1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
structure Sqlcache (* DEBUG: add back :> SQLCACHE. *) = struct
open Mono
structure IS = IntBinarySet
structure IM = IntBinaryMap
structure SK = struct type ord_key = string val compare = String.compare end
structure SS = BinarySetFn(SK)
structure SM = BinaryMapFn(SK)
structure SIMM = MultimapFn(structure KeyMap = SM structure ValSet = IS)
(* Filled in by [cacheWrap] during [Sqlcache]. *)
val ffiInfo : {index : int, params : int} list ref = ref []
fun resetFfiInfo () = ffiInfo := []
fun getFfiInfo () = !ffiInfo
(* Some FFIs have writing as their only effect, which the caching records. *)
val ffiEffectful =
(* ASK: how can this be less hard-coded? *)
let
val fs = SS.fromList ["htmlifyInt_w",
"htmlifyFloat_w",
"htmlifyString_w",
"htmlifyBool_w",
"htmlifyTime_w",
"attrifyInt_w",
"attrifyFloat_w",
"attrifyString_w",
"attrifyChar_w",
"urlifyInt_w",
"urlifyFloat_w",
"urlifyString_w",
"urlifyBool_w",
"urlifyChannel_w"]
in
fn (m, f) => Settings.isEffectful (m, f)
andalso not (m = "Basis" andalso SS.member (fs, f))
end
val cache = ref LruCache.cache
fun setCache c = cache := c
fun getCache () = !cache
(* Used to have type context for local variables in MonoUtil functions. *)
val doBind =
fn (ctx, MonoUtil.Exp.RelE (_, t)) => t :: ctx
| (ctx, _) => ctx
(*******************)
(* Effect Analysis *)
(*******************)
(* Makes an exception for [EWrite] (which is recorded when caching). *)
fun effectful (effs : IS.set) =
let
val isFunction =
fn (TFun _, _) => true
| _ => false
fun doExp (ctx, e) =
case e of
EPrim _ => false
(* For now: variables of function type might be effectful, but
others are fully evaluated and are therefore not effectful. *)
| ERel n => isFunction (List.nth (ctx, n))
| ENamed n => IS.member (effs, n)
| EFfi (m, f) => ffiEffectful (m, f)
| EFfiApp (m, f, _) => ffiEffectful (m, f)
(* These aren't effectful unless a subexpression is. *)
| ECon _ => false
| ENone _ => false
| ESome _ => false
| EApp _ => false
| EAbs _ => false
| EUnop _ => false
| EBinop _ => false
| ERecord _ => false
| EField _ => false
| ECase _ => false
| EStrcat _ => false
(* EWrite is a special exception because we record writes when caching. *)
| EWrite _ => false
| ESeq _ => false
| ELet _ => false
(* ASK: what should we do about closures? *)
| EClosure _ => false
| EUnurlify _ => false
(* Everything else is some sort of effect. We could flip this and
explicitly list bits of Mono that are effectful, but this is
conservatively robust to future changes (however unlikely). *)
| _ => true
in
MonoUtil.Exp.existsB {typ = fn _ => false, exp = doExp, bind = doBind}
end
(* TODO: test this. *)
fun effectfulDecls (decls, _) =
let
fun doVal ((_, name, _, e, _), effs) =
if effectful effs [] e
then IS.add (effs, name)
else effs
val doDecl =
fn ((DVal v, _), effs) => doVal (v, effs)
(* Repeat the list of declarations a number of times equal to its size,
making sure effectfulness propagates everywhere it should. This is
analagous to the Bellman-Ford algorithm. *)
| ((DValRec vs, _), effs) =>
List.foldl doVal effs (List.concat (List.map (fn _ => vs) vs))
(* ASK: any other cases? *)
| (_, effs) => effs
in
List.foldl doDecl IS.empty decls
end
(*********************************)
(* Boolean Formula Normalization *)
(*********************************)
datatype junctionType = Conj | Disj
datatype 'atom formula =
Atom of 'atom
| Negate of 'atom formula
| Combo of junctionType * 'atom formula list
(* Guaranteed to have all negation pushed to the atoms. *)
datatype 'atom formula' =
Atom' of 'atom
| Combo' of junctionType * 'atom formula' list
val flipJt = fn Conj => Disj | Disj => Conj
fun concatMap f xs = List.concat (map f xs)
val rec cartesianProduct : 'a list list -> 'a list list =
fn [] => [[]]
| (xs :: xss) => concatMap (fn ys => concatMap (fn x => [x :: ys]) xs)
(cartesianProduct xss)
(* Pushes all negation to the atoms.*)
fun pushNegate (normalizeAtom : bool * 'atom -> 'atom) (negating : bool) =
fn Atom x => Atom' (normalizeAtom (negating, x))
| Negate f => pushNegate normalizeAtom (not negating) f
| Combo (j, fs) => Combo' (if negating then flipJt j else j,
map (pushNegate normalizeAtom negating) fs)
val rec flatten =
fn Combo' (_, [f]) => flatten f
| Combo' (j, fs) =>
Combo' (j, List.foldr (fn (f, acc) =>
case f of
Combo' (j', fs') =>
if j = j' orelse length fs' = 1
then fs' @ acc
else f :: acc
| _ => f :: acc)
[]
(map flatten fs))
| f => f
(* [simplify] operates on the desired normal form. E.g., if [junc] is [Disj],
consider the list of lists to be a disjunction of conjunctions. *)
fun normalize' (simplify : 'a list list -> 'a list list)
(junc : junctionType) =
let
fun norm junc =
simplify
o (fn Atom' x => [[x]]
| Combo' (j, fs) =>
let
val fss = map (norm junc) fs
in
if j = junc
then List.concat fss
else map List.concat (cartesianProduct fss)
end)
in
norm junc
end
fun normalize simplify normalizeAtom junc =
normalize' simplify junc
o flatten
o pushNegate normalizeAtom false
fun mapFormula mf =
fn Atom x => Atom (mf x)
| Negate f => Negate (mapFormula mf f)
| Combo (j, fs) => Combo (j, map (mapFormula mf) fs)
(****************)
(* SQL Analysis *)
(****************)
structure CmpKey = struct
type ord_key = Sql.cmp
val compare =
fn (Sql.Eq, Sql.Eq) => EQUAL
| (Sql.Eq, _) => LESS
| (_, Sql.Eq) => GREATER
| (Sql.Ne, Sql.Ne) => EQUAL
| (Sql.Ne, _) => LESS
| (_, Sql.Ne) => GREATER
| (Sql.Lt, Sql.Lt) => EQUAL
| (Sql.Lt, _) => LESS
| (_, Sql.Lt) => GREATER
| (Sql.Le, Sql.Le) => EQUAL
| (Sql.Le, _) => LESS
| (_, Sql.Le) => GREATER
| (Sql.Gt, Sql.Gt) => EQUAL
| (Sql.Gt, _) => LESS
| (_, Sql.Gt) => GREATER
| (Sql.Ge, Sql.Ge) => EQUAL
end
val rec chooseTwos : 'a list -> ('a * 'a) list =
fn [] => []
| x :: ys => map (fn y => (x, y)) ys @ chooseTwos ys
fun removeRedundant madeRedundantBy zs =
let
fun removeRedundant' (xs, ys) =
case xs of
[] => ys
| x :: xs' =>
removeRedundant' (xs',
if List.exists (fn y => madeRedundantBy (x, y)) (xs' @ ys)
then ys
else x :: ys)
in
removeRedundant' (zs, [])
end
datatype atomExp =
QueryArg of int
| DmlRel of int
| Prim of Prim.t
| Field of string * string
structure AtomExpKey : ORD_KEY = struct
type ord_key = atomExp
val compare =
fn (QueryArg n1, QueryArg n2) => Int.compare (n1, n2)
| (QueryArg _, _) => LESS
| (_, QueryArg _) => GREATER
| (DmlRel n1, DmlRel n2) => Int.compare (n1, n2)
| (DmlRel _, _) => LESS
| (_, DmlRel _) => GREATER
| (Prim p1, Prim p2) => Prim.compare (p1, p2)
| (Prim _, _) => LESS
| (_, Prim _) => GREATER
| (Field (t1, f1), Field (t2, f2)) =>
case String.compare (t1, t2) of
EQUAL => String.compare (f1, f2)
| ord => ord
end
structure AtomOptionKey = OptionKeyFn(AtomExpKey)
structure UF = UnionFindFn(AtomExpKey)
structure ConflictMaps = struct
structure TK = TripleKeyFn(structure I = CmpKey
structure J = AtomOptionKey
structure K = AtomOptionKey)
structure TS : ORD_SET = BinarySetFn(TK)
val toKnownEquality =
(* [NONE] here means unkown. Anything that isn't a comparison between two
knowns shouldn't be used, and simply dropping unused terms is okay in
disjunctive normal form. *)
fn (Sql.Eq, SOME e1, SOME e2) => SOME (e1, e2)
| _ => NONE
val equivClasses : (Sql.cmp * atomExp option * atomExp option) list -> atomExp list list =
UF.classes
o List.foldl UF.union' UF.empty
o List.mapPartial toKnownEquality
fun addToEqs (eqs, n, e) =
case IM.find (eqs, n) of
(* Comparing to a constant is probably better than comparing to a
variable? Checking that existing constants match a new ones is
handled by [accumulateEqs]. *)
SOME (Prim _) => eqs
| _ => IM.insert (eqs, n, e)
val accumulateEqs =
(* [NONE] means we have a contradiction. *)
fn (_, NONE) => NONE
| ((Prim p1, Prim p2), eqso) =>
(case Prim.compare (p1, p2) of
EQUAL => eqso
| _ => NONE)
| ((QueryArg n, Prim p), SOME eqs) => SOME (addToEqs (eqs, n, Prim p))
| ((QueryArg n, DmlRel r), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r))
| ((Prim p, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, Prim p))
| ((DmlRel r, QueryArg n), SOME eqs) => SOME (addToEqs (eqs, n, DmlRel r))
(* TODO: deal with equalities between [DmlRel]s and [Prim]s.
This would involve guarding the invalidation with a check for the
relevant comparisons. *)
| (_, eqso) => eqso
val eqsOfClass : atomExp list -> atomExp IM.map option =
List.foldl accumulateEqs (SOME IM.empty)
o chooseTwos
fun toAtomExps rel (cmp, e1, e2) =
let
val qa =
(* Here [NONE] means unkown. *)
fn Sql.SqConst p => SOME (Prim p)
| Sql.Field tf => SOME (Field tf)
| Sql.Inj (EPrim p, _) => SOME (Prim p)
| Sql.Inj (ERel n, _) => SOME (rel n)
(* We can't deal with anything else, e.g., CURRENT_TIMESTAMP
becomes Sql.Unmodeled, which becomes NONE here. *)
| _ => NONE
in
(cmp, qa e1, qa e2)
end
val negateCmp =
fn Sql.Eq => Sql.Ne
| Sql.Ne => Sql.Eq
| Sql.Lt => Sql.Ge
| Sql.Le => Sql.Gt
| Sql.Gt => Sql.Le
| Sql.Ge => Sql.Lt
fun normalizeAtom (negating, (cmp, e1, e2)) =
(* Restricting to Le/Lt and sorting the expressions in Eq/Ne helps with
simplification, where we put the triples in sets. *)
case (if negating then negateCmp cmp else cmp) of
Sql.Eq => (case AtomOptionKey.compare (e1, e2) of
LESS => (Sql.Eq, e2, e1)
| _ => (Sql.Eq, e1, e2))
| Sql.Ne => (case AtomOptionKey.compare (e1, e2) of
LESS => (Sql.Ne, e2, e1)
| _ => (Sql.Ne, e1, e2))
| Sql.Lt => (Sql.Lt, e1, e2)
| Sql.Le => (Sql.Le, e1, e2)
| Sql.Gt => (Sql.Lt, e2, e1)
| Sql.Ge => (Sql.Le, e2, e1)
val markQuery : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula ->
(Sql.cmp * atomExp option * atomExp option) formula =
mapFormula (toAtomExps QueryArg)
val markDml : (Sql.cmp * Sql.sqexp * Sql.sqexp) formula ->
(Sql.cmp * atomExp option * atomExp option) formula =
mapFormula (toAtomExps DmlRel)
(* No eqs should have key conflicts because no variable is in two
equivalence classes, so the [#1] could be [#2]. *)
val mergeEqs : (atomExp IntBinaryMap.map option list
-> atomExp IntBinaryMap.map option) =
List.foldr (fn (SOME eqs, SOME acc) => SOME (IM.unionWith #1 (eqs, acc)) | _ => NONE)
(SOME IM.empty)
val simplify =
map TS.listItems
o removeRedundant (fn (x, y) => TS.isSubset (y, x))
o map (fn xs => TS.addList (TS.empty, xs))
fun dnf (fQuery, fDml) =
normalize simplify normalizeAtom Disj (Combo (Conj, [markQuery fQuery, markDml fDml]))
val conflictMaps = List.mapPartial (mergeEqs o map eqsOfClass o equivClasses) o dnf
end
val conflictMaps = ConflictMaps.conflictMaps
val rec sqexpToFormula =
fn Sql.SqTrue => Combo (Conj, [])
| Sql.SqFalse => Combo (Disj, [])
| Sql.SqNot e => Negate (sqexpToFormula e)
| Sql.Binop (Sql.RCmp c, e1, e2) => Atom (c, e1, e2)
| Sql.Binop (Sql.RLop l, p1, p2) => Combo (case l of Sql.And => Conj | Sql.Or => Disj,
[sqexpToFormula p1, sqexpToFormula p2])
(* ASK: any other sqexps that can be props? *)
| _ => raise Match
fun renameTables tablePairs =
let
fun renameString table =
case List.find (fn (_, t) => table = t) tablePairs of
NONE => table
| SOME (realTable, _) => realTable
val renameSqexp =
fn Sql.Field (table, field) => Sql.Field (renameString table, field)
| e => e
fun renameAtom (cmp, e1, e2) = (cmp, renameSqexp e1, renameSqexp e2)
in
mapFormula renameAtom
end
val rec queryToFormula =
fn Sql.Query1 {Where = NONE, ...} => Combo (Conj, [])
| Sql.Query1 {From = tablePairs, Where = SOME e, ...} =>
renameTables tablePairs (sqexpToFormula e)
| Sql.Union (q1, q2) => Combo (Disj, [queryToFormula q1, queryToFormula q2])
fun valsToFormula (table, vals) =
Combo (Conj, map (fn (field, v) => Atom (Sql.Eq, Sql.Field (table, field), v)) vals)
val rec dmlToFormula =
fn Sql.Insert (table, vals) => valsToFormula (table, vals)
| Sql.Delete (table, wher) => renameTables [(table, "T")] (sqexpToFormula wher)
| Sql.Update (table, vals, wher) =>
let
val fWhere = sqexpToFormula wher
val fVals = valsToFormula (table, vals)
val modifiedFields = SS.addList (SS.empty, map #1 vals)
(* TODO: don't use field name hack. *)
val markField =
fn e as Sql.Field (t, v) => if SS.member (modifiedFields, v)
then Sql.Field (t, v ^ "'")
else e
| e => e
val mark = mapFormula (fn (cmp, e1, e2) => (cmp, markField e1, markField e2))
in
renameTables [(table, "T")]
(Combo (Disj, [Combo (Conj, [fVals, mark fWhere]),
Combo (Conj, [mark fVals, fWhere])]))
end
val rec tablesQuery =
fn Sql.Query1 {From = tablePairs, ...} => SS.fromList (map #1 tablePairs)
| Sql.Union (q1, q2) => SS.union (tablesQuery q1, tablesQuery q2)
val tableDml =
fn Sql.Insert (tab, _) => tab
| Sql.Delete (tab, _) => tab
| Sql.Update (tab, _, _) => tab
(***************************)
(* Program Instrumentation *)
(***************************)
val varName =
let
val varNumber = ref 0
in
fn s => (varNumber := !varNumber + 1; s ^ Int.toString (!varNumber))
end
val {check, store, flush, ...} = getCache ()
val dummyLoc = ErrorMsg.dummySpan
val dummyTyp = (TRecord [], dummyLoc)
fun stringExp s = (EPrim (Prim.String (Prim.Normal, s)), dummyLoc)
val stringTyp = (TFfi ("Basis", "string"), dummyLoc)
val sequence =
fn (exp :: exps) =>
let
val loc = dummyLoc
in
List.foldl (fn (e', seq) => ESeq ((seq, loc), (e', loc))) exp exps
end
| _ => raise Match
(* Always increments negative indices as a hack we use later. *)
fun incRels inc =
MonoUtil.Exp.mapB
{typ = fn t' => t',
exp = fn bound =>
(fn ERel n => ERel (if n >= bound orelse n < 0 then n + inc else n)
| e' => e'),
bind = fn (bound, MonoUtil.Exp.RelE _) => bound + 1 | (bound, _) => bound}
0
fun cacheWrap (query, i, urlifiedRel0, resultTyp, args) =
let
val () = ffiInfo := {index = i, params = length args} :: !ffiInfo
val loc = dummyLoc
(* We ensure before this step that all arguments aren't effectful.
by turning them into local variables as needed. *)
val argsInc = map (incRels 1) args
val check = (check (i, args), dummyLoc)
val store = (store (i, argsInc, urlifiedRel0), dummyLoc)
val rel0 = (ERel 0, loc)
in
ECase (check,
[((PNone stringTyp, loc),
(ELet (varName "q", resultTyp, query, (ESeq (store, rel0), loc)), loc)),
((PSome (stringTyp, (PVar (varName "hit", stringTyp), loc)), loc),
(* Boolean is false because we're not unurlifying from a cookie. *)
(EUnurlify (rel0, resultTyp, false), loc))],
{disc = stringTyp, result = resultTyp})
end
fun fileMapfold doExp file start =
case MonoUtil.File.mapfoldB
{typ = Search.return2,
exp = fn ctx => fn e' => fn s => Search.Continue (doExp ctx e' s),
decl = fn _ => Search.return2,
bind = doBind}
[] file start of
Search.Continue x => x
| Search.Return _ => raise Match
fun fileMap doExp file = #1 (fileMapfold (fn _ => fn e => fn _ => (doExp e, ())) file ())
fun factorOutNontrivial text =
let
val loc = dummyLoc
fun strcat (e1, e2) = (EStrcat (e1, e2), loc)
val chunks = Sql.chunkify text
val (newText, newVariables) =
(* Important that this is foldr (to oppose foldl below). *)
List.foldr
(fn (chunk, (qText, newVars)) =>
(* Variable bound to the head of newBs will have the lowest index. *)
case chunk of
Sql.Exp (e as (EPrim _, _)) => (strcat (e, qText), newVars)
| Sql.Exp e =>
let
val n = length newVars
in
(* This is the (n + 1)th new variable, so there are
already n new variables bound, so we increment
indices by n. *)
(strcat ((ERel (~(n+1)), loc), qText), incRels n e :: newVars)
end
| Sql.String s => (strcat (stringExp s, qText), newVars))
(stringExp "", [])
chunks
fun wrapLets e' =
(* Important that this is foldl (to oppose foldr above). *)
List.foldl (fn (v, e') => ELet (varName "sqlArg", stringTyp, v, (e', loc)))
e'
newVariables
val numArgs = length newVariables
in
(newText, wrapLets, numArgs)
end
fun addChecking file =
let
fun doExp ctx (queryInfo as (tableToIndices, indexToQueryNumArgs, index)) =
fn e' as EQuery {query = origQueryText,
sqlcacheInfo = urlifiedRel0,
state = resultTyp,
initial, body, tables, exps} =>
let
val (newQueryText, wrapLets, numArgs) = factorOutNontrivial origQueryText
(* Increment once for each new variable just made. *)
val queryExp = incRels numArgs
(EQuery {query = newQueryText,
sqlcacheInfo = urlifiedRel0,
state = resultTyp,
initial = initial,
body = body,
tables = tables,
exps = exps},
dummyLoc)
val (EQuery {query = queryText, ...}, _) = queryExp
(* DEBUG *)
val () = Print.preface ("sqlcache> ", (MonoPrint.p_exp MonoEnv.empty queryText))
val args = List.tabulate (numArgs, fn n => (ERel n, dummyLoc))
fun bind x f = Option.mapPartial f x
fun guard b x = if b then x else NONE
val effs = effectfulDecls file
(* We use dummyTyp here. I think this is okay because databases
don't store (effectful) functions, but there could be some
corner case I missed. *)
fun safe bound =
not o effectful effs (List.tabulate (bound, fn _ => dummyTyp) @ ctx)
val attempt =
(* Ziv misses Haskell's do notation.... *)
guard (safe 0 queryText andalso safe 0 initial andalso safe 2 body) (
bind (Sql.parse Sql.query queryText) (fn queryParsed =>
SOME (wrapLets (cacheWrap (queryExp, index, urlifiedRel0, resultTyp, args)),
(SS.foldr (fn (tab, qi) => SIMM.insert (qi, tab, index))
tableToIndices
(tablesQuery queryParsed),
IM.insert (indexToQueryNumArgs, index, (queryParsed, numArgs)),
index + 1))))
in
case attempt of
SOME pair => pair
| NONE => (e', queryInfo)
end
| e' => (e', queryInfo)
in
fileMapfold (fn ctx => fn exp => fn state => doExp ctx state exp)
file
(SIMM.empty, IM.empty, 0)
end
structure Invalidations = struct
val loc = dummyLoc
val optionAtomExpToExp =
fn NONE => (ENone stringTyp, loc)
| SOME e => (ESome (stringTyp,
(case e of
DmlRel n => ERel n
| Prim p => EPrim p
(* TODO: make new type containing only these two. *)
| _ => raise Match,
loc)),
loc)
fun eqsToInvalidation numArgs eqs =
let
fun inv n = if n < 0 then [] else IM.find (eqs, n) :: inv (n - 1)
in
inv (numArgs - 1)
end
(* Tests if [ys] makes [xs] a redundant cache invalidation. [NONE] here
represents unknown, which means a wider invalidation. *)
val rec madeRedundantBy : atomExp option list * atomExp option list -> bool =
fn ([], []) => true
| (_ :: xs, NONE :: ys) => madeRedundantBy (xs, ys)
| (SOME x :: xs, SOME y :: ys) => (case AtomExpKey.compare (x, y) of
EQUAL => madeRedundantBy (xs, ys)
| _ => false)
| _ => false
fun eqss (query, dml) = conflictMaps (queryToFormula query, dmlToFormula dml)
fun invalidations ((query, numArgs), dml) =
(map (map optionAtomExpToExp)
o removeRedundant madeRedundantBy
o map (eqsToInvalidation numArgs)
o eqss)
(query, dml)
end
val invalidations = Invalidations.invalidations
(* DEBUG *)
val gunk : ((Sql.query * int) * Sql.dml) list ref = ref []
fun addFlushing (file, (tableToIndices, indexToQueryNumArgs, _)) =
let
val flushes = List.concat o
map (fn (i, argss) => map (fn args => flush (i, args)) argss)
val doExp =
fn EDml (origDmlText, failureMode) =>
let
val (newDmlText, wrapLets, numArgs) = factorOutNontrivial origDmlText
val dmlText = incRels numArgs newDmlText
val dmlExp = EDml (dmlText, failureMode)
(* DEBUG *)
val () = Print.preface ("sqlcache> ", (MonoPrint.p_exp MonoEnv.empty dmlText))
val invs =
case Sql.parse Sql.dml dmlText of
SOME dmlParsed =>
map (fn i => (case IM.find (indexToQueryNumArgs, i) of
SOME queryNumArgs =>
(* DEBUG *)
(gunk := (queryNumArgs, dmlParsed) :: !gunk;
(i, invalidations (queryNumArgs, dmlParsed)))
(* TODO: fail more gracefully. *)
| NONE => raise Match))
(SIMM.findList (tableToIndices, tableDml dmlParsed))
(* TODO: fail more gracefully. *)
| NONE => raise Match
in
wrapLets (sequence (flushes invs @ [dmlExp]))
end
| e' => e'
in
(* DEBUG *)
gunk := [];
fileMap doExp file
end
val inlineSql =
let
val doExp =
(* TODO: EQuery, too? *)
(* ASK: should this live in [MonoOpt]? *)
fn EDml ((ECase (disc, cases, {disc = dTyp, ...}), loc), failureMode) =>
let
val newCases = map (fn (p, e) => (p, (EDml (e, failureMode), loc))) cases
in
ECase (disc, newCases, {disc = dTyp, result = (TRecord [], loc)})
end
| e => e
in
fileMap doExp
end
fun go file =
let
(* TODO: do something nicer than [Sql] being in one of two modes. *)
val () = (resetFfiInfo (); Sql.sqlcacheMode := true)
val file' = addFlushing (addChecking (inlineSql file))
val () = Sql.sqlcacheMode := false
in
file'
end
end
|