aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2008-10-25 22:38:22 +0000
committerGravatar Gael Guennebaud <g.gael@free.fr>2008-10-25 22:38:22 +0000
commite5b8a59cfa5d9d7f81aad80d91c90b613efb2b67 (patch)
treeb1d2d0d0c4b0a74e93e2feb2cbe34e711ff48599 /Eigen
parent568a7e8eba0cac0555c286aa44a594c109b73276 (diff)
Add smart cast functions and ctor with scalar conversion (explicit)
to all classes of the Geometry module. By smart I mean that if current type == new type, then it returns a const reference to *this => zero overhead
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/src/Core/util/XprHelper.h5
-rw-r--r--Eigen/src/Geometry/AngleAxis.h21
-rw-r--r--Eigen/src/Geometry/Hyperplane.h370
-rw-r--r--Eigen/src/Geometry/ParametrizedLine.h139
-rw-r--r--Eigen/src/Geometry/Quaternion.h16
-rw-r--r--Eigen/src/Geometry/Rotation2D.h16
-rw-r--r--Eigen/src/Geometry/Scaling.h14
-rw-r--r--Eigen/src/Geometry/Transform.h16
-rw-r--r--Eigen/src/Geometry/Translation.h16
9 files changed, 375 insertions, 238 deletions
diff --git a/Eigen/src/Core/util/XprHelper.h b/Eigen/src/Core/util/XprHelper.h
index 5b8a2c021..676fb9c05 100644
--- a/Eigen/src/Core/util/XprHelper.h
+++ b/Eigen/src/Core/util/XprHelper.h
@@ -169,4 +169,9 @@ template<typename ExpressionType, int RowsOrSize=Dynamic, int Cols=Dynamic> stru
typedef Block<ExpressionType, RowsOrSize, Cols> Type;
};
+template<typename CurrentType, typename NewType> struct ei_cast_return_type
+{
+ typedef typename ei_meta_if<ei_is_same_type<CurrentType,NewType>::ret,const CurrentType&,NewType>::ret type;
+};
+
#endif // EIGEN_XPRHELPER_H
diff --git a/Eigen/src/Geometry/AngleAxis.h b/Eigen/src/Geometry/AngleAxis.h
index 662ae95fb..e3759c4af 100644
--- a/Eigen/src/Geometry/AngleAxis.h
+++ b/Eigen/src/Geometry/AngleAxis.h
@@ -47,7 +47,7 @@
* \note This class is not aimed to be used to store a rotation transformation,
* but rather to make easier the creation of other rotation (Quaternion, rotation Matrix)
* and transformation objects.
- *
+ *
* \sa class Quaternion, class Transform, MatrixBase::UnitX()
*/
@@ -64,7 +64,7 @@ class AngleAxis : public RotationBase<AngleAxis<_Scalar>,3>
public:
using Base::operator*;
-
+
enum { Dim = 3 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
@@ -132,6 +132,23 @@ public:
template<typename Derived>
AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix3 toRotationMatrix(void) const;
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
+ { return typename ei_cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
+ {
+ m_axis = other.axis().template cast<OtherScalarType>();
+ m_angle = other.angle();
+ }
};
/** \ingroup GeometryModule
diff --git a/Eigen/src/Geometry/Hyperplane.h b/Eigen/src/Geometry/Hyperplane.h
index d78b18a84..6d2462574 100644
--- a/Eigen/src/Geometry/Hyperplane.h
+++ b/Eigen/src/Geometry/Hyperplane.h
@@ -49,198 +49,216 @@ class Hyperplane
: public ei_with_aligned_operator_new<_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1>
#endif
{
- public:
-
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
- typedef Matrix<Scalar,AmbientDimAtCompileTime==Dynamic
- ? Dynamic
- : AmbientDimAtCompileTime+1,1> Coefficients;
- typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
-
- /** Default constructor without initialization */
- inline explicit Hyperplane() {}
-
- /** Constructs a dynamic-size hyperplane with \a _dim the dimension
- * of the ambient space */
- inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
-
- /** Construct a plane from its normal \a n and a point \a e onto the plane.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, const VectorType e)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = -e.dot(n);
- }
+public:
- /** Constructs a plane from its normal \a n and distance to the origin \a d
- * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
- * \warning the vector normal is assumed to be normalized.
- */
- inline Hyperplane(const VectorType& n, Scalar d)
- : m_coeffs(n.size()+1)
- {
- normal() = n;
- offset() = d;
- }
+ enum { AmbientDimAtCompileTime = _AmbientDim };
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
+ typedef Matrix<Scalar,AmbientDimAtCompileTime==Dynamic
+ ? Dynamic
+ : AmbientDimAtCompileTime+1,1> Coefficients;
+ typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
- /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
- * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
- {
- Hyperplane result(p0.size());
- result.normal() = (p1 - p0).unitOrthogonal();
- result.offset() = -result.normal().dot(p0);
- return result;
- }
+ /** Default constructor without initialization */
+ inline explicit Hyperplane() {}
- /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
- * is required to be exactly 3.
- */
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3);
- Hyperplane result(p0.size());
- result.normal() = (p2 - p0).cross(p1 - p0).normalized();
- result.offset() = -result.normal().dot(p0);
- return result;
- }
+ /** Constructs a dynamic-size hyperplane with \a _dim the dimension
+ * of the ambient space */
+ inline explicit Hyperplane(int _dim) : m_coeffs(_dim+1) {}
- /** Constructs a hyperplane passing through the parametrized line \a parametrized.
- * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
- * so an arbitrary choice is made.
- */
- // FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
- {
- normal() = parametrized.direction().unitOrthogonal();
- offset() = -normal().dot(parametrized.origin());
- }
+ /** Construct a plane from its normal \a n and a point \a e onto the plane.
+ * \warning the vector normal is assumed to be normalized.
+ */
+ inline Hyperplane(const VectorType& n, const VectorType e)
+ : m_coeffs(n.size()+1)
+ {
+ normal() = n;
+ offset() = -e.dot(n);
+ }
- ~Hyperplane() {}
+ /** Constructs a plane from its normal \a n and distance to the origin \a d
+ * such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
+ * \warning the vector normal is assumed to be normalized.
+ */
+ inline Hyperplane(const VectorType& n, Scalar d)
+ : m_coeffs(n.size()+1)
+ {
+ normal() = n;
+ offset() = d;
+ }
- /** \returns the dimension in which the plane holds */
- inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : AmbientDimAtCompileTime; }
+ /** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
+ * is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
+ */
+ static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
+ {
+ Hyperplane result(p0.size());
+ result.normal() = (p1 - p0).unitOrthogonal();
+ result.offset() = -result.normal().dot(p0);
+ return result;
+ }
- /** normalizes \c *this */
- void normalize(void)
- {
- m_coeffs /= normal().norm();
- }
+ /** Constructs a hyperplane passing through the three points. The dimension of the ambient space
+ * is required to be exactly 3.
+ */
+ static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3);
+ Hyperplane result(p0.size());
+ result.normal() = (p2 - p0).cross(p1 - p0).normalized();
+ result.offset() = -result.normal().dot(p0);
+ return result;
+ }
- /** \returns the signed distance between the plane \c *this and a point \a p.
- * \sa absDistance()
- */
- inline Scalar signedDistance(const VectorType& p) const { return p.dot(normal()) + offset(); }
-
- /** \returns the absolute distance between the plane \c *this and a point \a p.
- * \sa signedDistance()
- */
- inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
-
- /** \returns the projection of a point \a p onto the plane \c *this.
- */
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
-
- /** \returns a constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline const NormalReturnType normal() const { return NormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
- * to the linear part of the implicit equation.
- */
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
-
- /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
- * \warning the vector normal is assumed to be normalized.
- */
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
-
- /** \returns a non-constant reference to the distance to the origin, which is also the constant part
- * of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
-
- /** \returns a constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a non-constant reference to the coefficients c_i of the plane equation:
- * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
- */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** \returns the intersection of *this with \a other.
- *
- * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
- *
- * \note If \a other is approximately parallel to *this, this method will return any point on *this.
- */
- VectorType intersection(const Hyperplane& other)
- {
- EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2);
- Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
- // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
- // whether the two lines are approximately parallel.
- if(ei_isMuchSmallerThan(det, Scalar(1)))
- { // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
- return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
- else
- return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
- }
- else
- { // general case
- Scalar invdet = Scalar(1) / det;
- return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
- invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
- }
- }
+ /** Constructs a hyperplane passing through the parametrized line \a parametrized.
+ * If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
+ * so an arbitrary choice is made.
+ */
+ // FIXME to be consitent with the rest this could be implemented as a static Through function ??
+ explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
+ {
+ normal() = parametrized.direction().unitOrthogonal();
+ offset() = -normal().dot(parametrized.origin());
+ }
- /** \returns the transformation of \c *this by the transformation matrix \a mat.
- *
- * \param mat the Dim x Dim transformation matrix
- * \param traits specifies whether the matrix \a mat represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- */
- template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
- {
- if (traits==Affine)
- normal() = mat.inverse().transpose() * normal();
- else if (traits==Isometry)
- normal() = mat * normal();
- else
- {
- ei_assert("invalid traits value in Hyperplane::transform()");
- }
- return *this;
+ ~Hyperplane() {}
+
+ /** \returns the dimension in which the plane holds */
+ inline int dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : AmbientDimAtCompileTime; }
+
+ /** normalizes \c *this */
+ void normalize(void)
+ {
+ m_coeffs /= normal().norm();
+ }
+
+ /** \returns the signed distance between the plane \c *this and a point \a p.
+ * \sa absDistance()
+ */
+ inline Scalar signedDistance(const VectorType& p) const { return p.dot(normal()) + offset(); }
+
+ /** \returns the absolute distance between the plane \c *this and a point \a p.
+ * \sa signedDistance()
+ */
+ inline Scalar absDistance(const VectorType& p) const { return ei_abs(signedDistance(p)); }
+
+ /** \returns the projection of a point \a p onto the plane \c *this.
+ */
+ inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
+
+ /** \returns a constant reference to the unit normal vector of the plane, which corresponds
+ * to the linear part of the implicit equation.
+ */
+ inline const NormalReturnType normal() const { return NormalReturnType(m_coeffs,0,0,dim(),1); }
+
+ /** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
+ * to the linear part of the implicit equation.
+ */
+ inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
+
+ /** \returns the distance to the origin, which is also the "constant term" of the implicit equation
+ * \warning the vector normal is assumed to be normalized.
+ */
+ inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
+
+ /** \returns a non-constant reference to the distance to the origin, which is also the constant part
+ * of the implicit equation */
+ inline Scalar& offset() { return m_coeffs(dim()); }
+
+ /** \returns a constant reference to the coefficients c_i of the plane equation:
+ * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
+ */
+ inline const Coefficients& coeffs() const { return m_coeffs; }
+
+ /** \returns a non-constant reference to the coefficients c_i of the plane equation:
+ * \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
+ */
+ inline Coefficients& coeffs() { return m_coeffs; }
+
+ /** \returns the intersection of *this with \a other.
+ *
+ * \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
+ *
+ * \note If \a other is approximately parallel to *this, this method will return any point on *this.
+ */
+ VectorType intersection(const Hyperplane& other)
+ {
+ EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2);
+ Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
+ // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
+ // whether the two lines are approximately parallel.
+ if(ei_isMuchSmallerThan(det, Scalar(1)))
+ { // special case where the two lines are approximately parallel. Pick any point on the first line.
+ if(ei_abs(coeffs().coeff(1))>ei_abs(coeffs().coeff(0)))
+ return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
+ else
+ return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
+ }
+ else
+ { // general case
+ Scalar invdet = Scalar(1) / det;
+ return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
+ invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
}
+ }
- /** \returns the transformation of \c *this by the transformation \a t
- *
- * \param t the transformation of dimension Dim
- * \param traits specifies whether the transformation \a t represents an Isometry
- * or a more generic Affine transformation. The default is Affine.
- * Other kind of transformations are not supported.
- */
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
- TransformTraits traits = Affine)
+ /** \returns the transformation of \c *this by the transformation matrix \a mat.
+ *
+ * \param mat the Dim x Dim transformation matrix
+ * \param traits specifies whether the matrix \a mat represents an Isometry
+ * or a more generic Affine transformation. The default is Affine.
+ */
+ template<typename XprType>
+ inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
+ {
+ if (traits==Affine)
+ normal() = mat.inverse().transpose() * normal();
+ else if (traits==Isometry)
+ normal() = mat * normal();
+ else
{
- transform(t.linear(), traits);
- offset() -= t.translation().dot(normal());
- return *this;
+ ei_assert("invalid traits value in Hyperplane::transform()");
}
+ return *this;
+ }
+
+ /** \returns the transformation of \c *this by the transformation \a t
+ *
+ * \param t the transformation of dimension Dim
+ * \param traits specifies whether the transformation \a t represents an Isometry
+ * or a more generic Affine transformation. The default is Affine.
+ * Other kind of transformations are not supported.
+ */
+ inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime>& t,
+ TransformTraits traits = Affine)
+ {
+ transform(t.linear(), traits);
+ offset() -= t.translation().dot(normal());
+ return *this;
+ }
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<Hyperplane,
+ Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
+ {
+ return typename ei_cast_return_type<Hyperplane,
+ Hyperplane<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
+ }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime>& other)
+ { m_coeffs = other.coeffs().template cast<OtherScalarType>(); }
protected:
- Coefficients m_coeffs;
+ Coefficients m_coeffs;
};
#endif // EIGEN_HYPERPLANE_H
diff --git a/Eigen/src/Geometry/ParametrizedLine.h b/Eigen/src/Geometry/ParametrizedLine.h
index 9fcb5b36c..8a1d79252 100644
--- a/Eigen/src/Geometry/ParametrizedLine.h
+++ b/Eigen/src/Geometry/ParametrizedLine.h
@@ -45,65 +45,86 @@ class ParametrizedLine
: public ei_with_aligned_operator_new<_Scalar,_AmbientDim>
#endif
{
- public:
-
- enum { AmbientDimAtCompileTime = _AmbientDim };
- typedef _Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
-
- /** Default constructor without initialization */
- inline explicit ParametrizedLine() {}
-
- /** Constructs a dynamic-size line with \a _dim the dimension
- * of the ambient space */
- inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
-
- /** Initializes a parametrized line of direction \a direction and origin \a origin.
- * \warning the vector direction is assumed to be normalized.
- */
- ParametrizedLine(const VectorType& origin, const VectorType& direction)
- : m_origin(origin), m_direction(direction) {}
-
- explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- /** Constructs a parametrized line going from \a p0 to \a p1. */
- static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
- { return ParametrizedLine(p0, (p1-p0).normalized()); }
-
- ~ParametrizedLine() {}
-
- /** \returns the dimension in which the line holds */
- inline int dim() const { return m_direction.size(); }
-
- const VectorType& origin() const { return m_origin; }
- VectorType& origin() { return m_origin; }
-
- const VectorType& direction() const { return m_direction; }
- VectorType& direction() { return m_direction; }
-
- /** \returns the squared distance of a point \a p to its projection onto the line \c *this.
- * \sa distance()
- */
- RealScalar squaredDistance(const VectorType& p) const
- {
- VectorType diff = p-origin();
- return (diff - diff.dot(direction())* direction()).norm2();
- }
- /** \returns the distance of a point \a p to its projection onto the line \c *this.
- * \sa squaredDistance()
- */
- RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
-
- /** \returns the projection of a point \a p onto the line \c *this. */
- VectorType projection(const VectorType& p) const
- { return origin() + (p-origin()).dot(direction()) * direction(); }
-
- Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
-
- protected:
-
- VectorType m_origin, m_direction;
+public:
+
+ enum { AmbientDimAtCompileTime = _AmbientDim };
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
+
+ /** Default constructor without initialization */
+ inline explicit ParametrizedLine() {}
+
+ /** Constructs a dynamic-size line with \a _dim the dimension
+ * of the ambient space */
+ inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
+
+ /** Initializes a parametrized line of direction \a direction and origin \a origin.
+ * \warning the vector direction is assumed to be normalized.
+ */
+ ParametrizedLine(const VectorType& origin, const VectorType& direction)
+ : m_origin(origin), m_direction(direction) {}
+
+ explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
+
+ /** Constructs a parametrized line going from \a p0 to \a p1. */
+ static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
+ { return ParametrizedLine(p0, (p1-p0).normalized()); }
+
+ ~ParametrizedLine() {}
+
+ /** \returns the dimension in which the line holds */
+ inline int dim() const { return m_direction.size(); }
+
+ const VectorType& origin() const { return m_origin; }
+ VectorType& origin() { return m_origin; }
+
+ const VectorType& direction() const { return m_direction; }
+ VectorType& direction() { return m_direction; }
+
+ /** \returns the squared distance of a point \a p to its projection onto the line \c *this.
+ * \sa distance()
+ */
+ RealScalar squaredDistance(const VectorType& p) const
+ {
+ VectorType diff = p-origin();
+ return (diff - diff.dot(direction())* direction()).norm2();
+ }
+ /** \returns the distance of a point \a p to its projection onto the line \c *this.
+ * \sa squaredDistance()
+ */
+ RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
+
+ /** \returns the projection of a point \a p onto the line \c *this. */
+ VectorType projection(const VectorType& p) const
+ { return origin() + (p-origin()).dot(direction()) * direction(); }
+
+ Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<ParametrizedLine,
+ ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
+ {
+ return typename ei_cast_return_type<ParametrizedLine,
+ ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
+ }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
+ {
+ m_origin = other.origin().template cast<OtherScalarType>();
+ m_direction = other.direction().template cast<OtherScalarType>();
+ }
+
+protected:
+
+ VectorType m_origin, m_direction;
};
/** Constructs a parametrized line from a 2D hyperplane
diff --git a/Eigen/src/Geometry/Quaternion.h b/Eigen/src/Geometry/Quaternion.h
index 9403181ca..820d30568 100644
--- a/Eigen/src/Geometry/Quaternion.h
+++ b/Eigen/src/Geometry/Quaternion.h
@@ -195,6 +195,22 @@ public:
template<typename Derived>
Vector3 operator* (const MatrixBase<Derived>& vec) const;
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
+ { return typename ei_cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit Quaternion(const Quaternion<OtherScalarType>& other)
+ {
+ m_coeffs = other.coeffs().template cast<OtherScalarType>();
+ }
+
};
/** \ingroup GeometryModule
diff --git a/Eigen/src/Geometry/Rotation2D.h b/Eigen/src/Geometry/Rotation2D.h
index c0bda5f69..8e8396713 100644
--- a/Eigen/src/Geometry/Rotation2D.h
+++ b/Eigen/src/Geometry/Rotation2D.h
@@ -100,6 +100,22 @@ public:
*/
inline Rotation2D slerp(Scalar t, const Rotation2D& other) const
{ return m_angle * (1-t) + other.angle() * t; }
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
+ { return typename ei_cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
+ {
+ m_angle = other.angle();
+ }
};
/** \ingroup GeometryModule
diff --git a/Eigen/src/Geometry/Scaling.h b/Eigen/src/Geometry/Scaling.h
index da7cca68e..dd40d2ed3 100644
--- a/Eigen/src/Geometry/Scaling.h
+++ b/Eigen/src/Geometry/Scaling.h
@@ -128,6 +128,20 @@ public:
return *this;
}
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type cast() const
+ { return typename ei_cast_return_type<Scaling,Scaling<NewScalarType,Dim> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit Scaling(const Scaling<OtherScalarType,Dim>& other)
+ { m_coeffs = other.coeffs().template cast<OtherScalarType>(); }
+
};
/** \addtogroup GeometryModule */
diff --git a/Eigen/src/Geometry/Transform.h b/Eigen/src/Geometry/Transform.h
index ee7bdce83..003f5d755 100644
--- a/Eigen/src/Geometry/Transform.h
+++ b/Eigen/src/Geometry/Transform.h
@@ -241,9 +241,25 @@ public:
inline const MatrixType inverse(TransformTraits traits = Affine) const;
+ /** \returns a const pointer to the column major internal matrix */
const Scalar* data() const { return m_matrix.data(); }
+ /** \returns a non-const pointer to the column major internal matrix */
Scalar* data() { return m_matrix.data(); }
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
+ { return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit Transform(const Transform<OtherScalarType,Dim>& other)
+ { m_matrix = other.matrix().template cast<OtherScalarType>(); }
+
protected:
};
diff --git a/Eigen/src/Geometry/Translation.h b/Eigen/src/Geometry/Translation.h
index a322205a4..5d01c3044 100644
--- a/Eigen/src/Geometry/Translation.h
+++ b/Eigen/src/Geometry/Translation.h
@@ -91,7 +91,7 @@ public:
/** Concatenates two translation */
inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
-
+
/** Concatenates a translation and a scaling */
inline TransformType operator* (const ScalingType& other) const;
@@ -131,6 +131,20 @@ public:
return *this;
}
+ /** \returns \c *this with scalar type casted to \a NewScalarType
+ *
+ * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+ * then this function smartly returns a const reference to \c *this.
+ */
+ template<typename NewScalarType>
+ typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
+ { return typename ei_cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
+
+ /** Copy constructor with scalar type conversion */
+ template<typename OtherScalarType>
+ explicit Translation(const Translation<OtherScalarType,Dim>& other)
+ { m_coeffs = other.vector().template cast<OtherScalarType>(); }
+
};
/** \addtogroup GeometryModule */