aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Eigen/src/Core/arch/SSE/Complex.h9
-rw-r--r--Eigen/src/Core/products/CoeffBasedProduct.h3
-rw-r--r--Eigen/src/Core/products/GeneralMatrixVector.h23
-rw-r--r--bench/bench_gemm.cpp103
-rw-r--r--test/mixingtypes.cpp173
5 files changed, 147 insertions, 164 deletions
diff --git a/Eigen/src/Core/arch/SSE/Complex.h b/Eigen/src/Core/arch/SSE/Complex.h
index 036b72d3e..585630563 100644
--- a/Eigen/src/Core/arch/SSE/Complex.h
+++ b/Eigen/src/Core/arch/SSE/Complex.h
@@ -109,12 +109,9 @@ template<> EIGEN_STRONG_INLINE Packet2cf ei_pset1<Packet2cf>(const std::complex<
template<> EIGEN_STRONG_INLINE std::complex<float> ei_pfirst<Packet2cf>(const Packet2cf& a)
{
- union {
- float res[2];
- double asDouble;
- };
- _mm_store_sd(&asDouble,_mm_castps_pd(a.v));
- return *(std::complex<float>*)res;
+ std::complex<float> res;
+ _mm_storel_pi((__m64*)&res, a.v);
+ return res;
}
template<> EIGEN_STRONG_INLINE Packet2cf ei_preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(ei_preverse(_mm_castps_pd(a.v)))); }
diff --git a/Eigen/src/Core/products/CoeffBasedProduct.h b/Eigen/src/Core/products/CoeffBasedProduct.h
index 66976d8e2..c79a34de0 100644
--- a/Eigen/src/Core/products/CoeffBasedProduct.h
+++ b/Eigen/src/Core/products/CoeffBasedProduct.h
@@ -108,7 +108,8 @@ struct ei_traits<CoeffBasedProduct<LhsNested,RhsNested,NestingFlags> >
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
- CanVectorizeInner = LhsRowMajor
+ CanVectorizeInner = SameType
+ && LhsRowMajor
&& (!RhsRowMajor)
&& (LhsFlags & RhsFlags & ActualPacketAccessBit)
&& (LhsFlags & RhsFlags & AlignedBit)
diff --git a/Eigen/src/Core/products/GeneralMatrixVector.h b/Eigen/src/Core/products/GeneralMatrixVector.h
index 4d2f82680..a5062bedb 100644
--- a/Eigen/src/Core/products/GeneralMatrixVector.h
+++ b/Eigen/src/Core/products/GeneralMatrixVector.h
@@ -91,7 +91,7 @@ EIGEN_DONT_INLINE static void run(
const Index ResPacketAlignedMask = ResPacketSize-1;
const Index PeelAlignedMask = ResPacketSize*peels-1;
const Index size = rows;
-
+
// How many coeffs of the result do we have to skip to be aligned.
// Here we assume data are at least aligned on the base scalar type.
Index alignedStart = ei_first_aligned(res,size);
@@ -244,30 +244,29 @@ EIGEN_DONT_INLINE static void run(
Index start = columnBound;
do
{
- for (Index i=start; i<end; ++i)
+ for (Index k=start; k<end; ++k)
{
- RhsPacket ptmp0 = ei_pset1<RhsPacket>(alpha*rhs[i*rhsIncr]);
- const LhsScalar* lhs0 = lhs + i*lhsStride;
+ RhsPacket ptmp0 = ei_pset1<RhsPacket>(alpha*rhs[k*rhsIncr]);
+ const LhsScalar* lhs0 = lhs + k*lhsStride;
if (Vectorizable)
{
/* explicit vectorization */
// process first unaligned result's coeffs
for (Index j=0; j<alignedStart; ++j)
- res[j] += cj.pmul(lhs0[j], ei_pfirst(ptmp0));
-
+ res[j] += cj.pmul(lhs0[j], rhs[k*rhsIncr]/*ei_pfirst(ptmp0)*/);
// process aligned result's coeffs
if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
- for (Index j = alignedStart;j<alignedSize;j+=ResPacketSize)
- ei_pstore(&res[j], pcj.pmadd(ei_pload<LhsPacket>(&lhs0[j]), ptmp0, ei_pload<ResPacket>(&res[j])));
+ for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
+ ei_pstore(&res[i], pcj.pmadd(ei_ploadu<LhsPacket>(&lhs0[i]), ptmp0, ei_pload<ResPacket>(&res[i])));
else
- for (Index j = alignedStart;j<alignedSize;j+=ResPacketSize)
- ei_pstore(&res[j], pcj.pmadd(ei_ploadu<LhsPacket>(&lhs0[j]), ptmp0, ei_pload<ResPacket>(&res[j])));
+ for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
+ ei_pstore(&res[i], pcj.pmadd(ei_ploadu<LhsPacket>(&lhs0[i]), ptmp0, ei_pload<ResPacket>(&res[i])));
}
// process remaining scalars (or all if no explicit vectorization)
- for (Index j=alignedSize; j<size; ++j)
- res[j] += cj.pmul(lhs0[j], ei_pfirst(ptmp0));
+ for (Index i=alignedSize; i<size; ++i)
+ res[i] += cj.pmul(lhs0[i], ei_pfirst(ptmp0));
}
if (skipColumns)
{
diff --git a/bench/bench_gemm.cpp b/bench/bench_gemm.cpp
index 5e2cf087c..922c3cd64 100644
--- a/bench/bench_gemm.cpp
+++ b/bench/bench_gemm.cpp
@@ -10,15 +10,16 @@ using namespace std;
using namespace Eigen;
#ifndef SCALAR
-#define SCALAR std::complex<double>
-// #define SCALAR double
+#define SCALAR std::complex<float>
+// #define SCALAR float
#endif
typedef SCALAR Scalar;
typedef NumTraits<Scalar>::Real RealScalar;
typedef Matrix<RealScalar,Dynamic,Dynamic> A;
-typedef Matrix<Scalar,Dynamic,Dynamic> B;
+typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B;
typedef Matrix<Scalar,Dynamic,Dynamic> C;
+typedef Matrix<RealScalar,Dynamic,Dynamic> M;
#ifdef HAVE_BLAS
@@ -35,7 +36,7 @@ static std::complex<float> cfzero = 0;
static std::complex<double> cdone = 1;
static std::complex<double> cdzero = 0;
static char notrans = 'N';
-static char trans = 'T';
+static char trans = 'T';
static char nonunit = 'N';
static char lower = 'L';
static char right = 'R';
@@ -87,10 +88,30 @@ void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c)
#endif
+void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci)
+{
+ cr.noalias() += ar * br;
+ cr.noalias() -= ai * bi;
+ ci.noalias() += ar * bi;
+ ci.noalias() += ai * br;
+}
+
+void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci)
+{
+ cr.noalias() += a * br;
+ ci.noalias() += a * bi;
+}
+
+void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci)
+{
+ cr.noalias() += ar * b;
+ ci.noalias() += ai * b;
+}
+
template<typename A, typename B, typename C>
EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c)
{
- c.noalias() += a * b;
+ c.noalias() += a * b;
}
int main(int argc, char ** argv)
@@ -99,8 +120,8 @@ int main(int argc, char ** argv)
std::ptrdiff_t l2 = ei_queryTopLevelCacheSize();
std::cout << "L1 cache size = " << (l1>0 ? l1/1024 : -1) << " KB\n";
std::cout << "L2/L3 cache size = " << (l2>0 ? l2/1024 : -1) << " KB\n";
- typedef ei_product_blocking_traits<Scalar,Scalar> Blocking;
- std::cout << "Register blocking = " << Blocking::mr << " x " << Blocking::nr << "\n";
+ typedef ei_gebp_traits<Scalar,Scalar> Traits;
+ std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n";
int rep = 1; // number of repetitions per try
int tries = 2; // number of tries, we keep the best
@@ -135,19 +156,19 @@ int main(int argc, char ** argv)
int m = s;
int n = s;
int p = s;
- A a(m,n); a.setRandom();
- B b(n,p); b.setRandom();
- C c(m,p); c.setOnes();
+ A a(m,p); a.setRandom();
+ B b(p,n); b.setRandom();
+ C c(m,n); c.setOnes();
std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n";
- std::ptrdiff_t cm(m), cn(n), ck(p);
- computeProductBlockingSizes<Scalar,Scalar>(ck, cm, cn);
- std::cout << "blocking size = " << cm << " x " << ck << "\n";
+ std::ptrdiff_t mc(m), nc(n), kc(p);
+ computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc);
+ std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n";
C r = c;
// check the parallel product is correct
- #ifdef EIGEN_HAS_OPENMP
+ #if defined EIGEN_HAS_OPENMP
int procs = omp_get_max_threads();
if(procs>1)
{
@@ -161,6 +182,17 @@ int main(int argc, char ** argv)
c.noalias() += a * b;
if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n";
}
+ #elif defined HAVE_BLAS
+ blas_gemm(a,b,r);
+ c.noalias() += a * b;
+ if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n";
+// std::cerr << r << "\n\n" << c << "\n\n";
+ #else
+ gemm(a,b,c);
+ r.noalias() += a.cast<Scalar>() * b.cast<Scalar>();
+ if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n";
+// std::cerr << c << "\n\n";
+// std::cerr << r << "\n\n";
#endif
#ifdef HAVE_BLAS
@@ -187,6 +219,49 @@ int main(int argc, char ** argv)
std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n";
}
#endif
+
+ #ifdef DECOUPLED
+ if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
+ {
+ M ar(m,p); ar.setRandom();
+ M ai(m,p); ai.setRandom();
+ M br(p,n); br.setRandom();
+ M bi(p,n); bi.setRandom();
+ M cr(m,n); cr.setRandom();
+ M ci(m,n); ci.setRandom();
+
+ BenchTimer t;
+ BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci));
+ std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
+ std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
+ }
+ if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex))
+ {
+ M a(m,p); a.setRandom();
+ M br(p,n); br.setRandom();
+ M bi(p,n); bi.setRandom();
+ M cr(m,n); cr.setRandom();
+ M ci(m,n); ci.setRandom();
+
+ BenchTimer t;
+ BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci));
+ std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
+ std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
+ }
+ if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex))
+ {
+ M ar(m,p); ar.setRandom();
+ M ai(m,p); ai.setRandom();
+ M b(p,n); b.setRandom();
+ M cr(m,n); cr.setRandom();
+ M ci(m,n); ci.setRandom();
+
+ BenchTimer t;
+ BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci));
+ std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n";
+ std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n";
+ }
+ #endif
return 0;
}
diff --git a/test/mixingtypes.cpp b/test/mixingtypes.cpp
index cc6c4481a..7673348b4 100644
--- a/test/mixingtypes.cpp
+++ b/test/mixingtypes.cpp
@@ -40,6 +40,8 @@ using namespace std;
template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
{
+ typedef std::complex<float> CF;
+ typedef std::complex<double> CD;
typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
@@ -49,14 +51,14 @@ template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
- Mat_f mf = Mat_f::Random(size,size);
- Mat_d md = mf.template cast<double>();
- Mat_cf mcf = Mat_cf::Random(size,size);
- Mat_cd mcd = mcf.template cast<complex<double> >();
- Vec_f vf = Vec_f::Random(size,1);
- Vec_d vd = vf.template cast<double>();
- Vec_cf vcf = Vec_cf::Random(size,1);
- Vec_cd vcd = vcf.template cast<complex<double> >();
+ Mat_f mf = Mat_f::Random(size,size);
+ Mat_d md = mf.template cast<double>();
+ Mat_cf mcf = Mat_cf::Random(size,size);
+ Mat_cd mcd = mcf.template cast<complex<double> >();
+ Vec_f vf = Vec_f::Random(size,1);
+ Vec_d vd = vf.template cast<double>();
+ Vec_cf vcf = Vec_cf::Random(size,1);
+ Vec_cd vcd = vcf.template cast<complex<double> >();
float sf = ei_random<float>();
double sd = ei_random<double>();
complex<float> scf = ei_random<complex<float> >();
@@ -104,134 +106,43 @@ template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType)
Mat_cd mcd2 = mcd;
VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >());
-}
-
-
-void mixingtypes_large(int size)
-{
- typedef std::complex<float> CF;
- typedef std::complex<double> CD;
- static const int SizeAtCompileType = Dynamic;
- typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
- typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
- typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
- typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
- typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
- typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
- typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
- typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
-
- Mat_f mf(size,size); mf.setRandom();
- Mat_d md(size,size); md.setRandom();
- Mat_cf mcf(size,size); mcf.setRandom();
- Mat_cd mcd(size,size); mcd.setRandom();
- Vec_f vf(size,1); vf.setRandom();
- Vec_d vd(size,1); vd.setRandom();
- Vec_cf vcf(size,1); vcf.setRandom();
- Vec_cd vcd(size,1); vcd.setRandom();
-
- float sf = ei_random<float>();
- double sd = ei_random<double>();
- CF scf = ei_random<CF>();
- CD scd = ei_random<CD>();
-
-// mf*mf;
- // FIXME large products does not allow mixing types
- VERIFY_IS_APPROX(sd*md*mcd, (sd*md).cast<CD>().eval()*mcd);
- VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.cast<CD>());
- VERIFY_IS_APPROX(scd*md*mcd, scd*md.cast<CD>().eval()*mcd);
- VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.cast<CD>());
-// std::cerr << (mf*mf).cast<CF>() << "\n\n" << mf.cast<CF>().eval()*mf.cast<CF>().eval() << "\n\n";
-// VERIFY_IS_APPROX((mf*mf).cast<CF>(), mf.cast<CF>().eval()*mf.cast<CF>().eval());
- VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.cast<CF>()*mcf);
- VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.cast<CF>());
- VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.cast<CF>()*mcf);
- VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.cast<CF>());
-
- VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).cast<CF>().eval()*vcf);
- VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.cast<CF>()).eval()*vcf);
- VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.cast<CF>());
- VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.cast<CF>());
-
- VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.cast<CF>().eval());
- VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.cast<CF>().eval());
- VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().cast<CF>().eval()*mcf);
- VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().cast<CF>().eval()*mcf);
-
- VERIFY_IS_APPROX(sd*md*vcd, (sd*md).cast<CD>().eval()*vcd);
- VERIFY_IS_APPROX(scd*md*vcd,(scd*md.cast<CD>()).eval()*vcd);
- VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.cast<CD>().eval());
- VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.cast<CD>().eval());
-
- VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.cast<CD>().eval());
- VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.cast<CD>().eval());
- VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().cast<CD>().eval()*mcd);
- VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().cast<CD>().eval()*mcd);
-
-
-// VERIFY_IS_APPROX(vcf.adjoint() * mf, vcf.adjoint() * mf.cast<CF>());
-// VERIFY_IS_APPROX(vf.adjoint() * mcf, vf.adjoint().cast<CF>() * mcf);
-// VERIFY_IS_APPROX(md*vcd, md.cast<CD>()*vcd);
-// VERIFY_IS_APPROX(mcd*vd, mcd*vd.cast<CD>());
-// VERIFY_IS_APPROX(vcd.adjoint() * md, vcd.adjoint() * md.cast<CD>());
-// VERIFY_IS_APPROX(vd.adjoint() * mcd, vd.adjoint().cast<CD>() * mcd);
-// VERIFY_RAISES_ASSERT(mcf *= mf); // does not even compile
-// VERIFY_RAISES_ASSERT(vcd = md*vcd); // does not even compile (cannot convert complex to double)
-// VERIFY_RAISES_ASSERT(vcf = mcf*vf);
-
-// VERIFY_RAISES_ASSERT(mf*md); // does not even compile
-// VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile
-// VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile
-// VERIFY_RAISES_ASSERT(vcf = mf*vf);
-}
-
-template<int SizeAtCompileType> void mixingtypes_small()
-{
- int size = SizeAtCompileType;
- typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f;
- typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d;
- typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf;
- typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd;
- typedef Matrix<float, SizeAtCompileType, 1> Vec_f;
- typedef Matrix<double, SizeAtCompileType, 1> Vec_d;
- typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf;
- typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd;
-
- Mat_f mf(size,size);
- Mat_d md(size,size);
- Mat_cf mcf(size,size);
- Mat_cd mcd(size,size);
- Vec_f vf(size,1);
- Vec_d vd(size,1);
- Vec_cf vcf(size,1);
- Vec_cd vcd(size,1);
-
-
- mf*mf;
- // FIXME shall we discard those products ?
- // 1) currently they work only if SizeAtCompileType is small enough
- // 2) in case we vectorize complexes this might be difficult to still allow that
- md*mcd;
- mcd*md;
- mf*vcf;
- mcf*vf;
- mcf *= mf;
- vcd = md*vcd;
- vcf = mcf*vf;
-// VERIFY_RAISES_ASSERT(mf*md); // does not even compile
-// VERIFY_RAISES_ASSERT(mcf*mcd); // does not even compile
-// VERIFY_RAISES_ASSERT(mcf*vcd); // does not even compile
- VERIFY_RAISES_ASSERT(vcf = mf*vf);
+ // check matrix-matrix products
+
+ VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd);
+ VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>());
+ VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd);
+ VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>());
+
+ VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf);
+ VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>());
+ VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf);
+ VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>());
+
+ VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf);
+ VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf);
+ VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>());
+ VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>());
+
+ VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval());
+ VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval());
+ VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf);
+ VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf);
+
+ VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd);
+ VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd);
+ VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval());
+ VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval());
+
+ VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval());
+ VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval());
+ VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd);
+ VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd);
}
void test_mixingtypes()
{
- // check that our operator new is indeed called:
CALL_SUBTEST_1(mixingtypes<3>());
CALL_SUBTEST_2(mixingtypes<4>());
- CALL_SUBTEST_3(mixingtypes<Dynamic>(20));
-
- CALL_SUBTEST_4(mixingtypes_small<4>());
- CALL_SUBTEST_5(mixingtypes_large(11));
+ CALL_SUBTEST_3(mixingtypes<Dynamic>(ei_random<int>(1,310)));
}