aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Eigen/Core1
-rw-r--r--Eigen/src/Core/DiagonalProduct.h108
-rw-r--r--Eigen/src/Core/Product.h58
-rw-r--r--Eigen/src/Core/Transpose.h2
-rw-r--r--Eigen/src/Core/util/Constants.h4
-rw-r--r--Eigen/src/Geometry/Transform.h239
-rwxr-xr-xEigen/src/QR/HessenbergDecomposition.h3
-rwxr-xr-xEigen/src/QR/Tridiagonalization.h7
-rw-r--r--test/geometry.cpp3
9 files changed, 374 insertions, 51 deletions
diff --git a/Eigen/Core b/Eigen/Core
index 7129972a9..e08bde4ab 100644
--- a/Eigen/Core
+++ b/Eigen/Core
@@ -41,6 +41,7 @@ namespace Eigen {
#include "src/Core/CwiseNullaryOp.h"
#include "src/Core/InverseProduct.h"
#include "src/Core/Product.h"
+#include "src/Core/DiagonalProduct.h"
#include "src/Core/Block.h"
#include "src/Core/Minor.h"
#include "src/Core/Transpose.h"
diff --git a/Eigen/src/Core/DiagonalProduct.h b/Eigen/src/Core/DiagonalProduct.h
new file mode 100644
index 000000000..5663942ff
--- /dev/null
+++ b/Eigen/src/Core/DiagonalProduct.h
@@ -0,0 +1,108 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_DIAGONALPRODUCT_H
+#define EIGEN_DIAGONALPRODUCT_H
+
+template<typename Lhs, typename Rhs>
+struct ei_traits<Product<Lhs, Rhs, DiagonalProduct> >
+{
+ typedef typename Lhs::Scalar Scalar;
+ typedef typename ei_nested<Lhs>::type LhsNested;
+ typedef typename ei_nested<Rhs>::type RhsNested;
+ typedef typename ei_unref<LhsNested>::type _LhsNested;
+ typedef typename ei_unref<RhsNested>::type _RhsNested;
+ enum {
+ LhsFlags = _LhsNested::Flags,
+ RhsFlags = _RhsNested::Flags,
+ RowsAtCompileTime = Lhs::RowsAtCompileTime,
+ ColsAtCompileTime = Rhs::ColsAtCompileTime,
+ MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = Rhs::MaxColsAtCompileTime,
+ _RhsVectorizable = (RhsFlags & RowMajorBit) && (RhsFlags & VectorizableBit)
+ && (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
+ _LhsVectorizable = (!(LhsFlags & RowMajorBit)) && (LhsFlags & VectorizableBit)
+ && (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
+ _LostBits = ~(((RhsFlags & RowMajorBit) && (!_LhsVectorizable) ? 0 : RowMajorBit)
+ | ((RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic) ? 0 : LargeBit)),
+ Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & _LostBits)
+ | (_LhsVectorizable || _RhsVectorizable ? VectorizableBit : 0),
+ CoeffReadCost = NumTraits<Scalar>::MulCost + _LhsNested::CoeffReadCost + _RhsNested::CoeffReadCost
+ };
+};
+
+template<typename Lhs, typename Rhs> class Product<Lhs, Rhs, DiagonalProduct> : ei_no_assignment_operator,
+ public MatrixBase<Product<Lhs, Rhs, DiagonalProduct> >
+{
+ public:
+
+ EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
+ typedef typename ei_traits<Product>::LhsNested LhsNested;
+ typedef typename ei_traits<Product>::RhsNested RhsNested;
+ typedef typename ei_traits<Product>::_LhsNested _LhsNested;
+ typedef typename ei_traits<Product>::_RhsNested _RhsNested;
+
+ enum {
+ PacketSize = ei_packet_traits<Scalar>::size
+ };
+
+ inline Product(const Lhs& lhs, const Rhs& rhs)
+ : m_lhs(lhs), m_rhs(rhs)
+ {
+ ei_assert(lhs.cols() == rhs.rows());
+ }
+
+ private:
+
+ inline int _rows() const { return m_lhs.rows(); }
+ inline int _cols() const { return m_rhs.cols(); }
+
+ const Scalar _coeff(int row, int col) const
+ {
+ int unique = ((Rhs::Flags&Diagonal)==Diagonal) ? col : row;
+ return m_lhs.coeff(row, unique) * m_rhs.coeff(unique, col);
+ }
+
+ template<int LoadMode>
+ const PacketScalar _packetCoeff(int row, int col) const
+ {
+ if ((Rhs::Flags&Diagonal)==Diagonal)
+ {
+ ei_assert((_LhsNested::Flags&RowMajorBit)==0);
+ return ei_pmul(m_lhs.template packetCoeff<LoadMode>(row, col), ei_pset1(m_rhs.coeff(col, col)));
+ }
+ else
+ {
+ ei_assert(_RhsNested::Flags&RowMajorBit);
+ return ei_pmul(ei_pset1(m_lhs.coeff(row, row)), m_rhs.template packetCoeff<LoadMode>(row, col));
+ }
+ }
+
+ protected:
+ const LhsNested m_lhs;
+ const RhsNested m_rhs;
+};
+
+#endif // EIGEN_DIAGONALPRODUCT_H
diff --git a/Eigen/src/Core/Product.h b/Eigen/src/Core/Product.h
index 6c653a558..6875e3158 100644
--- a/Eigen/src/Core/Product.h
+++ b/Eigen/src/Core/Product.h
@@ -144,11 +144,12 @@ struct ei_packet_product_impl<false, Index, Dynamic, Lhs, Rhs, PacketScalar>
*/
template<typename Lhs, typename Rhs> struct ei_product_eval_mode
{
- enum{ value = Lhs::MaxRowsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
- && Rhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
- && Lhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
- && (Rhs::Flags&Diagonal)!=Diagonal
- ? CacheFriendlyProduct : NormalProduct };
+ enum{ value = ((Rhs::Flags&Diagonal)==Diagonal) || ((Lhs::Flags&Diagonal)==Diagonal)
+ ? DiagonalProduct
+ : Lhs::MaxRowsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
+ && Rhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
+ && Lhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
+ ? CacheFriendlyProduct : NormalProduct };
};
template<typename T> class ei_product_eval_to_column_major
@@ -265,44 +266,25 @@ template<typename Lhs, typename Rhs, int EvalMode> class Product : ei_no_assignm
const Scalar _coeff(int row, int col) const
{
- if ((Rhs::Flags&Diagonal)==Diagonal)
- {
- return m_lhs.coeff(row, col) * m_rhs.coeff(col, col);
- }
- else if ((Lhs::Flags&Diagonal)==Diagonal)
- {
- return m_lhs.coeff(row, row) * m_rhs.coeff(row, col);
- }
- else
- {
- Scalar res;
- const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
- ei_product_impl<unroll ? Lhs::ColsAtCompileTime-1 : Dynamic,
- unroll ? Lhs::ColsAtCompileTime : Dynamic,
- _LhsNested, _RhsNested>
- ::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
+ Scalar res;
+ const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
+ ei_product_impl<unroll ? Lhs::ColsAtCompileTime-1 : Dynamic,
+ unroll ? Lhs::ColsAtCompileTime : Dynamic,
+ _LhsNested, _RhsNested>
+ ::run(row, col, m_lhs, m_rhs, res);
+ return res;
}
template<int LoadMode>
const PacketScalar _packetCoeff(int row, int col) const
{
- if ((Rhs::Flags&Diagonal)==Diagonal)
- {
- ei_assert((_LhsNested::Flags&RowMajorBit)==0);
- return ei_pmul(m_lhs.template packetCoeff<LoadMode>(row, col), ei_pset1(m_rhs.coeff(col, col)));
- }
- else
- {
- const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
- PacketScalar res;
- ei_packet_product_impl<Flags&RowMajorBit ? true : false, Lhs::ColsAtCompileTime-1,
- unroll ? Lhs::ColsAtCompileTime : Dynamic,
- _LhsNested, _RhsNested, PacketScalar>
- ::run(row, col, m_lhs, m_rhs, res);
- return res;
- }
+ const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
+ PacketScalar res;
+ ei_packet_product_impl<Flags&RowMajorBit ? true : false, Lhs::ColsAtCompileTime-1,
+ unroll ? Lhs::ColsAtCompileTime : Dynamic,
+ _LhsNested, _RhsNested, PacketScalar>
+ ::run(row, col, m_lhs, m_rhs, res);
+ return res;
}
template<typename Lhs_, typename Rhs_, int EvalMode_, typename DestDerived_, bool DirectAccess_>
diff --git a/Eigen/src/Core/Transpose.h b/Eigen/src/Core/Transpose.h
index 1a4843973..23749d67c 100644
--- a/Eigen/src/Core/Transpose.h
+++ b/Eigen/src/Core/Transpose.h
@@ -52,8 +52,6 @@ struct ei_traits<Transpose<MatrixType> >
& ~( Like1DArrayBit | LowerTriangularBit | UpperTriangularBit)
| (int(_MatrixTypeNested::Flags)&UpperTriangularBit ? LowerTriangularBit : 0)
| (int(_MatrixTypeNested::Flags)&LowerTriangularBit ? UpperTriangularBit : 0),
- // Note that the above test cannot be simplified using ^ because a diagonal matrix
- // has both LowerTriangularBit and UpperTriangularBit and both must be preserved.
CoeffReadCost = _MatrixTypeNested::CoeffReadCost
};
};
diff --git a/Eigen/src/Core/util/Constants.h b/Eigen/src/Core/util/Constants.h
index fdde9acd3..163832394 100644
--- a/Eigen/src/Core/util/Constants.h
+++ b/Eigen/src/Core/util/Constants.h
@@ -80,7 +80,7 @@ const unsigned int Like1DArrayBit = 0x20;
/** \ingroup flags
*
* means all diagonal coefficients are equal to 0 */
-const unsigned int ZeroDiagBit = 0x40;
+const unsigned int ZeroDiagBit = 0x40;
/** \ingroup flags
*
@@ -140,7 +140,7 @@ enum { Aligned=0, UnAligned=1 };
enum { ConditionalJumpCost = 5 };
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
enum DirectionType { Vertical, Horizontal };
-enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, LazyProduct};
+enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, DiagonalProduct, LazyProduct};
#endif // EIGEN_CONSTANTS_H
diff --git a/Eigen/src/Geometry/Transform.h b/Eigen/src/Geometry/Transform.h
index 80f02e71c..f6a525ead 100644
--- a/Eigen/src/Geometry/Transform.h
+++ b/Eigen/src/Geometry/Transform.h
@@ -25,6 +25,94 @@
#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H
+/** \class Orientation2D
+ *
+ * \brief Represents an orientation/rotation in a 2 dimensional space.
+ *
+ * \param _Scalar the scalar type, i.e., the type of the coefficients
+ *
+ * This class is equivalent to a single scalar representating the rotation angle
+ * in radian with some additional features such as the conversion from/to
+ * rotation matrix. Moreover this class aims to provide a similar interface
+ * to Quaternion in order to facilitate the writting of generic algorithm
+ * dealing with rotations.
+ *
+ * \sa class Quaternion, class Transform
+ */
+template<typename _Scalar>
+class Orientation2D
+{
+public:
+ enum { Dim = 2 };
+ /** the scalar type of the coefficients */
+ typedef _Scalar Scalar;
+ typedef Matrix<Scalar,2,2> Matrix2;
+
+protected:
+
+ Scalar m_angle;
+
+public:
+
+ inline Orientation2D(Scalar a) : m_angle(a) {}
+ inline operator Scalar& () { return m_angle; }
+ inline operator Scalar () const { return m_angle; }
+
+ template<typename Derived>
+ Orientation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
+ Matrix2 toRotationMatrix(void) const;
+
+ Orientation2D slerp(Scalar t, const Orientation2D& other) const;
+};
+
+/** returns the default type used to represent an orientation.
+ */
+template<typename Scalar, int Dim>
+struct ei_get_orientation_type;
+
+template<typename Scalar>
+struct ei_get_orientation_type<Scalar,2>
+{ typedef Orientation2D<Scalar> type; };
+
+template<typename Scalar>
+struct ei_get_orientation_type<Scalar,3>
+{ typedef Quaternion<Scalar> type; };
+
+/** Set \c *this from a 2x2 rotation matrix \a mat.
+ * In other words, this function extract the rotation angle
+ * from the rotation matrix.
+ */
+template<typename Scalar>
+template<typename Derived>
+Orientation2D<Scalar>& Orientation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
+{
+ EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,you_did_a_programming_error);
+ m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0));
+ return *this;
+}
+
+/** Constructs and \returns an equivalent 2x2 rotation matrix.
+ */
+template<typename Scalar>
+typename Orientation2D<Scalar>::Matrix2
+Orientation2D<Scalar>::toRotationMatrix(void) const
+{
+ Scalar sinA = ei_sin(m_angle);
+ Scalar cosA = ei_cos(m_angle);
+ return Matrix2(cosA, -sinA, sinA, cosA);
+}
+
+/** \returns the spherical interpolation between \c *this and \a other using
+ * parameter \a t. It is equivalent to a linear interpolation.
+ */
+template<typename Scalar>
+Orientation2D<Scalar>
+Orientation2D<Scalar>::slerp(Scalar t, const Orientation2D& other) const
+{
+ return m_angle * (1-t) + t * other;
+}
+
+
/** \class Transform
*
* \brief Represents an homogeneous transformation in a N dimensional space
@@ -32,6 +120,11 @@
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _Dim the dimension of the space
*
+ * The homography is internally represented and stored as a (Dim+1)^2 matrix which
+ * is available through the matrix() method.
+ *
+ * Conversion methods from/to Qt's QMatrix are available if the preprocessor token
+ * EIGEN_QT_SUPPORT is defined.
*
*/
template<typename _Scalar, int _Dim>
@@ -47,6 +140,7 @@ public:
typedef Block<MatrixType,Dim,Dim> AffineMatrixRef;
typedef Matrix<Scalar,Dim,1> VectorType;
typedef Block<MatrixType,Dim,1> VectorRef;
+ typedef typename ei_get_orientation_type<Scalar,Dim>::type Orientation;
protected:
@@ -59,13 +153,42 @@ protected:
public:
+ /** Default constructor without initialization of the coefficients. */
+ Transform() { }
+
+ inline Transform(const Transform& other)
+ { m_matrix = other.m_matrix; }
+
+ inline Transform& operator=(const Transform& other)
+ { m_matrix = other.m_matrix; }
+
+ template<typename OtherDerived>
+ inline explicit Transform(const MatrixBase<OtherDerived>& other)
+ { m_matrix = other; }
+
+ template<typename OtherDerived>
+ inline Transform& operator=(const MatrixBase<OtherDerived>& other)
+ { m_matrix = other; }
+
+ #ifdef EIGEN_QT_SUPPORT
+ inline Transform(const QMatrix& other);
+ inline Transform& operator=(const QMatrix& other);
+ inline QMatrix toQMatrix(void) const;
+ #endif
+
+ /** \returns a read-only expression of the transformation matrix */
inline const MatrixType matrix() const { return m_matrix; }
+ /** \returns a writable expression of the transformation matrix */
inline MatrixType matrix() { return m_matrix; }
+ /** \returns a read-only expression of the affine (linear) part of the transformation */
inline const AffineMatrixRef affine() const { return m_matrix.template block<Dim,Dim>(0,0); }
+ /** \returns a writable expression of the affine (linear) part of the transformation */
inline AffineMatrixRef affine() { return m_matrix.template block<Dim,Dim>(0,0); }
+ /** \returns a read-only expression of the translation vector of the transformation */
inline const VectorRef translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
+ /** \returns a writable expression of the translation vector of the transformation */
inline VectorRef translation() { return m_matrix.template block<Dim,1>(0,Dim); }
template<typename OtherDerived>
@@ -78,6 +201,11 @@ public:
const typename ProductReturnType<OtherDerived>::Type
operator * (const MatrixBase<OtherDerived> &other) const;
+ /** Contatenates two transformations */
+ Product<MatrixType,MatrixType>
+ operator * (const Transform& other) const
+ { return m_matrix * other.matrix(); }
+
void setIdentity() { m_matrix.setIdentity(); }
template<typename OtherDerived>
@@ -92,13 +220,58 @@ public:
template<typename OtherDerived>
Transform& pretranslate(const MatrixBase<OtherDerived> &other);
+ template<typename OtherDerived>
+ Transform& shear(Scalar sx, Scalar sy);
+
+ template<typename OtherDerived>
+ Transform& preshear(Scalar sx, Scalar sy);
+
AffineMatrixType extractRotation() const;
AffineMatrixType extractRotationNoShear() const;
+ template<typename PositionDerived, typename ScaleDerived>
+ Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
+ const Orientation& orientation, const MatrixBase<ScaleDerived> &scale);
+
+ const Inverse<MatrixType, false> inverse() const
+ { return m_matrix.inverse(); }
+
protected:
};
+#ifdef EIGEN_QT_SUPPORT
+/** Initialises \c *this from a QMatrix assuming the dimension is 2.
+ */
+template<typename Scalar, int Dim>
+Transform<Scalar,Dim>::Transform(const QMatrix& other)
+{
+ *this = other;
+}
+
+/** Set \c *this from a QMatrix assuming the dimension is 2.
+ */
+template<typename Scalar, int Dim>
+Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
+{
+ EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
+ m_matrix << other.m11(), other.m21(), other.dx(),
+ other.m12(), other.m22(), other.dy(),
+ 0, 0, 1;
+}
+
+/** \returns a QMatrix from \c *this assuming the dimension is 2.
+ */
+template<typename Scalar, int Dim>
+QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
+{
+ EIGEN_STATIC_ASSERT(Dim==2, you_did_a_programming_error);
+ return QMatrix( other.coeffRef(0,0), other.coeffRef(1,0),
+ other.coeffRef(0,1), other.coeffRef(1,1),
+ other.coeffRef(0,2), other.coeffRef(1,2),
+}
+#endif
+
template<typename Scalar, int Dim>
template<typename OtherDerived>
const typename Transform<Scalar,Dim>::template ProductReturnType<OtherDerived>::Type
@@ -133,7 +306,7 @@ Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
&& int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
- m_matrix.template block<3,4>(0,0) = (other.asDiagonal().eval() * m_matrix.template block<3,4>(0,0)).lazy();
+ m_matrix.template block<3,4>(0,0) = (other.asDiagonal() * m_matrix.template block<3,4>(0,0)).lazy();
return *this;
}
@@ -167,6 +340,39 @@ Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
return *this;
}
+/** Applies on the right the shear transformation represented
+ * by the vector \a other to \c *this and returns a reference to \c *this.
+ * \warning 2D only.
+ * \sa preshear()
+ */
+template<typename Scalar, int Dim>
+template<typename OtherDerived>
+Transform<Scalar,Dim>&
+Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
+{
+ EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
+ && int(OtherDerived::SizeAtCompileTime)==int(Dim) && int(Dim)==2, you_did_a_programming_error);
+ VectorType tmp = affine().col(0)*sy + affine().col(1);
+ affine() << affine().col(0) + affine().col(1)*sx, tmp;
+ return *this;
+}
+
+/** Applies on the left the shear transformation represented
+ * by the vector \a other to \c *this and returns a reference to \c *this.
+ * \warning 2D only.
+ * \sa shear()
+ */
+template<typename Scalar, int Dim>
+template<typename OtherDerived>
+Transform<Scalar,Dim>&
+Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
+{
+ EIGEN_STATIC_ASSERT(int(OtherDerived::IsVectorAtCompileTime)
+ && int(OtherDerived::SizeAtCompileTime)==int(Dim), you_did_a_programming_error);
+ m_matrix.template block<3,4>(0,0) = AffineMatrixType(1, sx, sy, 1) * m_matrix.template block<3,4>(0,0);
+ return *this;
+}
+
/** \returns the rotation part of the transformation using a QR decomposition.
* \sa extractRotationNoShear()
*/
@@ -189,6 +395,22 @@ Transform<Scalar,Dim>::extractRotationNoShear() const
.verticalRedux(ei_scalar_sum_op<Scalar>()).cwiseSqrt();
}
+/** Convenient method to set \c *this from a position, orientation and scale
+ * of a 3D object.
+ */
+template<typename Scalar, int Dim>
+template<typename PositionDerived, typename ScaleDerived>
+Transform<Scalar,Dim>&
+Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
+ const Orientation& orientation, const MatrixBase<ScaleDerived> &scale)
+{
+ affine() = orientation.toRotationMatrix();
+ translation() = position;
+ m_matrix(Dim,Dim) = 1.;
+ m_matrix.template block<1,Dim>(Dim,0).setZero();
+ affine() *= scale.asDiagonal();
+}
+
//----------
template<typename Scalar, int Dim>
@@ -216,12 +438,17 @@ template<typename Other>
struct Transform<Scalar,Dim>::ei_transform_product_impl<Other,Dim,1>
{
typedef typename Transform<Scalar,Dim>::AffineMatrixRef MatrixType;
- typedef const CwiseBinaryOp<
- ei_scalar_sum_op<Scalar>,
- NestByValue<Product<NestByValue<MatrixType>,Other> >,
- NestByValue<typename Transform<Scalar,Dim>::VectorRef> > ResultType;
+ typedef const CwiseUnaryOp<
+ ei_scalar_multiple_op<Scalar>,
+ NestByValue<CwiseBinaryOp<
+ ei_scalar_sum_op<Scalar>,
+ NestByValue<Product<NestByValue<MatrixType>,Other> >,
+ NestByValue<typename Transform<Scalar,Dim>::VectorRef> > >
+ > ResultType;
+ // FIXME shall we offer an optimized version when the last row is know to be 0,0...,0,1 ?
static ResultType run(const Transform<Scalar,Dim>& tr, const Other& other)
- { return (tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue(); }
+ { return ((tr.affine().nestByValue() * other).nestByValue() + tr.translation().nestByValue()).nestByValue()
+ * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
};
#endif // EIGEN_TRANSFORM_H
diff --git a/Eigen/src/QR/HessenbergDecomposition.h b/Eigen/src/QR/HessenbergDecomposition.h
index 8f4710993..880997563 100755
--- a/Eigen/src/QR/HessenbergDecomposition.h
+++ b/Eigen/src/QR/HessenbergDecomposition.h
@@ -239,7 +239,8 @@ HessenbergDecomposition<MatrixType>::matrixH(void) const
// and fill it (to avoid temporaries)
int n = m_matrix.rows();
MatrixType matH = m_matrix;
- matH.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
+ if (n>2)
+ matH.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
return matH;
}
diff --git a/Eigen/src/QR/Tridiagonalization.h b/Eigen/src/QR/Tridiagonalization.h
index 1473b5bfa..bcb4a2b59 100755
--- a/Eigen/src/QR/Tridiagonalization.h
+++ b/Eigen/src/QR/Tridiagonalization.h
@@ -160,8 +160,11 @@ Tridiagonalization<MatrixType>::matrixT(void) const
int n = m_matrix.rows();
MatrixType matT = m_matrix;
matT.corner(TopRight,n-1, n-1).diagonal() = subDiagonal().conjugate();
- matT.corner(TopRight,n-2, n-2).template part<Upper>().setZero();
- matT.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
+ if (n>2)
+ {
+ matT.corner(TopRight,n-2, n-2).template part<Upper>().setZero();
+ matT.corner(BottomLeft,n-2, n-2).template part<Lower>().setZero();
+ }
return matT;
}
diff --git a/test/geometry.cpp b/test/geometry.cpp
index 9d5a07af8..f41d086de 100644
--- a/test/geometry.cpp
+++ b/test/geometry.cpp
@@ -116,6 +116,9 @@ template<typename Scalar> void geometry(void)
t1.translate(-v0);
VERIFY((t0.matrix() * t1.matrix()).isIdentity());
+
+ t1.fromPositionOrientationScale(v0, q1, v1);
+ VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
}
void test_geometry()