diff options
author | Gael Guennebaud <g.gael@free.fr> | 2008-10-21 13:35:04 +0000 |
---|---|---|
committer | Gael Guennebaud <g.gael@free.fr> | 2008-10-21 13:35:04 +0000 |
commit | cf0f82ecbe1b92ec44e8fe34f65d6183059c9491 (patch) | |
tree | a4d6b680561765f192fc384100c68071e86648ab /Eigen | |
parent | 9e02e42ff6757da1c96518a24c913a01250564ee (diff) |
sparse module:
- remove some useless stuff => let's focus on a single sparse matrix format
- finalize the new RandomSetter
Diffstat (limited to 'Eigen')
-rw-r--r-- | Eigen/Sparse | 10 | ||||
-rw-r--r-- | Eigen/src/Sparse/HashMatrix.h | 166 | ||||
-rw-r--r-- | Eigen/src/Sparse/LinkedVectorMatrix.h | 317 | ||||
-rw-r--r-- | Eigen/src/Sparse/RandomSetter.h | 153 | ||||
-rw-r--r-- | Eigen/src/Sparse/SparseMatrixBase.h | 7 | ||||
-rw-r--r-- | Eigen/src/Sparse/SparseSetter.h | 138 |
6 files changed, 149 insertions, 642 deletions
diff --git a/Eigen/Sparse b/Eigen/Sparse index 2364c6fe4..54b15b8ae 100644 --- a/Eigen/Sparse +++ b/Eigen/Sparse @@ -8,6 +8,10 @@ #include <cstring> #include <algorithm> +#ifdef EIGEN_GOOGLEHASH_SUPPORT + #include <google/dense_hash_map> +#endif + #ifdef EIGEN_CHOLMOD_SUPPORT extern "C" { #include "cholmod.h" @@ -70,10 +74,10 @@ namespace Eigen { #include "src/Sparse/RandomSetter.h" #include "src/Sparse/SparseBlock.h" #include "src/Sparse/SparseMatrix.h" -#include "src/Sparse/HashMatrix.h" -#include "src/Sparse/LinkedVectorMatrix.h" +//#include "src/Sparse/HashMatrix.h" +//#include "src/Sparse/LinkedVectorMatrix.h" #include "src/Sparse/CoreIterators.h" -#include "src/Sparse/SparseSetter.h" +//#include "src/Sparse/SparseSetter.h" #include "src/Sparse/SparseProduct.h" #include "src/Sparse/TriangularSolver.h" #include "src/Sparse/SparseLLT.h" diff --git a/Eigen/src/Sparse/HashMatrix.h b/Eigen/src/Sparse/HashMatrix.h deleted file mode 100644 index 1d6d33cce..000000000 --- a/Eigen/src/Sparse/HashMatrix.h +++ /dev/null @@ -1,166 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> -// -// Eigen is free software; you can redistribute it and/or -// modify it under the terms of the GNU Lesser General Public -// License as published by the Free Software Foundation; either -// version 3 of the License, or (at your option) any later version. -// -// Alternatively, you can redistribute it and/or -// modify it under the terms of the GNU General Public License as -// published by the Free Software Foundation; either version 2 of -// the License, or (at your option) any later version. -// -// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY -// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS -// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the -// GNU General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public -// License and a copy of the GNU General Public License along with -// Eigen. If not, see <http://www.gnu.org/licenses/>. - -#ifndef EIGEN_HASHMATRIX_H -#define EIGEN_HASHMATRIX_H - -template<typename _Scalar, int _Flags> -struct ei_traits<HashMatrix<_Scalar, _Flags> > -{ - typedef _Scalar Scalar; - enum { - RowsAtCompileTime = Dynamic, - ColsAtCompileTime = Dynamic, - MaxRowsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic, - Flags = SparseBit | _Flags, - CoeffReadCost = NumTraits<Scalar>::ReadCost, - SupportedAccessPatterns = RandomAccessPattern - }; -}; - -// TODO reimplement this class using custom linked lists -template<typename _Scalar, int _Flags> -class HashMatrix - : public SparseMatrixBase<HashMatrix<_Scalar, _Flags> > -{ - public: - EIGEN_GENERIC_PUBLIC_INTERFACE(HashMatrix) - class InnerIterator; - protected: - - typedef typename std::map<int, Scalar>::iterator MapIterator; - typedef typename std::map<int, Scalar>::const_iterator ConstMapIterator; - - public: - inline int rows() const { return m_innerSize; } - inline int cols() const { return m_data.size(); } - - inline const Scalar& coeff(int row, int col) const - { - const MapIterator it = m_data[col].find(row); - if (it!=m_data[col].end()) - return Scalar(0); - return it->second; - } - - inline Scalar& coeffRef(int row, int col) - { - return m_data[col][row]; - } - - public: - - inline void startFill(int /*reserveSize = 1000 --- currently unused, don't generate a warning*/) {} - - inline Scalar& fill(int row, int col) { return coeffRef(row, col); } - - inline void endFill() {} - - ~HashMatrix() - {} - - inline void shallowCopy(const HashMatrix& other) - { - EIGEN_DBG_SPARSE(std::cout << "HashMatrix:: shallowCopy\n"); - // FIXME implement a true shallow copy !! - resize(other.rows(), other.cols()); - for (int j=0; j<this->outerSize(); ++j) - m_data[j] = other.m_data[j]; - } - - void resize(int _rows, int _cols) - { - if (cols() != _cols) - { - m_data.resize(_cols); - } - m_innerSize = _rows; - } - - inline HashMatrix(int rows, int cols) - : m_innerSize(0) - { - resize(rows, cols); - } - - template<typename OtherDerived> - inline HashMatrix(const MatrixBase<OtherDerived>& other) - : m_innerSize(0) - { - *this = other.derived(); - } - - inline HashMatrix& operator=(const HashMatrix& other) - { - if (other.isRValue()) - { - shallowCopy(other); - } - else - { - resize(other.rows(), other.cols()); - for (int col=0; col<cols(); ++col) - m_data[col] = other.m_data[col]; - } - return *this; - } - - template<typename OtherDerived> - inline HashMatrix& operator=(const MatrixBase<OtherDerived>& other) - { - return SparseMatrixBase<HashMatrix>::operator=(other); - } - - protected: - - std::vector<std::map<int, Scalar> > m_data; - int m_innerSize; - -}; - -template<typename Scalar, int _Flags> -class HashMatrix<Scalar,_Flags>::InnerIterator -{ - public: - - InnerIterator(const HashMatrix& mat, int col) - : m_matrix(mat), m_it(mat.m_data[col].begin()), m_end(mat.m_data[col].end()) - {} - - InnerIterator& operator++() { m_it++; return *this; } - - Scalar value() { return m_it->second; } - - int index() const { return m_it->first; } - - operator bool() const { return m_it!=m_end; } - - protected: - const HashMatrix& m_matrix; - typename HashMatrix::ConstMapIterator m_it; - typename HashMatrix::ConstMapIterator m_end; -}; - -#endif // EIGEN_HASHMATRIX_H diff --git a/Eigen/src/Sparse/LinkedVectorMatrix.h b/Eigen/src/Sparse/LinkedVectorMatrix.h deleted file mode 100644 index 4e5a4862e..000000000 --- a/Eigen/src/Sparse/LinkedVectorMatrix.h +++ /dev/null @@ -1,317 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> -// -// Eigen is free software; you can redistribute it and/or -// modify it under the terms of the GNU Lesser General Public -// License as published by the Free Software Foundation; either -// version 3 of the License, or (at your option) any later version. -// -// Alternatively, you can redistribute it and/or -// modify it under the terms of the GNU General Public License as -// published by the Free Software Foundation; either version 2 of -// the License, or (at your option) any later version. -// -// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY -// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS -// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the -// GNU General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public -// License and a copy of the GNU General Public License along with -// Eigen. If not, see <http://www.gnu.org/licenses/>. - -#ifndef EIGEN_LINKEDVECTORMATRIX_H -#define EIGEN_LINKEDVECTORMATRIX_H - -template<typename _Scalar, int _Flags> -struct ei_traits<LinkedVectorMatrix<_Scalar,_Flags> > -{ - typedef _Scalar Scalar; - enum { - RowsAtCompileTime = Dynamic, - ColsAtCompileTime = Dynamic, - MaxRowsAtCompileTime = Dynamic, - MaxColsAtCompileTime = Dynamic, - Flags = SparseBit | _Flags, - CoeffReadCost = NumTraits<Scalar>::ReadCost, - SupportedAccessPatterns = InnerCoherentAccessPattern - }; -}; - -template<typename Element, int ChunkSize = 8> -struct LinkedVectorChunk -{ - LinkedVectorChunk() : next(0), prev(0), size(0) {} - Element data[ChunkSize]; - LinkedVectorChunk* next; - LinkedVectorChunk* prev; - int size; - bool isFull() const { return size==ChunkSize; } -}; - -template<typename _Scalar, int _Flags> -class LinkedVectorMatrix - : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_Flags> > -{ - public: - EIGEN_GENERIC_PUBLIC_INTERFACE(LinkedVectorMatrix) - class InnerIterator; - protected: - - enum { - RowMajor = Flags&RowMajorBit ? 1 : 0 - }; - - struct ValueIndex - { - ValueIndex() : value(0), index(0) {} - ValueIndex(Scalar v, int i) : value(v), index(i) {} - Scalar value; - int index; - }; - typedef LinkedVectorChunk<ValueIndex,8> VectorChunk; - - inline int find(VectorChunk** _el, int id) - { - VectorChunk* el = *_el; - while (el && el->data[el->size-1].index<id) - el = el->next; - *_el = el; - if (el) - { - // binary search - int maxI = el->size-1; - int minI = 0; - int i = el->size/2; - const ValueIndex* data = el->data; - while (data[i].index!=id) - { - if (data[i].index<id) - { - minI = i+1; - i = (maxI + minI)+2; - } - else - { - maxI = i-1; - i = (maxI + minI)+2; - } - if (minI>=maxI) - return -1; - } - if (data[i].index==id) - return i; - } - return -1; - } - - public: - inline int rows() const { return RowMajor ? m_data.size() : m_innerSize; } - inline int cols() const { return RowMajor ? m_innerSize : m_data.size(); } - - inline const Scalar& coeff(int row, int col) const - { - const int outer = RowMajor ? row : col; - const int inner = RowMajor ? col : row; - - VectorChunk* el = m_data[outer]; - int id = find(&el, inner); - if (id<0) - return Scalar(0); - return el->data[id].value; - } - - inline Scalar& coeffRef(int row, int col) - { - const int outer = RowMajor ? row : col; - const int inner = RowMajor ? col : row; - - VectorChunk* el = m_data[outer]; - int id = find(&el, inner); - ei_assert(id>=0); -// if (id<0) -// return Scalar(0); - return el->data[id].value; - } - - public: - - inline void startFill(int reserveSize = 1000) - { - clear(); - for (unsigned int i=0; i<m_data.size(); ++i) - m_ends[i] = m_data[i] = 0; - } - - inline Scalar& fill(int row, int col) - { - const int outer = RowMajor ? row : col; - const int inner = RowMajor ? col : row; -// std::cout << " ll fill " << outer << "," << inner << "\n"; - if (m_ends[outer]==0) - { - m_data[outer] = m_ends[outer] = new VectorChunk(); - } - else - { - ei_assert(m_ends[outer]->data[m_ends[outer]->size-1].index < inner); - if (m_ends[outer]->isFull()) - { - - VectorChunk* el = new VectorChunk(); - m_ends[outer]->next = el; - el->prev = m_ends[outer]; - m_ends[outer] = el; - } - } - m_ends[outer]->data[m_ends[outer]->size].index = inner; - return m_ends[outer]->data[m_ends[outer]->size++].value; - } - - inline void endFill() { } - - void printDbg() - { - for (int j=0; j<m_data.size(); ++j) - { - VectorChunk* el = m_data[j]; - while (el) - { - for (int i=0; i<el->size; ++i) - std::cout << j << "," << el->data[i].index << " = " << el->data[i].value << "\n"; - el = el->next; - } - } - for (int j=0; j<m_data.size(); ++j) - { - InnerIterator it(*this,j); - while (it) - { - std::cout << j << "," << it.index() << " = " << it.value() << "\n"; - ++it; - } - } - } - - ~LinkedVectorMatrix() - { - clear(); - } - - void clear() - { - for (unsigned int i=0; i<m_data.size(); ++i) - { - VectorChunk* el = m_data[i]; - while (el) - { - VectorChunk* tmp = el; - el = el->next; - delete tmp; - } - } - } - - void resize(int rows, int cols) - { - const int outers = RowMajor ? rows : cols; - const int inners = RowMajor ? cols : rows; - - if (this->outerSize() != outers) - { - clear(); - m_data.resize(outers); - m_ends.resize(outers); - for (unsigned int i=0; i<m_data.size(); ++i) - m_ends[i] = m_data[i] = 0; - } - m_innerSize = inners; - } - - inline LinkedVectorMatrix(int rows, int cols) - : m_innerSize(0) - { - resize(rows, cols); - } - - template<typename OtherDerived> - inline LinkedVectorMatrix(const MatrixBase<OtherDerived>& other) - : m_innerSize(0) - { - *this = other.derived(); - } - - inline void swap(LinkedVectorMatrix& other) - { - EIGEN_DBG_SPARSE(std::cout << "LinkedVectorMatrix:: swap\n"); - resize(other.rows(), other.cols()); - m_data.swap(other.m_data); - m_ends.swap(other.m_ends); - } - - inline LinkedVectorMatrix& operator=(const LinkedVectorMatrix& other) - { - if (other.isRValue()) - { - swap(other.const_cast_derived()); - } - else - { - // TODO implement a specialized deep copy here - return operator=<LinkedVectorMatrix>(other); - } - return *this; - } - - template<typename OtherDerived> - inline LinkedVectorMatrix& operator=(const MatrixBase<OtherDerived>& other) - { - return SparseMatrixBase<LinkedVectorMatrix>::operator=(other.derived()); - } - - protected: - - // outer vector of inner linked vector chunks - std::vector<VectorChunk*> m_data; - // stores a reference to the last vector chunk for efficient filling - std::vector<VectorChunk*> m_ends; - int m_innerSize; - -}; - - -template<typename Scalar, int _Flags> -class LinkedVectorMatrix<Scalar,_Flags>::InnerIterator -{ - public: - - InnerIterator(const LinkedVectorMatrix& mat, int col) - : m_matrix(mat), m_el(mat.m_data[col]), m_it(0) - {} - - InnerIterator& operator++() - { - m_it++; - if (m_it>=m_el->size) - { - m_el = m_el->next; - m_it = 0; - } - return *this; - } - - Scalar value() { return m_el->data[m_it].value; } - - int index() const { return m_el->data[m_it].index; } - - operator bool() const { return m_el && (m_el->next || m_it<m_el->size); } - - protected: - const LinkedVectorMatrix& m_matrix; - VectorChunk* m_el; - int m_it; -}; - -#endif // EIGEN_LINKEDVECTORMATRIX_H diff --git a/Eigen/src/Sparse/RandomSetter.h b/Eigen/src/Sparse/RandomSetter.h index 8606e03c6..35bc9daee 100644 --- a/Eigen/src/Sparse/RandomSetter.h +++ b/Eigen/src/Sparse/RandomSetter.h @@ -29,6 +29,9 @@ template<typename Scalar> struct StdMapTraits { typedef int KeyType; typedef std::map<KeyType,Scalar> Type; + enum { + IsSorted = 1 + }; static void setInvalidKey(Type&, const KeyType&) {} }; @@ -38,6 +41,9 @@ template<typename Scalar> struct GnuHashMapTraits { typedef int KeyType; typedef __gnu_cxx::hash_map<KeyType,Scalar> Type; + enum { + IsSorted = 0 + }; static void setInvalidKey(Type&, const KeyType&) {} }; @@ -48,6 +54,9 @@ template<typename Scalar> struct GoogleDenseHashMapTraits { typedef int KeyType; typedef google::dense_hash_map<KeyType,Scalar> Type; + enum { + IsSorted = 0 + }; static void setInvalidKey(Type& map, const KeyType& k) { map.set_empty_key(k); } @@ -59,6 +68,9 @@ template<typename Scalar> struct GoogleSparseHashMapTraits { typedef int KeyType; typedef google::sparse_hash_map<KeyType,Scalar> Type; + enum { + IsSorted = 0 + }; static void setInvalidKey(Type&, const KeyType&) {} }; @@ -66,10 +78,35 @@ template<typename Scalar> struct GoogleSparseHashMapTraits /** \class RandomSetter * + * Typical usage: + * \code + * SparseMatrix<double> m(rows,cols); + * { + * RandomSetter<SparseMatrix<double> > w(m); + * // don't use m but w instead with read/write random access to the coefficients: + * for(;;) + * w(rand(),rand()) = rand; + * } + * // when w is deleted, the data are copied back to m + * // and m is ready to use. + * \endcode + * + * \note for performance and memory consumption reasons it is highly recommended to use + * Google's hash library. To do so you have two options: + * - include <google/dense_hash_map> yourself \b before Eigen/Sparse header + * - define EIGEN_GOOGLEHASH_SUPPORT + * In the later case the inclusion of <google/dense_hash_map> is made for you. */ template<typename SparseMatrixType, - template <typename T> class HashMapTraits = StdMapTraits, - int OuterPacketBits = 6> + template <typename T> class MapTraits = +#if defined _DENSE_HASH_MAP_H_ + GoogleDenseHashMapTraits +#elif defined _HASH_MAP + GnuHashMapTraits +#else + StdMapTraits +#endif + ,int OuterPacketBits = 6> class RandomSetter { typedef typename ei_traits<SparseMatrixType>::Scalar Scalar; @@ -78,11 +115,13 @@ class RandomSetter ScalarWrapper() : value(0) {} Scalar value; }; - typedef typename HashMapTraits<ScalarWrapper>::KeyType KeyType; - typedef typename HashMapTraits<ScalarWrapper>::Type HashMapType; + typedef typename MapTraits<ScalarWrapper>::KeyType KeyType; + typedef typename MapTraits<ScalarWrapper>::Type HashMapType; static const int OuterPacketMask = (1 << OuterPacketBits) - 1; enum { - RowMajor = SparseMatrixType::Flags & RowMajorBit + SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted, + TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0, + SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor }; public: @@ -90,31 +129,114 @@ class RandomSetter inline RandomSetter(SparseMatrixType& target) : mp_target(&target) { - m_outerPackets = target.outerSize() >> OuterPacketBits; - if (target.outerSize()&OuterPacketMask) + const int outerSize = SwapStorage ? target.innerSize() : target.outerSize(); + const int innerSize = SwapStorage ? target.outerSize() : target.innerSize(); + m_outerPackets = outerSize >> OuterPacketBits; + if (outerSize&OuterPacketMask) m_outerPackets += 1; m_hashmaps = new HashMapType[m_outerPackets]; - KeyType ik = (1<<OuterPacketBits)*mp_target->innerSize()+1; + // compute number of bits needed to store inner indices + int aux = innerSize - 1; + m_keyBitsOffset = 0; + while (aux) + { + m_keyBitsOffset++; + aux = aux >> 1; + } + KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset)); for (int k=0; k<m_outerPackets; ++k) - HashMapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik); + MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik); + + // insert current coeffs + for (int j=0; j<mp_target->outerSize(); ++j) + for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it) + (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value(); } ~RandomSetter() { + KeyType keyBitsMask = (1<<m_keyBitsOffset)-1; + if (!SwapStorage) // also means the map is sorted + { + mp_target->startFill(nonZeros()); + for (int k=0; k<m_outerPackets; ++k) + { + const int outerOffset = (1<<OuterPacketBits) * k; + typename HashMapType::iterator end = m_hashmaps[k].end(); + for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it) + { + const int outer = (it->first >> m_keyBitsOffset) + outerOffset; + const int inner = it->first & keyBitsMask; + mp_target->fill(TargetRowMajor ? outer : inner, TargetRowMajor ? inner : outer) = it->second.value; + } + } + mp_target->endFill(); + } + else + { + VectorXi positions(mp_target->outerSize()); + positions.setZero(); + // pass 1 + for (int k=0; k<m_outerPackets; ++k) + { + typename HashMapType::iterator end = m_hashmaps[k].end(); + for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it) + { + const int outer = it->first & keyBitsMask; + positions[outer]++; + } + } + // prefix sum + int count = 0; + for (int j=0; j<mp_target->outerSize(); ++j) + { + int tmp = positions[j]; + mp_target->_outerIndexPtr()[j] = count; + positions[j] = count; + count += tmp; + } + mp_target->_outerIndexPtr()[mp_target->outerSize()] = count; + mp_target->resizeNonZeros(count); + // pass 2 + for (int k=0; k<m_outerPackets; ++k) + { + const int outerOffset = (1<<OuterPacketBits) * k; + typename HashMapType::iterator end = m_hashmaps[k].end(); + for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it) + { + const int inner = (it->first >> m_keyBitsOffset) + outerOffset; + const int outer = it->first & keyBitsMask; + // sorted insertion + // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients, + // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a + // small fraction of them have to be sorted, whence the following simple procedure: + int posStart = mp_target->_outerIndexPtr()[outer]; + int i = (positions[outer]++) - 1; + while ( (i >= posStart) && (mp_target->_innerIndexPtr()[i] > inner) ) + { + mp_target->_valuePtr()[i+1] = mp_target->_valuePtr()[i]; + mp_target->_innerIndexPtr()[i+1] = mp_target->_innerIndexPtr()[i]; + --i; + } + mp_target->_innerIndexPtr()[i+1] = inner; + mp_target->_valuePtr()[i+1] = it->second.value; + } + } + } delete[] m_hashmaps; } Scalar& operator() (int row, int col) { - const int outer = RowMajor ? row : col; - const int inner = RowMajor ? col : row; - const int outerMajor = outer >> OuterPacketBits; - const int outerMinor = outer & OuterPacketMask; - const KeyType key = inner + outerMinor * mp_target->innerSize(); - + const int outer = SetterRowMajor ? row : col; + const int inner = SetterRowMajor ? col : row; + const int outerMajor = outer >> OuterPacketBits; // index of the packet/map + const int outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet + const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner; return m_hashmaps[outerMajor][key].value; } + // might be slow int nonZeros() const { int nz = 0; @@ -129,6 +251,7 @@ class RandomSetter HashMapType* m_hashmaps; SparseMatrixType* mp_target; int m_outerPackets; + unsigned char m_keyBitsOffset; }; #endif // EIGEN_RANDOMSETTER_H diff --git a/Eigen/src/Sparse/SparseMatrixBase.h b/Eigen/src/Sparse/SparseMatrixBase.h index b03fb5cee..2695f23b1 100644 --- a/Eigen/src/Sparse/SparseMatrixBase.h +++ b/Eigen/src/Sparse/SparseMatrixBase.h @@ -64,10 +64,11 @@ class SparseMatrixBase : public MatrixBase<Derived> { // std::cout << "Derived& operator=(const MatrixBase<OtherDerived>& other)\n"; const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); -// std::cout << "eval transpose = " << transpose << "\n"; + ei_assert((!transpose) && "the transpose operation is supposed to be handled in SparseMatrix::operator="); const int outerSize = other.outerSize(); - typedef typename ei_meta_if<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::ret TempType; - TempType temp(other.rows(), other.cols()); + //typedef typename ei_meta_if<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::ret TempType; + // thanks to shallow copies, we always eval to a tempary + Derived temp(other.rows(), other.cols()); temp.startFill(std::max(this->rows(),this->cols())*2); for (int j=0; j<outerSize; ++j) diff --git a/Eigen/src/Sparse/SparseSetter.h b/Eigen/src/Sparse/SparseSetter.h deleted file mode 100644 index 20569d3ba..000000000 --- a/Eigen/src/Sparse/SparseSetter.h +++ /dev/null @@ -1,138 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> -// -// Eigen is free software; you can redistribute it and/or -// modify it under the terms of the GNU Lesser General Public -// License as published by the Free Software Foundation; either -// version 3 of the License, or (at your option) any later version. -// -// Alternatively, you can redistribute it and/or -// modify it under the terms of the GNU General Public License as -// published by the Free Software Foundation; either version 2 of -// the License, or (at your option) any later version. -// -// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY -// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS -// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the -// GNU General Public License for more details. -// -// You should have received a copy of the GNU Lesser General Public -// License and a copy of the GNU General Public License along with -// Eigen. If not, see <http://www.gnu.org/licenses/>. - -#ifndef EIGEN_SPARSESETTER_H -#define EIGEN_SPARSESETTER_H - -template<typename MatrixType, int AccessPattern, - int IsSupported = ei_support_access_pattern<MatrixType,AccessPattern>::ret> -struct ei_sparse_setter_selector; - -/** \class SparseSetter - * - * Goal: provides a unified API to fill/update a dense or sparse matrix. - * - * Usage: - * \code - * { - * SparseSetter<MatrixType, RandomAccessPattern> w(m); - * for (...) w->coeffRef(rand(),rand()) = rand(); - * } - * \endcode - * - * In the above example we want to fill a matrix m (could be a SparseMatrix or whatever other matrix type) - * in a random fashion (whence the RandomAccessPattern). Internally, if \a MatrixType supports random writes - * then \c w behaves as a pointer to m, and m is filled directly. Otherwise, a temporary matrix supporting - * random writes is created and \c w behaves as a pointer to this temporary object. When the object \c w - * is deleted (at the end of the block), then the temporary object is assigned to the matrix m. - * - * So far we can distinghished 4 types of access pattern: - * - FullyCoherentAccessPattern (if col major, i+j*rows must increase) - * - InnerCoherentAccessPattern (if col major, i must increase for each column j) - * - OuterCoherentAccessPattern (if col major, the column j is set in a random order, but j must increase) - * - RandomAccessPattern - * - * See the wiki for more details. - * - * The template class ei_support_access_pattern is used to determine the type of the temporary object (which - * can be a reference to \a MatrixType if \a MatrixType support \a AccessPattern) - * - * Currently only the RandomAccessPattern seems to work as expected. - * - * \todo define the API for each kind of access pattern - * \todo allows both update and set modes (set start a new matrix) - * \todo implement the OuterCoherentAccessPattern - * - */ -template<typename MatrixType, - int AccessPattern, - typename WrapperType = typename ei_sparse_setter_selector<MatrixType,AccessPattern>::type> -class SparseSetter -{ - typedef typename ei_unref<WrapperType>::type _WrapperType; - public: - - inline SparseSetter(MatrixType& matrix) : m_wrapper(matrix), mp_matrix(&matrix) {} - - ~SparseSetter() - { *mp_matrix = m_wrapper; } - - inline _WrapperType* operator->() { return &m_wrapper; } - - inline _WrapperType& operator*() { return m_wrapper; } - - protected: - - WrapperType m_wrapper; - MatrixType* mp_matrix; -}; - -template<typename MatrixType, int AccessPattern> -struct ei_sparse_setter_selector<MatrixType, AccessPattern, AccessPatternSupported> -{ - typedef MatrixType& type; -}; - -// forward each derived of SparseMatrixBase to the generic SparseMatrixBase specializations -template<typename Scalar, int Flags, int AccessPattern> -struct ei_sparse_setter_selector<SparseMatrix<Scalar,Flags>, AccessPattern, AccessPatternNotSupported> -: public ei_sparse_setter_selector<SparseMatrixBase<SparseMatrix<Scalar,Flags> >,AccessPattern, AccessPatternNotSupported> -{}; - -template<typename Scalar, int Flags, int AccessPattern> -struct ei_sparse_setter_selector<LinkedVectorMatrix<Scalar,Flags>, AccessPattern, AccessPatternNotSupported> -: public ei_sparse_setter_selector<LinkedVectorMatrix<SparseMatrix<Scalar,Flags> >,AccessPattern, AccessPatternNotSupported> -{}; - -template<typename Scalar, int Flags, int AccessPattern> -struct ei_sparse_setter_selector<HashMatrix<Scalar,Flags>, AccessPattern, AccessPatternNotSupported> -: public ei_sparse_setter_selector<HashMatrix<SparseMatrix<Scalar,Flags> >,AccessPattern, AccessPatternNotSupported> -{}; - -// generic SparseMatrixBase specializations -template<typename Derived> -struct ei_sparse_setter_selector<SparseMatrixBase<Derived>, RandomAccessPattern, AccessPatternNotSupported> -{ - typedef HashMatrix<typename Derived::Scalar, Derived::Flags> type; -}; - -template<typename Derived> -struct ei_sparse_setter_selector<SparseMatrixBase<Derived>, OuterCoherentAccessPattern, AccessPatternNotSupported> -{ - typedef HashMatrix<typename Derived::Scalar, Derived::Flags> type; -}; - -template<typename Derived> -struct ei_sparse_setter_selector<SparseMatrixBase<Derived>, InnerCoherentAccessPattern, AccessPatternNotSupported> -{ - typedef LinkedVectorMatrix<typename Derived::Scalar, Derived::Flags> type; -}; - -template<typename Derived> -struct ei_sparse_setter_selector<SparseMatrixBase<Derived>, FullyCoherentAccessPattern, AccessPatternNotSupported> -{ - typedef SparseMatrix<typename Derived::Scalar, Derived::Flags> type; -}; - -#endif // EIGEN_SPARSESETTER_H |