1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
|
(* Copyright (c) 2010, Adam Chlipala
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - The names of contributors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*)
structure Iflow :> IFLOW = struct
open Mono
structure IS = IntBinarySet
structure IM = IntBinaryMap
structure SK = struct
type ord_key = string
val compare = String.compare
end
structure SS = BinarySetFn(SK)
structure SM = BinaryMapFn(SK)
val writers = ["htmlifyInt_w",
"htmlifyFloat_w",
"htmlifyString_w",
"htmlifyBool_w",
"htmlifyTime_w",
"attrifyInt_w",
"attrifyFloat_w",
"attrifyString_w",
"attrifyChar_w",
"urlifyInt_w",
"urlifyFloat_w",
"urlifyString_w",
"urlifyBool_w",
"set_cookie"]
val writers = SS.addList (SS.empty, writers)
type lvar = int
datatype func =
DtCon0 of string
| DtCon1 of string
| UnCon of string
| Other of string
datatype exp =
Const of Prim.t
| Var of int
| Lvar of lvar
| Func of func * exp list
| Recd of (string * exp) list
| Proj of exp * string
| Finish
datatype reln =
Known
| Sql of string
| PCon0 of string
| PCon1 of string
| Eq
| Ne
| Lt
| Le
| Gt
| Ge
datatype prop =
True
| False
| Unknown
| And of prop * prop
| Or of prop * prop
| Reln of reln * exp list
| Cond of exp * prop
val unif = ref (IM.empty : exp IM.map)
fun reset () = unif := IM.empty
fun save () = !unif
fun restore x = unif := x
local
open Print
val string = PD.string
in
fun p_func f =
string (case f of
DtCon0 s => s
| DtCon1 s => s
| UnCon s => "un" ^ s
| Other s => s)
fun p_exp e =
case e of
Const p => Prim.p_t p
| Var n => string ("x" ^ Int.toString n)
| Lvar n =>
(case IM.find (!unif, n) of
NONE => string ("X" ^ Int.toString n)
| SOME e => p_exp e)
| Func (f, es) => box [p_func f,
string "(",
p_list p_exp es,
string ")"]
| Recd xes => box [string "{",
p_list (fn (x, e) => box [string x,
space,
string "=",
space,
p_exp e]) xes,
string "}"]
| Proj (e, x) => box [p_exp e,
string ("." ^ x)]
| Finish => string "FINISH"
fun p_bop s es =
case es of
[e1, e2] => box [p_exp e1,
space,
string s,
space,
p_exp e2]
| _ => raise Fail "Iflow.p_bop"
fun p_reln r es =
case r of
Known =>
(case es of
[e] => box [string "known(",
p_exp e,
string ")"]
| _ => raise Fail "Iflow.p_reln: Known")
| Sql s => box [string (s ^ "("),
p_list p_exp es,
string ")"]
| PCon0 s => box [string (s ^ "("),
p_list p_exp es,
string ")"]
| PCon1 s => box [string (s ^ "("),
p_list p_exp es,
string ")"]
| Eq => p_bop "=" es
| Ne => p_bop "<>" es
| Lt => p_bop "<" es
| Le => p_bop "<=" es
| Gt => p_bop ">" es
| Ge => p_bop ">=" es
fun p_prop p =
case p of
True => string "True"
| False => string "False"
| Unknown => string "??"
| And (p1, p2) => box [string "(",
p_prop p1,
string ")",
space,
string "&&",
space,
string "(",
p_prop p2,
string ")"]
| Or (p1, p2) => box [string "(",
p_prop p1,
string ")",
space,
string "||",
space,
string "(",
p_prop p2,
string ")"]
| Reln (r, es) => p_reln r es
| Cond (e, p) => box [string "(",
p_exp e,
space,
string "==",
space,
p_prop p,
string ")"]
end
local
val count = ref 1
in
fun newLvar () =
let
val n = !count
in
count := n + 1;
n
end
end
fun isKnown e =
case e of
Const _ => true
| Func (_, es) => List.all isKnown es
| Recd xes => List.all (isKnown o #2) xes
| Proj (e, _) => isKnown e
| _ => false
fun isFinish e =
case e of
Finish => true
| _ => false
fun simplify e =
case e of
Const _ => e
| Var _ => e
| Lvar n =>
(case IM.find (!unif, n) of
NONE => e
| SOME e => simplify e)
| Func (f, es) => Func (f, map simplify es)
| Recd xes => Recd (map (fn (x, e) => (x, simplify e)) xes)
| Proj (e, s) => Proj (simplify e, s)
| Finish => Finish
datatype atom =
AReln of reln * exp list
| ACond of exp * prop
fun p_atom a =
p_prop (case a of
AReln x => Reln x
| ACond x => Cond x)
fun lvarIn lv =
let
fun lvi e =
case e of
Const _ => false
| Var _ => false
| Lvar lv' => lv' = lv
| Func (_, es) => List.exists lvi es
| Recd xes => List.exists (lvi o #2) xes
| Proj (e, _) => lvi e
| Finish => false
in
lvi
end
fun lvarInP lv =
let
fun lvi p =
case p of
True => false
| False => false
| Unknown => true
| And (p1, p2) => lvi p1 orelse lvi p2
| Or (p1, p2) => lvi p1 orelse lvi p2
| Reln (_, es) => List.exists (lvarIn lv) es
| Cond (e, p) => lvarIn lv e orelse lvi p
in
lvi
end
fun varIn lv =
let
fun lvi e =
case e of
Const _ => false
| Lvar _ => false
| Var lv' => lv' = lv
| Func (_, es) => List.exists lvi es
| Recd xes => List.exists (lvi o #2) xes
| Proj (e, _) => lvi e
| Finish => false
in
lvi
end
fun varInP lv =
let
fun lvi p =
case p of
True => false
| False => false
| Unknown => false
| And (p1, p2) => lvi p1 orelse lvi p2
| Or (p1, p2) => lvi p1 orelse lvi p2
| Reln (_, es) => List.exists (varIn lv) es
| Cond (e, p) => varIn lv e orelse lvi p
in
lvi
end
fun eq' (e1, e2) =
case (e1, e2) of
(Const p1, Const p2) => Prim.equal (p1, p2)
| (Var n1, Var n2) => n1 = n2
| (Lvar n1, _) =>
(case IM.find (!unif, n1) of
SOME e1 => eq' (e1, e2)
| NONE =>
case e2 of
Lvar n2 =>
(case IM.find (!unif, n2) of
SOME e2 => eq' (e1, e2)
| NONE => n1 = n2
orelse (unif := IM.insert (!unif, n2, e1);
true))
| _ =>
if lvarIn n1 e2 then
false
else
(unif := IM.insert (!unif, n1, e2);
true))
| (_, Lvar n2) =>
(case IM.find (!unif, n2) of
SOME e2 => eq' (e1, e2)
| NONE =>
if lvarIn n2 e1 then
false
else
((*Print.prefaces "unif" [("n2", Print.PD.string (Int.toString n2)),
("e1", p_exp e1)];*)
unif := IM.insert (!unif, n2, e1);
true))
| (Func (f1, es1), Func (f2, es2)) => f1 = f2 andalso ListPair.allEq eq' (es1, es2)
| (Recd xes1, Recd xes2) => ListPair.allEq (fn ((x1, e1), (x2, e2)) => x1 = x2 andalso eq' (e1, e2)) (xes1, xes2)
| (Proj (e1, s1), Proj (e2, s2)) => eq' (e1, e2) andalso s1 = s2
| (Finish, Finish) => true
| _ => false
fun eq (e1, e2) =
let
val saved = save ()
in
if eq' (simplify e1, simplify e2) then
true
else
(restore saved;
false)
end
val debug = ref false
fun eeq (e1, e2) =
case (e1, e2) of
(Const p1, Const p2) => Prim.equal (p1, p2)
| (Var n1, Var n2) => n1 = n2
| (Lvar n1, Lvar n2) => n1 = n2
| (Func (f1, es1), Func (f2, es2)) => f1 = f2 andalso ListPair.allEq eeq (es1, es2)
| (Recd xes1, Recd xes2) => length xes1 = length xes2 andalso
List.all (fn (x2, e2) =>
List.exists (fn (x1, e1) => x1 = x2 andalso eeq (e1, e2)) xes2) xes1
| (Proj (e1, x1), Proj (e2, x2)) => eeq (e1, e2) andalso x1 = x2
| (Finish, Finish) => true
| _ => false
(* Congruence closure *)
structure Cc :> sig
type database
type representative
exception Contradiction
exception Undetermined
val database : unit -> database
val representative : database * exp -> representative
val assert : database * atom -> unit
val check : database * atom -> bool
val p_database : database Print.printer
end = struct
exception Contradiction
exception Undetermined
structure CM = BinaryMapFn(struct
type ord_key = Prim.t
val compare = Prim.compare
end)
datatype node = Node of {Rep : node ref option ref,
Cons : node ref SM.map ref,
Variety : variety,
Known : bool ref}
and variety =
Dt0 of string
| Dt1 of string * node ref
| Prim of Prim.t
| Recrd of node ref SM.map ref
| VFinish
| Nothing
type representative = node ref
val finish = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = VFinish,
Known = ref false})
type database = {Vars : representative IM.map ref,
Consts : representative CM.map ref,
Con0s : representative SM.map ref,
Records : (representative SM.map * representative) list ref,
Funcs : ((string * representative list) * representative) list ref }
fun database () = {Vars = ref IM.empty,
Consts = ref CM.empty,
Con0s = ref SM.empty,
Records = ref [],
Funcs = ref []}
fun unNode n =
case !n of
Node r => r
open Print
val string = PD.string
val newline = PD.newline
fun p_rep n =
case !(#Rep (unNode n)) of
SOME n => p_rep n
| NONE =>
case #Variety (unNode n) of
Nothing => string ("?" ^ Int.toString (Unsafe.cast n))
| Dt0 s => string ("Dt0(" ^ s ^ ")")
| Dt1 (s, n) => box[string ("Dt1(" ^ s ^ ","),
space,
p_rep n,
string ")"]
| Prim p => Prim.p_t p
| Recrd (ref m) => box [string "{",
p_list (fn (x, n) => box [string x,
space,
string "=",
space,
p_rep n]) (SM.listItemsi m),
string "}"]
| VFinish => string "FINISH"
fun p_database (db : database) =
box [string "Vars:",
newline,
p_list_sep newline (fn (i, n) => box [string ("x" ^ Int.toString i),
space,
string "=",
space,
p_rep n]) (IM.listItemsi (!(#Vars db)))]
fun repOf (n : representative) : representative =
case !(#Rep (unNode n)) of
NONE => n
| SOME r =>
let
val r = repOf r
in
#Rep (unNode n) := SOME r;
r
end
fun markKnown r =
(#Known (unNode r) := true;
case #Variety (unNode r) of
Dt1 (_, r) => markKnown r
| Recrd xes => SM.app markKnown (!xes)
| _ => ())
fun representative (db : database, e) =
let
fun rep e =
case e of
Const p => (case CM.find (!(#Consts db), p) of
SOME r => repOf r
| NONE =>
let
val r = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Prim p,
Known = ref false})
in
#Consts db := CM.insert (!(#Consts db), p, r);
r
end)
| Var n => (case IM.find (!(#Vars db), n) of
SOME r => repOf r
| NONE =>
let
val r = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Nothing,
Known = ref false})
in
#Vars db := IM.insert (!(#Vars db), n, r);
r
end)
| Lvar n =>
(case IM.find (!unif, n) of
NONE => raise Undetermined
| SOME e => rep e)
| Func (DtCon0 f, []) => (case SM.find (!(#Con0s db), f) of
SOME r => repOf r
| NONE =>
let
val r = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Dt0 f,
Known = ref false})
in
#Con0s db := SM.insert (!(#Con0s db), f, r);
r
end)
| Func (DtCon0 _, _) => raise Fail "Iflow.rep: DtCon0"
| Func (DtCon1 f, [e]) =>
let
val r = rep e
in
case SM.find (!(#Cons (unNode r)), f) of
SOME r => repOf r
| NONE =>
let
val r' = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Dt1 (f, r),
Known = ref false})
in
#Cons (unNode r) := SM.insert (!(#Cons (unNode r)), f, r');
r'
end
end
| Func (DtCon1 _, _) => raise Fail "Iflow.rep: DtCon1"
| Func (UnCon f, [e]) =>
let
val r = rep e
in
case #Variety (unNode r) of
Dt1 (f', n) => if f' = f then
repOf n
else
raise Contradiction
| Nothing =>
let
val cons = ref SM.empty
val r' = ref (Node {Rep = ref NONE,
Cons = cons,
Variety = Nothing,
Known = ref false})
val r'' = ref (Node {Rep = ref NONE,
Cons = #Cons (unNode r),
Variety = Dt1 (f, r'),
Known = #Known (unNode r)})
in
cons := SM.insert (!cons, f, r'');
#Rep (unNode r) := SOME r'';
r'
end
| VFinish => r
| _ => raise Contradiction
end
| Func (UnCon _, _) => raise Fail "Iflow.rep: UnCon"
| Func (Other f, es) =>
let
val rs = map rep es
in
case List.find (fn (x : string * representative list, _) => x = (f, rs)) (!(#Funcs db)) of
NONE =>
let
val r = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Nothing,
Known = ref false})
in
#Funcs db := ((f, rs), r) :: (!(#Funcs db));
r
end
| SOME (_, r) => repOf r
end
| Recd xes =>
let
val xes = map (fn (x, e) => (x, rep e)) xes
val len = length xes
in
case List.find (fn (xes', _) =>
SM.numItems xes' = len
andalso List.all (fn (x, n) =>
case SM.find (xes', x) of
NONE => false
| SOME n' => n = repOf n') xes)
(!(#Records db)) of
SOME (_, r) => repOf r
| NONE =>
let
val xes = foldl SM.insert' SM.empty xes
val r' = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Recrd (ref xes),
Known = ref false})
in
#Records db := (xes, r') :: (!(#Records db));
r'
end
end
| Proj (e, f) =>
let
val r = rep e
in
case #Variety (unNode r) of
Recrd xes =>
(case SM.find (!xes, f) of
SOME r => repOf r
| NONE =>let
val r = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Nothing,
Known = ref false})
in
xes := SM.insert (!xes, f, r);
r
end)
| Nothing =>
let
val r' = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Nothing,
Known = ref false})
val r'' = ref (Node {Rep = ref NONE,
Cons = #Cons (unNode r),
Variety = Recrd (ref (SM.insert (SM.empty, f, r'))),
Known = #Known (unNode r)})
in
#Rep (unNode r) := SOME r'';
r'
end
| VFinish => r
| _ => raise Contradiction
end
| Finish => finish
in
rep e
end
fun assert (db, a) =
case a of
ACond _ => ()
| AReln x =>
case x of
(Known, [e]) => markKnown (representative (db, e))
| (PCon0 f, [e]) =>
let
val r = representative (db, e)
in
case #Variety (unNode r) of
Dt0 f' => if f = f' then
()
else
raise Contradiction
| Nothing =>
let
val r' = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Dt0 f,
Known = ref false})
in
#Rep (unNode r) := SOME r'
end
| _ => raise Contradiction
end
| (PCon1 f, [e]) =>
let
val r = representative (db, e)
in
case #Variety (unNode r) of
Dt1 (f', e') => if f = f' then
()
else
raise Contradiction
| Nothing =>
let
val r'' = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Nothing,
Known = ref false})
val r' = ref (Node {Rep = ref NONE,
Cons = ref SM.empty,
Variety = Dt1 (f, r''),
Known = ref false})
in
#Rep (unNode r) := SOME r'
end
| _ => raise Contradiction
end
| (Eq, [e1, e2]) =>
let
fun markEq (r1, r2) =
if r1 = r2 then
()
else case (#Variety (unNode r1), #Variety (unNode r2)) of
(Prim p1, Prim p2) => if Prim.equal (p1, p2) then
()
else
raise Contradiction
| (Dt0 f1, Dt0 f2) => if f1 = f2 then
()
else
raise Contradiction
| (Dt1 (f1, r1), Dt1 (f2, r2)) => if f1 = f2 then
markEq (r1, r2)
else
raise Contradiction
| (Recrd xes1, Recrd xes2) =>
let
fun unif (xes1, xes2) =
SM.appi (fn (x, r1) =>
case SM.find (xes2, x) of
NONE => ()
| SOME r2 => markEq (r1, r2)) xes1
in
unif (!xes1, !xes2);
unif (!xes2, !xes1)
end
| (VFinish, VFinish) => ()
| (Nothing, _) =>
(#Rep (unNode r1) := SOME r2;
if !(#Known (unNode r1)) andalso not (!(#Known (unNode r2))) then
markKnown r2
else
();
#Cons (unNode r2) := SM.unionWith #1 (!(#Cons (unNode r2)), !(#Cons (unNode r1)));
compactFuncs ())
| (_, Nothing) =>
(#Rep (unNode r2) := SOME r1;
if !(#Known (unNode r2)) andalso not (!(#Known (unNode r1))) then
markKnown r1
else
();
#Cons (unNode r1) := SM.unionWith #1 (!(#Cons (unNode r1)), !(#Cons (unNode r2)));
compactFuncs ())
| _ => raise Contradiction
and compactFuncs () =
let
fun loop funcs =
case funcs of
[] => []
| (fr as ((f, rs), r)) :: rest =>
let
val rest = List.filter (fn ((f' : string, rs'), r') =>
if f' = f
andalso ListPair.allEq (fn (r1, r2) =>
repOf r1 = repOf r2)
(rs, rs') then
(markEq (r, r');
false)
else
true) rest
in
fr :: loop rest
end
in
#Funcs db := loop (!(#Funcs db))
end
in
markEq (representative (db, e1), representative (db, e2))
end
| _ => ()
fun check (db, a) =
case a of
ACond _ => false
| AReln x =>
case x of
(Known, [e]) => !(#Known (unNode (representative (db, e))))
| (PCon0 f, [e]) =>
(case #Variety (unNode (representative (db, e))) of
Dt0 f' => f' = f
| _ => false)
| (PCon1 f, [e]) =>
(case #Variety (unNode (representative (db, e))) of
Dt1 (f', _) => f' = f
| _ => false)
| (Eq, [e1, e2]) =>
let
val r1 = representative (db, e1)
val r2 = representative (db, e2)
in
repOf r1 = repOf r2
end
| _ => false
end
fun decomp fals or =
let
fun decomp p k =
case p of
True => k []
| False => fals
| Unknown => k []
| And (p1, p2) =>
decomp p1 (fn ps1 =>
decomp p2 (fn ps2 =>
k (ps1 @ ps2)))
| Or (p1, p2) =>
or (decomp p1 k, fn () => decomp p2 k)
| Reln x => k [AReln x]
| Cond x => k [ACond x]
in
decomp
end
fun imply (p1, p2) =
(reset ();
decomp true (fn (e1, e2) => e1 andalso e2 ()) p1
(fn hyps =>
decomp false (fn (e1, e2) => e1 orelse e2 ()) p2
(fn goals =>
let
fun gls goals onFail acc =
case goals of
[] =>
(let
val cc = Cc.database ()
val () = app (fn a => Cc.assert (cc, a)) hyps
in
(List.all (fn a =>
if Cc.check (cc, a) then
true
else
((*Print.prefaces "Can't prove"
[("a", p_atom a),
("hyps", Print.p_list p_atom hyps),
("db", Cc.p_database cc)];*)
false)) acc
orelse onFail ())
handle Cc.Contradiction => onFail ()
end handle Cc.Undetermined => onFail ())
| AReln (Sql gf, [ge]) :: goals =>
let
fun hps hyps =
case hyps of
[] => onFail ()
| AReln (Sql hf, [he]) :: hyps =>
if gf = hf then
let
val saved = save ()
in
if eq (ge, he) then
let
val changed = IM.numItems (!unif)
<> IM.numItems saved
in
gls goals (fn () => (restore saved;
changed
andalso hps hyps))
acc
end
else
hps hyps
end
else
hps hyps
| _ :: hyps => hps hyps
in
hps hyps
end
| g :: goals => gls goals onFail (g :: acc)
in
gls goals (fn () => false) []
end handle Cc.Contradiction => true)))
fun patCon pc =
case pc of
PConVar n => "C" ^ Int.toString n
| PConFfi {mod = m, datatyp = d, con = c, ...} => m ^ "." ^ d ^ "." ^ c
datatype chunk =
String of string
| Exp of Mono.exp
fun chunkify e =
case #1 e of
EPrim (Prim.String s) => [String s]
| EStrcat (e1, e2) =>
let
val chs1 = chunkify e1
val chs2 = chunkify e2
in
case chs2 of
String s2 :: chs2' =>
(case List.last chs1 of
String s1 => List.take (chs1, length chs1 - 1) @ String (s1 ^ s2) :: chs2'
| _ => chs1 @ chs2)
| _ => chs1 @ chs2
end
| _ => [Exp e]
type 'a parser = chunk list -> ('a * chunk list) option
fun always v chs = SOME (v, chs)
fun parse p s =
case p (chunkify s) of
SOME (v, []) => SOME v
| _ => NONE
fun const s chs =
case chs of
String s' :: chs => if String.isPrefix s s' then
SOME ((), if size s = size s' then
chs
else
String (String.extract (s', size s, NONE)) :: chs)
else
NONE
| _ => NONE
fun follow p1 p2 chs =
case p1 chs of
NONE => NONE
| SOME (v1, chs) =>
case p2 chs of
NONE => NONE
| SOME (v2, chs) => SOME ((v1, v2), chs)
fun wrap p f chs =
case p chs of
NONE => NONE
| SOME (v, chs) => SOME (f v, chs)
fun wrapP p f chs =
case p chs of
NONE => NONE
| SOME (v, chs) =>
case f v of
NONE => NONE
| SOME r => SOME (r, chs)
fun alt p1 p2 chs =
case p1 chs of
NONE => p2 chs
| v => v
fun altL ps =
case rev ps of
[] => (fn _ => NONE)
| p :: ps =>
foldl (fn (p1, p2) => alt p1 p2) p ps
fun opt p chs =
case p chs of
NONE => SOME (NONE, chs)
| SOME (v, chs) => SOME (SOME v, chs)
fun skip cp chs =
case chs of
String "" :: chs => skip cp chs
| String s :: chs' => if cp (String.sub (s, 0)) then
skip cp (String (String.extract (s, 1, NONE)) :: chs')
else
SOME ((), chs)
| _ => SOME ((), chs)
fun keep cp chs =
case chs of
String "" :: chs => keep cp chs
| String s :: chs' =>
let
val (befor, after) = Substring.splitl cp (Substring.full s)
in
if Substring.isEmpty befor then
NONE
else
SOME (Substring.string befor,
if Substring.isEmpty after then
chs'
else
String (Substring.string after) :: chs')
end
| _ => NONE
fun ws p = wrap (follow (skip (fn ch => ch = #" "))
(follow p (skip (fn ch => ch = #" ")))) (#1 o #2)
fun log name p chs =
(if !debug then
case chs of
String s :: _ => print (name ^ ": " ^ s ^ "\n")
| _ => print (name ^ ": blocked!\n")
else
();
p chs)
fun list p chs =
altL [wrap (follow p (follow (ws (const ",")) (list p)))
(fn (v, ((), ls)) => v :: ls),
wrap (ws p) (fn v => [v]),
always []] chs
val ident = keep (fn ch => Char.isAlphaNum ch orelse ch = #"_")
val t_ident = wrapP ident (fn s => if String.isPrefix "T_" s then
SOME (String.extract (s, 2, NONE))
else
NONE)
val uw_ident = wrapP ident (fn s => if String.isPrefix "uw_" s andalso size s >= 4 then
SOME (str (Char.toUpper (String.sub (s, 3)))
^ String.extract (s, 4, NONE))
else
NONE)
val field = wrap (follow t_ident
(follow (const ".")
uw_ident))
(fn (t, ((), f)) => (t, f))
datatype Rel =
Exps of exp * exp -> prop
| Props of prop * prop -> prop
datatype sqexp =
SqConst of Prim.t
| Field of string * string
| Binop of Rel * sqexp * sqexp
| SqKnown of sqexp
| Inj of Mono.exp
| SqFunc of string * sqexp
| Count
fun cmp s r = wrap (const s) (fn () => Exps (fn (e1, e2) => Reln (r, [e1, e2])))
val sqbrel = altL [cmp "=" Eq,
cmp "<>" Ne,
cmp "<=" Le,
cmp "<" Lt,
cmp ">=" Ge,
cmp ">" Gt,
wrap (const "AND") (fn () => Props And),
wrap (const "OR") (fn () => Props Or)]
datatype ('a, 'b) sum = inl of 'a | inr of 'b
fun string chs =
case chs of
String s :: chs =>
if size s >= 2 andalso String.sub (s, 0) = #"'" then
let
fun loop (cs, acc) =
case cs of
[] => NONE
| c :: cs =>
if c = #"'" then
SOME (String.implode (rev acc), cs)
else if c = #"\\" then
case cs of
c :: cs => loop (cs, c :: acc)
| _ => raise Fail "Iflow.string: Unmatched backslash escape"
else
loop (cs, c :: acc)
in
case loop (String.explode (String.extract (s, 1, NONE)), []) of
NONE => NONE
| SOME (s, []) => SOME (s, chs)
| SOME (s, cs) => SOME (s, String (String.implode cs) :: chs)
end
else
NONE
| _ => NONE
val prim =
altL [wrap (follow (wrapP (follow (keep Char.isDigit) (follow (const ".") (keep Char.isDigit)))
(fn (x, ((), y)) => Option.map Prim.Float (Real64.fromString (x ^ "." ^ y))))
(opt (const "::float8"))) #1,
wrap (follow (wrapP (keep Char.isDigit)
(Option.map Prim.Int o Int64.fromString))
(opt (const "::int8"))) #1,
wrap (follow (opt (const "E")) (follow string (opt (const "::text"))))
(Prim.String o #1 o #2)]
fun known' chs =
case chs of
Exp (EFfi ("Basis", "sql_known"), _) :: chs => SOME ((), chs)
| _ => NONE
fun sqlify chs =
case chs of
Exp (EFfiApp ("Basis", f, [e]), _) :: chs =>
if String.isPrefix "sqlify" f then
SOME (e, chs)
else
NONE
| _ => NONE
fun constK s = wrap (const s) (fn () => s)
val funcName = altL [constK "COUNT",
constK "MIN",
constK "MAX",
constK "SUM",
constK "AVG"]
fun sqexp chs =
log "sqexp"
(altL [wrap prim SqConst,
wrap field Field,
wrap known SqKnown,
wrap func SqFunc,
wrap (const "COUNT(*)") (fn () => Count),
wrap sqlify Inj,
wrap (follow (const "COALESCE(") (follow sqexp (follow (const ",")
(follow (keep (fn ch => ch <> #")")) (const ")")))))
(fn ((), (e, _)) => e),
wrap (follow (ws (const "("))
(follow (wrap
(follow sqexp
(alt
(wrap
(follow (ws sqbrel)
(ws sqexp))
inl)
(always (inr ()))))
(fn (e1, sm) =>
case sm of
inl (bo, e2) => Binop (bo, e1, e2)
| inr () => e1))
(const ")")))
(fn ((), (e, ())) => e)])
chs
and known chs = wrap (follow known' (follow (const "(") (follow sqexp (const ")"))))
(fn ((), ((), (e, ()))) => e) chs
and func chs = wrap (follow funcName (follow (const "(") (follow sqexp (const ")"))))
(fn (f, ((), (e, ()))) => (f, e)) chs
datatype sitem =
SqField of string * string
| SqExp of sqexp * string
val sitem = alt (wrap field SqField)
(wrap (follow sqexp (follow (const " AS ") uw_ident))
(fn (e, ((), s)) => SqExp (e, s)))
val select = log "select"
(wrap (follow (const "SELECT ") (list sitem))
(fn ((), ls) => ls))
val fitem = wrap (follow uw_ident
(follow (const " AS ")
t_ident))
(fn (t, ((), f)) => (t, f))
val from = log "from"
(wrap (follow (const "FROM ") (list fitem))
(fn ((), ls) => ls))
val wher = wrap (follow (ws (const "WHERE ")) sqexp)
(fn ((), ls) => ls)
val query = log "query"
(wrap (follow (follow select from) (opt wher))
(fn ((fs, ts), wher) => {Select = fs, From = ts, Where = wher}))
fun removeDups (ls : (string * string) list) =
case ls of
[] => []
| x :: ls =>
let
val ls = removeDups ls
in
if List.exists (fn x' => x' = x) ls then
ls
else
x :: ls
end
datatype queryMode =
SomeCol of exp
| AllCols of exp
fun queryProp env rvN rv oe e =
case parse query e of
NONE => (print ("Warning: Information flow checker can't parse SQL query at "
^ ErrorMsg.spanToString (#2 e) ^ "\n");
(rvN, Var 0, Unknown, []))
| SOME r =>
let
val (rvN, count) = rv rvN
val (rvs, rvN) = ListUtil.foldlMap (fn ((_, v), rvN) =>
let
val (rvN, e) = rv rvN
in
((v, e), rvN)
end) rvN (#From r)
fun rvOf v =
case List.find (fn (v', _) => v' = v) rvs of
NONE => raise Fail "Iflow.queryProp: Bad table variable"
| SOME (_, e) => e
fun usedFields e =
case e of
SqConst _ => []
| Field (v, f) => [(v, f)]
| Binop (_, e1, e2) => removeDups (usedFields e1 @ usedFields e2)
| SqKnown _ => []
| Inj _ => []
| SqFunc (_, e) => usedFields e
| Count => []
val p =
foldl (fn ((t, v), p) => And (p, Reln (Sql t, [rvOf v]))) True (#From r)
fun expIn e =
case e of
SqConst p => inl (Const p)
| Field (v, f) => inl (Proj (rvOf v, f))
| Binop (bo, e1, e2) =>
inr (case (bo, expIn e1, expIn e2) of
(Exps f, inl e1, inl e2) => f (e1, e2)
| (Props f, inr p1, inr p2) => f (p1, p2)
| _ => Unknown)
| SqKnown e =>
inr (case expIn e of
inl e => Reln (Known, [e])
| _ => Unknown)
| Inj e =>
let
fun deinj (e, _) =
case e of
ERel n => List.nth (env, n)
| EField (e, f) => Proj (deinj e, f)
| _ => raise Fail "Iflow: non-variable injected into query"
in
inl (deinj e)
end
| SqFunc (f, e) =>
inl (case expIn e of
inl e => Func (Other f, [e])
| _ => raise Fail ("Iflow: non-expresion passed to function " ^ f))
| Count => inl count
val p = case #Where r of
NONE => p
| SOME e =>
case expIn e of
inr p' => And (p, p')
| _ => p
in
(rvN,
count,
And (p, case oe of
SomeCol oe =>
foldl (fn (si, p) =>
let
val p' = case si of
SqField (v, f) => Reln (Eq, [oe, Proj (rvOf v, f)])
| SqExp (e, f) =>
case expIn e of
inr _ => Unknown
| inl e => Reln (Eq, [oe, e])
in
Or (p, p')
end)
False (#Select r)
| AllCols oe =>
foldl (fn (si, p) =>
let
val p' = case si of
SqField (v, f) => Reln (Eq, [Proj (Proj (oe, v), f),
Proj (rvOf v, f)])
| SqExp (e, f) =>
case expIn e of
inr p => Cond (Proj (oe, f), p)
| inl e => Reln (Eq, [Proj (oe, f), e])
in
And (p, p')
end)
True (#Select r)),
case #Where r of
NONE => []
| SOME e => map (fn (v, f) => Proj (rvOf v, f)) (usedFields e))
end
fun evalPat env e (pt, _) =
case pt of
PWild => (env, True)
| PVar _ => (e :: env, True)
| PPrim _ => (env, True)
| PCon (_, pc, NONE) => (env, Reln (PCon0 (patCon pc), [e]))
| PCon (_, pc, SOME pt) =>
let
val (env, p) = evalPat env (Func (UnCon (patCon pc), [e])) pt
in
(env, And (p, Reln (PCon1 (patCon pc), [e])))
end
| PRecord xpts =>
foldl (fn ((x, pt, _), (env, p)) =>
let
val (env, p') = evalPat env (Proj (e, x)) pt
in
(env, And (p', p))
end) (env, True) xpts
| PNone _ => (env, Reln (PCon0 "None", [e]))
| PSome (_, pt) =>
let
val (env, p) = evalPat env (Func (UnCon "Some", [e])) pt
in
(env, And (p, Reln (PCon1 "Some", [e])))
end
fun peq (p1, p2) =
case (p1, p2) of
(True, True) => true
| (False, False) => true
| (Unknown, Unknown) => true
| (And (x1, y1), And (x2, y2)) => peq (x1, x2) andalso peq (y1, y2)
| (Or (x1, y1), Or (x2, y2)) => peq (x1, x2) andalso peq (y1, y2)
| (Reln (r1, es1), Reln (r2, es2)) => r1 = r2 andalso ListPair.allEq eeq (es1, es2)
| (Cond (e1, p1), Cond (e2, p2)) => eeq (e1, e2) andalso peq (p1, p2)
| _ => false
fun removeRedundant p1 =
let
fun rr p2 =
if peq (p1, p2) then
True
else
case p2 of
And (x, y) => And (rr x, rr y)
| Or (x, y) => Or (rr x, rr y)
| _ => p2
in
rr
end
fun evalExp env (e as (_, loc), st as (nv, p, sent)) =
let
fun default () =
((*Print.preface ("Default" ^ Int.toString nv,
MonoPrint.p_exp MonoEnv.empty e);*)
(Var nv, (nv+1, p, sent)))
fun addSent (p, e, sent) =
if isKnown e then
sent
else
(loc, e, p) :: sent
in
case #1 e of
EPrim p => (Const p, st)
| ERel n => (List.nth (env, n), st)
| ENamed _ => default ()
| ECon (_, pc, NONE) => (Func (DtCon0 (patCon pc), []), st)
| ECon (_, pc, SOME e) =>
let
val (e, st) = evalExp env (e, st)
in
(Func (DtCon1 (patCon pc), [e]), st)
end
| ENone _ => (Func (DtCon0 "None", []), st)
| ESome (_, e) =>
let
val (e, st) = evalExp env (e, st)
in
(Func (DtCon1 "Some", [e]), st)
end
| EFfi _ => default ()
| EFfiApp (m, s, es) =>
if m = "Basis" andalso SS.member (writers, s) then
let
val (es, st) = ListUtil.foldlMap (evalExp env) st es
in
(Recd [], (#1 st, p, foldl (fn (e, sent) => addSent (#2 st, e, sent)) sent es))
end
else if Settings.isEffectful (m, s) andalso not (Settings.isBenignEffectful (m, s)) then
default ()
else
let
val (es, st) = ListUtil.foldlMap (evalExp env) st es
in
(Func (Other (m ^ "." ^ s), es), st)
end
| EApp (e1, e2) =>
let
val (e1, st) = evalExp env (e1, st)
in
case e1 of
Finish => (Finish, st)
| _ => default ()
end
| EAbs _ => default ()
| EUnop (s, e1) =>
let
val (e1, st) = evalExp env (e1, st)
in
(Func (Other s, [e1]), st)
end
| EBinop (s, e1, e2) =>
let
val (e1, st) = evalExp env (e1, st)
val (e2, st) = evalExp env (e2, st)
in
(Func (Other s, [e1, e2]), st)
end
| ERecord xets =>
let
val (xes, st) = ListUtil.foldlMap (fn ((x, e, _), st) =>
let
val (e, st) = evalExp env (e, st)
in
((x, e), st)
end) st xets
in
(Recd xes, st)
end
| EField (e, s) =>
let
val (e, st) = evalExp env (e, st)
in
(Proj (e, s), st)
end
| ECase (e, pes, _) =>
let
val (e, st) = evalExp env (e, st)
val r = #1 st
val st = (r + 1, #2 st, #3 st)
val orig = #2 st
val st = foldl (fn ((pt, pe), st) =>
let
val (env, pp) = evalPat env e pt
val (pe, st') = evalExp env (pe, (#1 st, And (orig, pp), #3 st))
val this = And (removeRedundant orig (#2 st'), Reln (Eq, [Var r, pe]))
in
(#1 st', Or (#2 st, this), #3 st')
end) (#1 st, False, #3 st) pes
in
(Var r, (#1 st, And (orig, #2 st), #3 st))
end
| EStrcat (e1, e2) =>
let
val (e1, st) = evalExp env (e1, st)
val (e2, st) = evalExp env (e2, st)
in
(Func (Other "cat", [e1, e2]), st)
end
| EError _ => (Finish, st)
| EReturnBlob {blob = b, mimeType = m, ...} =>
let
val (b, st) = evalExp env (b, st)
val (m, st) = evalExp env (m, st)
in
(Finish, (#1 st, p, addSent (#2 st, b, addSent (#2 st, m, sent))))
end
| ERedirect (e, _) =>
let
val (e, st) = evalExp env (e, st)
in
(Finish, (#1 st, p, addSent (#2 st, e, sent)))
end
| EWrite e =>
let
val (e, st) = evalExp env (e, st)
in
(Recd [], (#1 st, p, addSent (#2 st, e, sent)))
end
| ESeq (e1, e2) =>
let
val (_, st) = evalExp env (e1, st)
in
evalExp env (e2, st)
end
| ELet (_, _, e1, e2) =>
let
val (e1, st) = evalExp env (e1, st)
in
evalExp (e1 :: env) (e2, st)
end
| EClosure (n, es) =>
let
val (es, st) = ListUtil.foldlMap (evalExp env) st es
in
(Func (Other ("Cl" ^ Int.toString n), es), st)
end
| EQuery {query = q, body = b, initial = i, ...} =>
let
val (_, st) = evalExp env (q, st)
val (i, st) = evalExp env (i, st)
val r = #1 st
val acc = #1 st + 1
val st' = (#1 st + 2, #2 st, #3 st)
val (b, st') = evalExp (Var acc :: Var r :: env) (b, st')
val (rvN, count, qp, used) =
queryProp env
(#1 st') (fn rvN => (rvN + 1, Var rvN))
(AllCols (Var r)) q
val p' = And (qp, #2 st')
val (nvs, p, res) = if varInP acc (#2 st') then
(#1 st + 1, #2 st, Var r)
else
let
val out = rvN
val p = Or (Reln (Eq, [Var out, i]),
And (Reln (Eq, [Var out, b]),
And (Reln (Gt, [count,
Const (Prim.Int 0)]),
p')))
in
(out + 1, p, Var out)
end
val sent = map (fn (loc, e, p) => (loc, e, And (qp, p))) (#3 st')
val sent = map (fn e => (loc, e, p')) used @ sent
in
(res, (nvs, p, sent))
end
| EDml _ => default ()
| ENextval _ => default ()
| ESetval _ => default ()
| EUnurlify ((EFfiApp ("Basis", "get_cookie", _), _), _, _) =>
(Var nv, (nv + 1, And (p, Reln (Known, [Var nv])), sent))
| EUnurlify _ => default ()
| EJavaScript _ => default ()
| ESignalReturn _ => default ()
| ESignalBind _ => default ()
| ESignalSource _ => default ()
| EServerCall _ => default ()
| ERecv _ => default ()
| ESleep _ => default ()
| ESpawn _ => default ()
end
fun check file =
let
val file = MonoReduce.reduce file
val file = MonoOpt.optimize file
val file = Fuse.fuse file
val file = MonoOpt.optimize file
(*val () = Print.preface ("File", MonoPrint.p_file MonoEnv.empty file)*)
val exptd = foldl (fn ((d, _), exptd) =>
case d of
DExport (_, _, n, _, _, _) => IS.add (exptd, n)
| _ => exptd) IS.empty file
fun decl ((d, _), (vals, pols)) =
case d of
DVal (_, n, _, e, _) =>
let
val isExptd = IS.member (exptd, n)
fun deAbs (e, env, nv, p) =
case #1 e of
EAbs (_, _, _, e) => deAbs (e, Var nv :: env, nv + 1,
if isExptd then
And (p, Reln (Known, [Var nv]))
else
p)
| _ => (e, env, nv, p)
val (e, env, nv, p) = deAbs (e, [], 1, True)
val (e, (_, p, sent)) = evalExp env (e, (nv, p, []))
in
(sent @ vals, pols)
end
| DPolicy (PolClient e) => (vals, #3 (queryProp [] 0 (fn rvN => (rvN + 1, Lvar rvN))
(SomeCol (Var 0)) e) :: pols)
| _ => (vals, pols)
val () = reset ()
val (vals, pols) = foldl decl ([], []) file
in
app (fn (loc, e, p) =>
let
fun doOne e =
let
val p = And (p, Reln (Eq, [Var 0, e]))
in
if List.exists (fn pol => if imply (p, pol) then
(if !debug then
Print.prefaces "Match"
[("Hyp", p_prop p),
("Goal", p_prop pol)]
else
();
true)
else
false) pols then
()
else
(ErrorMsg.errorAt loc "The information flow policy may be violated here.";
Print.preface ("The state satisifes this predicate:", p_prop p))
end
fun doAll e =
case e of
Const _ => ()
| Var _ => doOne e
| Lvar _ => raise Fail "Iflow.doAll: Lvar"
| Func (UnCon _, [e]) => doOne e
| Func (_, es) => app doAll es
| Recd xes => app (doAll o #2) xes
| Proj _ => doOne e
| Finish => ()
in
doAll e
end) vals
end
val check = fn file =>
let
val oldInline = Settings.getMonoInline ()
in
(Settings.setMonoInline (case Int.maxInt of
NONE => 1000000
| SOME n => n);
check file;
Settings.setMonoInline oldInline)
handle ex => (Settings.setMonoInline oldInline;
raise ex)
end
end
|