRows_ClampingMask = 0xFFFFF8,
+ #endif
+ // maximal size of the blocks fitted in L2 cache
+ MaxL2BlockSize = EIGEN_TUNE_FOR_L2_CACHE_SIZE / sizeof(Scalar)
+ };
+
+
+ //const bool rhsIsAligned = (PacketSize==1) || (((rhsStride%PacketSize) == 0) && (size_t(rhs)%16==0));
+ const bool resIsAligned = (PacketSize==1) || (((resStride%PacketSize) == 0) && (size_t(res)%16==0));
+
+ const int remainingSize = depth % PacketSize;
+ const int size = depth - remainingSize; // third dimension of the product clamped to packet boundaries
+ const int l2BlockRows = MaxL2BlockSize > rows ? rows : MaxL2BlockSize;
+ const int l2BlockCols = MaxL2BlockSize > cols ? cols : MaxL2BlockSize;
+ const int l2BlockSize = MaxL2BlockSize > size ? size : MaxL2BlockSize;
+ Scalar* __restrict__ block = (Scalar*)alloca(sizeof(Scalar)*l2BlockRows*size);
+ Scalar* __restrict__ rhsCopy = (Scalar*)alloca(sizeof(Scalar)*l2BlockSize);
+
+ // loops on each L2 cache friendly blocks of the result
+ for(int l2i=0; l2i<rows; l2i+=l2BlockRows)
+ {
+ const int l2blockRowEnd = std::min(l2i+l2BlockRows, rows);
+ const int l2blockRowEndBW = l2blockRowEnd & MaxBlockRows_ClampingMask; // end of the rows aligned to bw
+ const int l2blockRemainingRows = l2blockRowEnd - l2blockRowEndBW; // number of remaining rows
+ //const int l2blockRowEndBWPlusOne = l2blockRowEndBW + (l2blockRemainingRows?0:MaxBlockRows);
+
+ // build a cache friendly blocky matrix
+ int count = 0;
+
+ // copy l2blocksize rows of m_lhs to blocks of ps x bw
+ asm("#eigen begin buildblocks");
+ for(int l2k=0; l2k<size; l2k+=l2BlockSize)
+ {
+ const int l2blockSizeEnd = std::min(l2k+l2BlockSize, size);
+
+ for (int i = l2i; i<l2blockRowEndBW/*PlusOne*/; i+=MaxBlockRows)
+ {
+ // TODO merge the if l2blockRemainingRows
+// const int blockRows = std::min(i+MaxBlockRows, rows) - i;
+
+ for (int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
+ {
+ // TODO write these loops using meta unrolling
+ // negligible for large matrices but useful for small ones
+ if (lhsRowMajor)
+ {
+ for (int w=0; w<MaxBlockRows; ++w)
+ for (int s=0; s<PacketSize; ++s)
+ block[count++] = lhs[(i+w)*lhsStride + (k+s)];
+ }
+ else
+ {
+ for (int w=0; w<MaxBlockRows; ++w)
+ for (int s=0; s<PacketSize; ++s)
+ block[count++] = lhs[(i+w) + (k+s)*lhsStride];
+ }
+ }
+ }
+ if (l2blockRemainingRows>0)
+ {
+ for (int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
+ {
+ if (lhsRowMajor)
+ {
+ for (int w=0; w<l2blockRemainingRows; ++w)
+ for (int s=0; s<PacketSize; ++s)
+ block[count++] = lhs[(l2blockRowEndBW+w)*lhsStride + (k+s)];
+ }
+ else
+ {
+ for (int w=0; w<l2blockRemainingRows; ++w)
+ for (int s=0; s<PacketSize; ++s)
+ block[count++] = lhs[(l2blockRowEndBW+w) + (k+s)*lhsStride];
+ }
+ }
+ }
+ }
+ asm("#eigen end buildblocks");
+
+ for(int l2j=0; l2j<cols; l2j+=l2BlockCols)
+ {
+ int l2blockColEnd = std::min(l2j+l2BlockCols, cols);
+
+ for(int l2k=0; l2k<size; l2k+=l2BlockSize)
+ {
+ // acumulate bw rows of lhs time a single column of rhs to a bw x 1 block of res
+ int l2blockSizeEnd = std::min(l2k+l2BlockSize, size);
+
+ // for each bw x 1 result's block
+ for(int l1i=l2i; l1i<l2blockRowEndBW; l1i+=MaxBlockRows)
+ {
+ for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
+ {
+ int offsetblock = l2k * (l2blockRowEnd-l2i) + (l1i-l2i)*(l2blockSizeEnd-l2k) - l2k*MaxBlockRows;
+ const Scalar* __restrict__ localB = &block[offsetblock];
+
+ const Scalar* __restrict__ rhsColumn = &(rhs[l1j*rhsStride]);
+
+ // copy unaligned rhs data
+ // YES it seems to be faster to copy some part of rhs multiple times
+ // to aligned memory rather than using unligned load.
+ // Moreover this avoids a "if" in the most nested loop :)
+ if (PacketSize>1 && size_t(rhsColumn)%16)
+ {
+ int count = 0;
+ for (int k = l2k; k<l2blockSizeEnd; ++k)
+ {
+ rhsCopy[count++] = rhsColumn[k];
+ }
+ rhsColumn = &(rhsCopy[-l2k]);
+ }
+
+ PacketType dst[MaxBlockRows];
+ dst[0] = ei_pset1(Scalar(0.));
+ dst[1] = dst[0];
+ dst[2] = dst[0];
+ dst[3] = dst[0];
+ if (MaxBlockRows==8)
+ {
+ dst[4] = dst[0];
+ dst[5] = dst[0];
+ dst[6] = dst[0];
+ dst[7] = dst[0];
+ }
+
+ PacketType tmp;
+
+ asm("#eigen begincore");
+ for(int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
+ {
+ tmp = ei_pload(&rhsColumn[k]);
+
+ dst[0] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows ])), dst[0]);
+ dst[1] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows+ PacketSize])), dst[1]);
+ dst[2] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows+2*PacketSize])), dst[2]);
+ dst[3] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows+3*PacketSize])), dst[3]);
+ if (MaxBlockRows==8)
+ {
+ dst[4] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows+4*PacketSize])), dst[4]);
+ dst[5] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows+5*PacketSize])), dst[5]);
+ dst[6] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows+6*PacketSize])), dst[6]);
+ dst[7] = ei_pmadd(tmp, ei_pload(&(localB[k*MaxBlockRows+7*PacketSize])), dst[7]);
+ }
+ }
+
+ Scalar* __restrict__ localRes = &(res[l1i + l1j*resStride]);
+
+ if (PacketSize>1 && resIsAligned)
+ {
+ ei_pstore(&(localRes[0]), ei_padd(ei_pload(&(localRes[0])), ei_preduxp(dst)));
+ if (PacketSize==2)
+ ei_pstore(&(localRes[2]), ei_padd(ei_pload(&(localRes[2])), ei_preduxp(&(dst[2]))));
+ if (MaxBlockRows==8)
+ {
+ ei_pstore(&(localRes[4]), ei_padd(ei_pload(&(localRes[4])), ei_preduxp(&(dst[4]))));
+ if (PacketSize==2)
+ ei_pstore(&(localRes[6]), ei_padd(ei_pload(&(localRes[6])), ei_preduxp(&(dst[6]))));
+ }
+ }
+ else
+ {
+ localRes[0] += ei_predux(dst[0]);
+ localRes[1] += ei_predux(dst[1]);
+ localRes[2] += ei_predux(dst[2]);
+ localRes[3] += ei_predux(dst[3]);
+ if (MaxBlockRows==8)
+ {
+ localRes[4] += ei_predux(dst[4]);
+ localRes[5] += ei_predux(dst[5]);
+ localRes[6] += ei_predux(dst[6]);
+ localRes[7] += ei_predux(dst[7]);
+ }
+ }
+ asm("#eigen endcore");
+ }
+ }
+ if (l2blockRemainingRows>0)
+ {
+ int offsetblock = l2k * (l2blockRowEnd-l2i) + (l2blockRowEndBW-l2i)*(l2blockSizeEnd-l2k) - l2k*l2blockRemainingRows;
+ const Scalar* localB = &block[offsetblock];
+
+ asm("#eigen begin dynkernel");
+ for(int l1j=l2j; l1j<l2blockColEnd; l1j+=1)
+ {
+ const Scalar* __restrict__ rhsColumn = &(rhs[l1j*rhsStride]);
+
+ // copy unaligned rhs data
+ if (PacketSize>1 && size_t(rhsColumn)%16)
+ {
+ int count = 0;
+ for (int k = l2k; k<l2blockSizeEnd; ++k)
+ {
+ rhsCopy[count++] = rhsColumn[k];
+ }
+ rhsColumn = &(rhsCopy[-l2k]);
+ }
+
+ PacketType dst[MaxBlockRows];
+ dst[0] = ei_pset1(Scalar(0.));
+ dst[1] = dst[0];
+ dst[2] = dst[0];
+ dst[3] = dst[0];
+ if (MaxBlockRows>4)
+ {
+ dst[4] = dst[0];
+ dst[5] = dst[0];
+ dst[6] = dst[0];
+ dst[7] = dst[0];
+ }
+
+ // let's declare a few other temporary registers
+ PacketType tmp;
+
+ for(int k=l2k; k<l2blockSizeEnd; k+=PacketSize)
+ {
+ tmp = ei_pload(&rhsColumn[k]);
+
+ dst[0] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows ])), dst[0]);
+ if (l2blockRemainingRows>=2) dst[1] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+ PacketSize])), dst[1]);
+ if (l2blockRemainingRows>=3) dst[2] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+2*PacketSize])), dst[2]);
+ if (l2blockRemainingRows>=4) dst[3] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+3*PacketSize])), dst[3]);
+ if (MaxBlockRows>4)
+ {
+ if (l2blockRemainingRows>=5) dst[4] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+4*PacketSize])), dst[4]);
+ if (l2blockRemainingRows>=6) dst[5] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+5*PacketSize])), dst[5]);
+ if (l2blockRemainingRows>=7) dst[6] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+6*PacketSize])), dst[6]);
+ if (l2blockRemainingRows>=8) dst[7] = ei_pmadd(tmp, ei_pload(&(localB[k*l2blockRemainingRows+7*PacketSize])), dst[7]);
+ }
+ }
+
+ Scalar* __restrict__ localRes = &(res[l2blockRowEndBW + l1j*resStride]);
+
+ // process the remaining rows once at a time
+ localRes[0] += ei_predux(dst[0]);
+ if (l2blockRemainingRows>=2) localRes[1] += ei_predux(dst[1]);
+ if (l2blockRemainingRows>=3) localRes[2] += ei_predux(dst[2]);
+ if (l2blockRemainingRows>=4) localRes[3] += ei_predux(dst[3]);
+ if (MaxBlockRows>4)
+ {
+ if (l2blockRemainingRows>=5) localRes[4] += ei_predux(dst[4]);
+ if (l2blockRemainingRows>=6) localRes[5] += ei_predux(dst[5]);
+ if (l2blockRemainingRows>=7) localRes[6] += ei_predux(dst[6]);
+ if (l2blockRemainingRows>=8) localRes[7] += ei_predux(dst[7]);
+ }
+
+ asm("#eigen end dynkernel");
+ }
+ }
+ }
+ }
+ }
+ if (PacketSize>1 && remainingSize)
+ {
+ if (lhsRowMajor)
+ {
+ for (int j=0; j<cols; ++j)
+ for (int i=0; i<rows; ++i)
+ {
+ Scalar tmp = lhs[i*lhsStride+size] * rhs[j*rhsStride+size];
+ for (int k=1; k<remainingSize; ++k)
+ tmp += lhs[i*lhsStride+size+k] * rhs[j*rhsStride+size+k];
+ res[i+j*resStride] += tmp;
+ }
+ }
+ else
+ {
+ for (int j=0; j<cols; ++j)
+ for (int i=0; i<rows; ++i)
+ {
+ Scalar tmp = lhs[i+size*lhsStride] * rhs[j*rhsStride+size];
+ for (int k=1; k<remainingSize; ++k)
+ tmp += lhs[i+(size+k)*lhsStride] * rhs[j*rhsStride+size+k];
+ res[i+j*resStride] += tmp;
+ }
+ }
+ }
+}
+
+
+#endif // EIGEN_CACHE_FRIENDLY_PRODUCT_H