1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
|
(* Copyright (c) 2008, Adam Chlipala
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* - The names of contributors may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*)
structure Elaborate :> ELABORATE = struct
structure P = Prim
structure L = Source
structure L' = Elab
structure E = ElabEnv
structure U = ElabUtil
structure D = Disjoint
open Print
open ElabPrint
structure SS = BinarySetFn(struct
type ord_key = string
val compare = String.compare
end)
fun elabExplicitness e =
case e of
L.Explicit => L'.Explicit
| L.Implicit => L'.Implicit
fun occursKind r =
U.Kind.exists (fn L'.KUnif (_, _, r') => r = r'
| _ => false)
datatype kunify_error =
KOccursCheckFailed of L'.kind * L'.kind
| KIncompatible of L'.kind * L'.kind
exception KUnify' of kunify_error
fun kunifyError err =
case err of
KOccursCheckFailed (k1, k2) =>
eprefaces "Kind occurs check failed"
[("Kind 1", p_kind k1),
("Kind 2", p_kind k2)]
| KIncompatible (k1, k2) =>
eprefaces "Incompatible kinds"
[("Kind 1", p_kind k1),
("Kind 2", p_kind k2)]
fun unifyKinds' (k1All as (k1, _)) (k2All as (k2, _)) =
let
fun err f = raise KUnify' (f (k1All, k2All))
in
case (k1, k2) of
(L'.KType, L'.KType) => ()
| (L'.KUnit, L'.KUnit) => ()
| (L'.KArrow (d1, r1), L'.KArrow (d2, r2)) =>
(unifyKinds' d1 d2;
unifyKinds' r1 r2)
| (L'.KName, L'.KName) => ()
| (L'.KRecord k1, L'.KRecord k2) => unifyKinds' k1 k2
| (L'.KError, _) => ()
| (_, L'.KError) => ()
| (L'.KUnif (_, _, ref (SOME k1All)), _) => unifyKinds' k1All k2All
| (_, L'.KUnif (_, _, ref (SOME k2All))) => unifyKinds' k1All k2All
| (L'.KUnif (_, _, r1), L'.KUnif (_, _, r2)) =>
if r1 = r2 then
()
else
r1 := SOME k2All
| (L'.KUnif (_, _, r), _) =>
if occursKind r k2All then
err KOccursCheckFailed
else
r := SOME k2All
| (_, L'.KUnif (_, _, r)) =>
if occursKind r k1All then
err KOccursCheckFailed
else
r := SOME k1All
| _ => err KIncompatible
end
exception KUnify of L'.kind * L'.kind * kunify_error
fun unifyKinds k1 k2 =
unifyKinds' k1 k2
handle KUnify' err => raise KUnify (k1, k2, err)
datatype con_error =
UnboundCon of ErrorMsg.span * string
| UnboundStrInCon of ErrorMsg.span * string
| WrongKind of L'.con * L'.kind * L'.kind * kunify_error
| DuplicateField of ErrorMsg.span * string
fun conError env err =
case err of
UnboundCon (loc, s) =>
ErrorMsg.errorAt loc ("Unbound constructor variable " ^ s)
| UnboundStrInCon (loc, s) =>
ErrorMsg.errorAt loc ("Unbound structure " ^ s)
| WrongKind (c, k1, k2, kerr) =>
(ErrorMsg.errorAt (#2 c) "Wrong kind";
eprefaces' [("Constructor", p_con env c),
("Have kind", p_kind k1),
("Need kind", p_kind k2)];
kunifyError kerr)
| DuplicateField (loc, s) =>
ErrorMsg.errorAt loc ("Duplicate record field " ^ s)
fun checkKind env c k1 k2 =
unifyKinds k1 k2
handle KUnify (k1, k2, err) =>
conError env (WrongKind (c, k1, k2, err))
val dummy = ErrorMsg.dummySpan
val ktype = (L'.KType, dummy)
val kname = (L'.KName, dummy)
val ktype_record = (L'.KRecord ktype, dummy)
val cerror = (L'.CError, dummy)
val kerror = (L'.KError, dummy)
val eerror = (L'.EError, dummy)
val sgnerror = (L'.SgnError, dummy)
val strerror = (L'.StrError, dummy)
val int = ref cerror
val float = ref cerror
val string = ref cerror
local
val count = ref 0
in
fun resetKunif () = count := 0
fun kunif loc =
let
val n = !count
val s = if n <= 26 then
str (chr (ord #"A" + n))
else
"U" ^ Int.toString (n - 26)
in
count := n + 1;
(L'.KUnif (loc, s, ref NONE), dummy)
end
end
local
val count = ref 0
in
fun resetCunif () = count := 0
fun cunif (loc, k) =
let
val n = !count
val s = if n <= 26 then
str (chr (ord #"A" + n))
else
"U" ^ Int.toString (n - 26)
in
count := n + 1;
(L'.CUnif (loc, k, s, ref NONE), dummy)
end
end
fun elabKind (k, loc) =
case k of
L.KType => (L'.KType, loc)
| L.KArrow (k1, k2) => (L'.KArrow (elabKind k1, elabKind k2), loc)
| L.KName => (L'.KName, loc)
| L.KRecord k => (L'.KRecord (elabKind k), loc)
| L.KUnit => (L'.KUnit, loc)
| L.KWild => kunif loc
fun foldKind (dom, ran, loc)=
(L'.KArrow ((L'.KArrow ((L'.KName, loc),
(L'.KArrow (dom,
(L'.KArrow (ran, ran), loc)), loc)), loc),
(L'.KArrow (ran,
(L'.KArrow ((L'.KRecord dom, loc),
ran), loc)), loc)), loc)
fun elabCon (env, denv) (c, loc) =
case c of
L.CAnnot (c, k) =>
let
val k' = elabKind k
val (c', ck, gs) = elabCon (env, denv) c
in
checkKind env c' ck k';
(c', k', gs)
end
| L.TFun (t1, t2) =>
let
val (t1', k1, gs1) = elabCon (env, denv) t1
val (t2', k2, gs2) = elabCon (env, denv) t2
in
checkKind env t1' k1 ktype;
checkKind env t2' k2 ktype;
((L'.TFun (t1', t2'), loc), ktype, gs1 @ gs2)
end
| L.TCFun (e, x, k, t) =>
let
val e' = elabExplicitness e
val k' = elabKind k
val env' = E.pushCRel env x k'
val (t', tk, gs) = elabCon (env', D.enter denv) t
in
checkKind env t' tk ktype;
((L'.TCFun (e', x, k', t'), loc), ktype, gs)
end
| L.TDisjoint (c1, c2, c) =>
let
val (c1', k1, gs1) = elabCon (env, denv) c1
val (c2', k2, gs2) = elabCon (env, denv) c2
val ku1 = kunif loc
val ku2 = kunif loc
val (denv', gs3) = D.assert env denv (c1', c2')
val (c', k, gs4) = elabCon (env, denv') c
in
checkKind env c1' k1 (L'.KRecord ku1, loc);
checkKind env c2' k2 (L'.KRecord ku2, loc);
((L'.TDisjoint (c1', c2', c'), loc), k, gs1 @ gs2 @ gs3 @ gs4)
end
| L.TRecord c =>
let
val (c', ck, gs) = elabCon (env, denv) c
val k = (L'.KRecord ktype, loc)
in
checkKind env c' ck k;
((L'.TRecord c', loc), ktype, gs)
end
| L.CVar ([], s) =>
(case E.lookupC env s of
E.NotBound =>
(conError env (UnboundCon (loc, s));
(cerror, kerror, []))
| E.Rel (n, k) =>
((L'.CRel n, loc), k, [])
| E.Named (n, k) =>
((L'.CNamed n, loc), k, []))
| L.CVar (m1 :: ms, s) =>
(case E.lookupStr env m1 of
NONE => (conError env (UnboundStrInCon (loc, m1));
(cerror, kerror, []))
| SOME (n, sgn) =>
let
val (str, sgn) = foldl (fn (m, (str, sgn)) =>
case E.projectStr env {sgn = sgn, str = str, field = m} of
NONE => (conError env (UnboundStrInCon (loc, m));
(strerror, sgnerror))
| SOME sgn => ((L'.StrProj (str, m), loc), sgn))
((L'.StrVar n, loc), sgn) ms
val k = case E.projectCon env {sgn = sgn, str = str, field = s} of
NONE => (conError env (UnboundCon (loc, s));
kerror)
| SOME (k, _) => k
in
((L'.CModProj (n, ms, s), loc), k, [])
end)
| L.CApp (c1, c2) =>
let
val (c1', k1, gs1) = elabCon (env, denv) c1
val (c2', k2, gs2) = elabCon (env, denv) c2
val dom = kunif loc
val ran = kunif loc
in
checkKind env c1' k1 (L'.KArrow (dom, ran), loc);
checkKind env c2' k2 dom;
((L'.CApp (c1', c2'), loc), ran, gs1 @ gs2)
end
| L.CAbs (x, ko, t) =>
let
val k' = case ko of
NONE => kunif loc
| SOME k => elabKind k
val env' = E.pushCRel env x k'
val (t', tk, gs) = elabCon (env', D.enter denv) t
in
((L'.CAbs (x, k', t'), loc),
(L'.KArrow (k', tk), loc),
gs)
end
| L.CDisjoint (c1, c2, c) =>
let
val (c1', k1, gs1) = elabCon (env, denv) c1
val (c2', k2, gs2) = elabCon (env, denv) c2
val ku1 = kunif loc
val ku2 = kunif loc
val (denv', gs3) = D.assert env denv (c1', c2')
val (c', k, gs4) = elabCon (env, denv') c
in
checkKind env c1' k1 (L'.KRecord ku1, loc);
checkKind env c2' k2 (L'.KRecord ku2, loc);
((L'.CDisjoint (c1', c2', c'), loc), k, gs1 @ gs2 @ gs3 @ gs4)
end
| L.CName s =>
((L'.CName s, loc), kname, [])
| L.CRecord xcs =>
let
val k = kunif loc
val (xcs', gs) = ListUtil.foldlMap (fn ((x, c), gs) =>
let
val (x', xk, gs1) = elabCon (env, denv) x
val (c', ck, gs2) = elabCon (env, denv) c
in
checkKind env x' xk kname;
checkKind env c' ck k;
((x', c'), gs1 @ gs2 @ gs)
end) [] xcs
val rc = (L'.CRecord (k, xcs'), loc)
(* Add duplicate field checking later. *)
fun prove (xcs, ds) =
case xcs of
[] => ds
| xc :: rest =>
let
val r1 = (L'.CRecord (k, [xc]), loc)
val ds = foldl (fn (xc', ds) =>
let
val r2 = (L'.CRecord (k, [xc']), loc)
in
D.prove env denv (r1, r2, loc) @ ds
end)
ds rest
in
prove (rest, ds)
end
in
(rc, (L'.KRecord k, loc), prove (xcs', gs))
end
| L.CConcat (c1, c2) =>
let
val (c1', k1, gs1) = elabCon (env, denv) c1
val (c2', k2, gs2) = elabCon (env, denv) c2
val ku = kunif loc
val k = (L'.KRecord ku, loc)
in
checkKind env c1' k1 k;
checkKind env c2' k2 k;
((L'.CConcat (c1', c2'), loc), k,
D.prove env denv (c1', c2', loc) @ gs1 @ gs2)
end
| L.CFold =>
let
val dom = kunif loc
val ran = kunif loc
in
((L'.CFold (dom, ran), loc),
foldKind (dom, ran, loc),
[])
end
| L.CUnit => ((L'.CUnit, loc), (L'.KUnit, loc), [])
| L.CWild k =>
let
val k' = elabKind k
in
(cunif (loc, k'), k', [])
end
fun kunifsRemain k =
case k of
L'.KUnif (_, _, ref NONE) => true
| _ => false
fun cunifsRemain c =
case c of
L'.CUnif (loc, _, _, ref NONE) => SOME loc
| _ => NONE
val kunifsInDecl = U.Decl.exists {kind = kunifsRemain,
con = fn _ => false,
exp = fn _ => false,
sgn_item = fn _ => false,
sgn = fn _ => false,
str = fn _ => false,
decl = fn _ => false}
val cunifsInDecl = U.Decl.search {kind = fn _ => NONE,
con = cunifsRemain,
exp = fn _ => NONE,
sgn_item = fn _ => NONE,
sgn = fn _ => NONE,
str = fn _ => NONE,
decl = fn _ => NONE}
fun occursCon r =
U.Con.exists {kind = fn _ => false,
con = fn L'.CUnif (_, _, _, r') => r = r'
| _ => false}
datatype cunify_error =
CKind of L'.kind * L'.kind * kunify_error
| COccursCheckFailed of L'.con * L'.con
| CIncompatible of L'.con * L'.con
| CExplicitness of L'.con * L'.con
| CKindof of L'.con
| CRecordFailure
exception CUnify' of cunify_error
fun cunifyError env err =
case err of
CKind (k1, k2, kerr) =>
(eprefaces "Kind unification failure"
[("Kind 1", p_kind k1),
("Kind 2", p_kind k2)];
kunifyError kerr)
| COccursCheckFailed (c1, c2) =>
eprefaces "Constructor occurs check failed"
[("Con 1", p_con env c1),
("Con 2", p_con env c2)]
| CIncompatible (c1, c2) =>
eprefaces "Incompatible constructors"
[("Con 1", p_con env c1),
("Con 2", p_con env c2)]
| CExplicitness (c1, c2) =>
eprefaces "Differing constructor function explicitness"
[("Con 1", p_con env c1),
("Con 2", p_con env c2)]
| CKindof c =>
eprefaces "Kind unification variable blocks kindof calculation"
[("Con", p_con env c)]
| CRecordFailure =>
eprefaces "Can't unify record constructors" []
exception SynUnif = E.SynUnif
open ElabOps
type record_summary = {
fields : (L'.con * L'.con) list,
unifs : (L'.con * L'.con option ref) list,
others : L'.con list
}
fun summaryToCon {fields, unifs, others} =
let
val c = (L'.CRecord (ktype, []), dummy)
val c = List.foldr (fn (c', c) => (L'.CConcat (c', c), dummy)) c others
val c = List.foldr (fn ((c', _), c) => (L'.CConcat (c', c), dummy)) c unifs
in
(L'.CConcat ((L'.CRecord (ktype, fields), dummy), c), dummy)
end
fun p_summary env s = p_con env (summaryToCon s)
exception CUnify of L'.con * L'.con * cunify_error
fun hnormKind (kAll as (k, _)) =
case k of
L'.KUnif (_, _, ref (SOME k)) => hnormKind k
| _ => kAll
fun kindof env (c, loc) =
case c of
L'.TFun _ => ktype
| L'.TCFun _ => ktype
| L'.TDisjoint _ => ktype
| L'.TRecord _ => ktype
| L'.CRel xn => #2 (E.lookupCRel env xn)
| L'.CNamed xn => #2 (E.lookupCNamed env xn)
| L'.CModProj (n, ms, x) =>
let
val (_, sgn) = E.lookupStrNamed env n
val (str, sgn) = foldl (fn (m, (str, sgn)) =>
case E.projectStr env {sgn = sgn, str = str, field = m} of
NONE => raise Fail "kindof: Unknown substructure"
| SOME sgn => ((L'.StrProj (str, m), loc), sgn))
((L'.StrVar n, loc), sgn) ms
in
case E.projectCon env {sgn = sgn, str = str, field = x} of
NONE => raise Fail "kindof: Unknown con in structure"
| SOME (k, _) => k
end
| L'.CApp (c, _) =>
(case #1 (hnormKind (kindof env c)) of
L'.KArrow (_, k) => k
| L'.KError => kerror
| _ => raise CUnify' (CKindof c))
| L'.CAbs (x, k, c) => (L'.KArrow (k, kindof (E.pushCRel env x k) c), loc)
| L'.CDisjoint (_, _, c) => kindof env c
| L'.CName _ => kname
| L'.CRecord (k, _) => (L'.KRecord k, loc)
| L'.CConcat (c, _) => kindof env c
| L'.CFold (dom, ran) => foldKind (dom, ran, loc)
| L'.CUnit => (L'.KUnit, loc)
| L'.CError => kerror
| L'.CUnif (_, k, _, _) => k
val hnormCon = D.hnormCon
fun unifyRecordCons (env, denv) (c1, c2) =
let
fun rkindof c =
case kindof env c of
(L'.KRecord k, _) => k
| _ => raise CUnify' (CKindof c)
val k1 = rkindof c1
val k2 = rkindof c2
val (r1, gs1) = recordSummary (env, denv) c1
val (r2, gs2) = recordSummary (env, denv) c2
in
unifyKinds k1 k2;
unifySummaries (env, denv) (k1, r1, r2);
gs1 @ gs2
end
and recordSummary (env, denv) c =
let
val (c, gs) = hnormCon (env, denv) c
val (sum, gs') =
case c of
(L'.CRecord (_, xcs), _) => ({fields = xcs, unifs = [], others = []}, [])
| (L'.CConcat (c1, c2), _) =>
let
val (s1, gs1) = recordSummary (env, denv) c1
val (s2, gs2) = recordSummary (env, denv) c2
in
({fields = #fields s1 @ #fields s2,
unifs = #unifs s1 @ #unifs s2,
others = #others s1 @ #others s2},
gs1 @ gs2)
end
| (L'.CUnif (_, _, _, ref (SOME c)), _) => recordSummary (env, denv) c
| c' as (L'.CUnif (_, _, _, r), _) => ({fields = [], unifs = [(c', r)], others = []}, [])
| c' => ({fields = [], unifs = [], others = [c']}, [])
in
(sum, gs @ gs')
end
and consEq (env, denv) (c1, c2) =
(case unifyCons (env, denv) c1 c2 of
[] => true
| _ => false)
handle CUnify _ => false
and consNeq env (c1, c2) =
case (#1 (ElabOps.hnormCon env c1), #1 (ElabOps.hnormCon env c2)) of
(L'.CName x1, L'.CName x2) => x1 <> x2
| _ => false
and unifySummaries (env, denv) (k, s1 : record_summary, s2 : record_summary) =
let
(*val () = eprefaces "Summaries" [("#1", p_summary env s1),
("#2", p_summary env s2)]*)
fun eatMatching p (ls1, ls2) =
let
fun em (ls1, ls2, passed1) =
case ls1 of
[] => (rev passed1, ls2)
| h1 :: t1 =>
let
fun search (ls2', passed2) =
case ls2' of
[] => em (t1, ls2, h1 :: passed1)
| h2 :: t2 =>
if p (h1, h2) then
em (t1, List.revAppend (passed2, t2), passed1)
else
search (t2, h2 :: passed2)
in
search (ls2, [])
end
in
em (ls1, ls2, [])
end
val (fs1, fs2) = eatMatching (fn ((x1, c1), (x2, c2)) =>
not (consNeq env (x1, x2))
andalso consEq (env, denv) (c1, c2)
andalso consEq (env, denv) (x1, x2))
(#fields s1, #fields s2)
(*val () = eprefaces "Summaries2" [("#1", p_summary env {fields = fs1, unifs = #unifs s1, others = #others s1}),
("#2", p_summary env {fields = fs2, unifs = #unifs s2, others = #others s2})]*)
val (unifs1, unifs2) = eatMatching (fn ((_, r1), (_, r2)) => r1 = r2) (#unifs s1, #unifs s2)
val (others1, others2) = eatMatching (consEq (env, denv)) (#others s1, #others s2)
fun unifFields (fs, others, unifs) =
case (fs, others, unifs) of
([], [], _) => ([], [], unifs)
| (_, _, []) => (fs, others, [])
| (_, _, (_, r) :: rest) =>
let
val r' = ref NONE
val cr' = (L'.CUnif (dummy, k, "recd", r'), dummy)
val prefix = case (fs, others) of
([], other :: others) =>
List.foldl (fn (other, c) =>
(L'.CConcat (c, other), dummy))
other others
| (fs, []) =>
(L'.CRecord (k, fs), dummy)
| (fs, others) =>
List.foldl (fn (other, c) =>
(L'.CConcat (c, other), dummy))
(L'.CRecord (k, fs), dummy) others
in
r := SOME (L'.CConcat (prefix, cr'), dummy);
([], [], (cr', r') :: rest)
end
val (fs1, others1, unifs2) = unifFields (fs1, others1, unifs2)
val (fs2, others2, unifs1) = unifFields (fs2, others2, unifs1)
val clear = case (fs1, others1, fs2, others2) of
([], [], [], []) => true
| _ => false
val empty = (L'.CRecord (k, []), dummy)
fun pairOffUnifs (unifs1, unifs2) =
case (unifs1, unifs2) of
([], _) =>
if clear then
List.app (fn (_, r) => r := SOME empty) unifs2
else
raise CUnify' CRecordFailure
| (_, []) =>
if clear then
List.app (fn (_, r) => r := SOME empty) unifs1
else
raise CUnify' CRecordFailure
| ((c1, _) :: rest1, (_, r2) :: rest2) =>
(r2 := SOME c1;
pairOffUnifs (rest1, rest2))
in
pairOffUnifs (unifs1, unifs2)
end
and unifyCons' (env, denv) c1 c2 =
let
val (c1, gs1) = hnormCon (env, denv) c1
val (c2, gs2) = hnormCon (env, denv) c2
val gs3 = unifyCons'' (env, denv) c1 c2
in
gs1 @ gs2 @ gs3
end
and unifyCons'' (env, denv) (c1All as (c1, _)) (c2All as (c2, _)) =
let
fun err f = raise CUnify' (f (c1All, c2All))
fun isRecord () = unifyRecordCons (env, denv) (c1All, c2All)
in
(*eprefaces "unifyCons''" [("c1All", p_con env c1All),
("c2All", p_con env c2All)];*)
case (c1, c2) of
(L'.CUnit, L'.CUnit) => []
| (L'.TFun (d1, r1), L'.TFun (d2, r2)) =>
unifyCons' (env, denv) d1 d2
@ unifyCons' (env, denv) r1 r2
| (L'.TCFun (expl1, x1, d1, r1), L'.TCFun (expl2, _, d2, r2)) =>
if expl1 <> expl2 then
err CExplicitness
else
(unifyKinds d1 d2;
unifyCons' (E.pushCRel env x1 d1, D.enter denv) r1 r2)
| (L'.TRecord r1, L'.TRecord r2) => unifyCons' (env, denv) r1 r2
| (L'.CRel n1, L'.CRel n2) =>
if n1 = n2 then
[]
else
err CIncompatible
| (L'.CNamed n1, L'.CNamed n2) =>
if n1 = n2 then
[]
else
err CIncompatible
| (L'.CApp (d1, r1), L'.CApp (d2, r2)) =>
(unifyCons' (env, denv) d1 d2;
unifyCons' (env, denv) r1 r2)
| (L'.CAbs (x1, k1, c1), L'.CAbs (_, k2, c2)) =>
(unifyKinds k1 k2;
unifyCons' (E.pushCRel env x1 k1, D.enter denv) c1 c2)
| (L'.CName n1, L'.CName n2) =>
if n1 = n2 then
[]
else
err CIncompatible
| (L'.CModProj (n1, ms1, x1), L'.CModProj (n2, ms2, x2)) =>
if n1 = n2 andalso ms1 = ms2 andalso x1 = x2 then
[]
else
err CIncompatible
| (L'.CError, _) => []
| (_, L'.CError) => []
| (L'.CRecord _, _) => isRecord ()
| (_, L'.CRecord _) => isRecord ()
| (L'.CConcat _, _) => isRecord ()
| (_, L'.CConcat _) => isRecord ()
(*| (L'.CUnif (_, (L'.KRecord _, _), _, _), _) => isRecord ()
| (_, L'.CUnif (_, (L'.KRecord _, _), _, _)) => isRecord ()*)
| (L'.CUnif (_, k1, _, r1), L'.CUnif (_, k2, _, r2)) =>
if r1 = r2 then
[]
else
(unifyKinds k1 k2;
r1 := SOME c2All;
[])
| (L'.CUnif (_, _, _, r), _) =>
if occursCon r c2All then
err COccursCheckFailed
else
(r := SOME c2All;
[])
| (_, L'.CUnif (_, _, _, r)) =>
if occursCon r c1All then
err COccursCheckFailed
else
(r := SOME c1All;
[])
| (L'.CFold (dom1, ran1), L'.CFold (dom2, ran2)) =>
(unifyKinds dom1 dom2;
unifyKinds ran1 ran2;
[])
| _ => err CIncompatible
end
and unifyCons (env, denv) c1 c2 =
unifyCons' (env, denv) c1 c2
handle CUnify' err => raise CUnify (c1, c2, err)
| KUnify args => raise CUnify (c1, c2, CKind args)
datatype exp_error =
UnboundExp of ErrorMsg.span * string
| UnboundStrInExp of ErrorMsg.span * string
| Unify of L'.exp * L'.con * L'.con * cunify_error
| Unif of string * L'.con
| WrongForm of string * L'.exp * L'.con
| IncompatibleCons of L'.con * L'.con
fun expError env err =
case err of
UnboundExp (loc, s) =>
ErrorMsg.errorAt loc ("Unbound expression variable " ^ s)
| UnboundStrInExp (loc, s) =>
ErrorMsg.errorAt loc ("Unbound structure " ^ s)
| Unify (e, c1, c2, uerr) =>
(ErrorMsg.errorAt (#2 e) "Unification failure";
eprefaces' [("Expression", p_exp env e),
("Have con", p_con env c1),
("Need con", p_con env c2)];
cunifyError env uerr)
| Unif (action, c) =>
(ErrorMsg.errorAt (#2 c) ("Unification variable blocks " ^ action);
eprefaces' [("Con", p_con env c)])
| WrongForm (variety, e, t) =>
(ErrorMsg.errorAt (#2 e) ("Expression is not a " ^ variety);
eprefaces' [("Expression", p_exp env e),
("Type", p_con env t)])
| IncompatibleCons (c1, c2) =>
(ErrorMsg.errorAt (#2 c1) "Incompatible constructors";
eprefaces' [("Con 1", p_con env c1),
("Con 2", p_con env c2)])
fun checkCon (env, denv) e c1 c2 =
unifyCons (env, denv) c1 c2
handle CUnify (c1, c2, err) =>
(expError env (Unify (e, c1, c2, err));
[])
fun primType env p =
case p of
P.Int _ => !int
| P.Float _ => !float
| P.String _ => !string
fun recCons (k, nm, v, rest, loc) =
(L'.CConcat ((L'.CRecord (k, [(nm, v)]), loc),
rest), loc)
fun foldType (dom, loc) =
(L'.TCFun (L'.Explicit, "ran", (L'.KArrow ((L'.KRecord dom, loc), (L'.KType, loc)), loc),
(L'.TFun ((L'.TCFun (L'.Explicit, "nm", (L'.KName, loc),
(L'.TCFun (L'.Explicit, "v", dom,
(L'.TCFun (L'.Explicit, "rest", (L'.KRecord dom, loc),
(L'.TFun ((L'.CApp ((L'.CRel 3, loc), (L'.CRel 0, loc)), loc),
(L'.CApp ((L'.CRel 3, loc),
recCons (dom,
(L'.CRel 2, loc),
(L'.CRel 1, loc),
(L'.CRel 0, loc),
loc)), loc)), loc)),
loc)), loc)), loc),
(L'.TFun ((L'.CApp ((L'.CRel 0, loc), (L'.CRecord (dom, []), loc)), loc),
(L'.TCFun (L'.Explicit, "r", (L'.KRecord dom, loc),
(L'.CApp ((L'.CRel 1, loc), (L'.CRel 0, loc)), loc)), loc)),
loc)), loc)), loc)
fun typeof env (e, loc) =
case e of
L'.EPrim p => primType env p
| L'.ERel n => #2 (E.lookupERel env n)
| L'.ENamed n => #2 (E.lookupENamed env n)
| L'.EModProj (n, ms, x) =>
let
val (_, sgn) = E.lookupStrNamed env n
val (str, sgn) = foldl (fn (m, (str, sgn)) =>
case E.projectStr env {sgn = sgn, str = str, field = m} of
NONE => raise Fail "kindof: Unknown substructure"
| SOME sgn => ((L'.StrProj (str, m), loc), sgn))
((L'.StrVar n, loc), sgn) ms
in
case E.projectVal env {sgn = sgn, str = str, field = x} of
NONE => raise Fail "typeof: Unknown val in structure"
| SOME t => t
end
| L'.EApp (e1, _) =>
(case #1 (typeof env e1) of
L'.TFun (_, c) => c
| _ => raise Fail "typeof: Bad EApp")
| L'.EAbs (_, _, ran, _) => ran
| L'.ECApp (e1, c) =>
(case #1 (typeof env e1) of
L'.TCFun (_, _, _, c1) => subConInCon (0, c) c1
| _ => raise Fail "typeof: Bad ECApp")
| L'.ECAbs (expl, x, k, e1) => (L'.TCFun (expl, x, k, typeof (E.pushCRel env x k) e1), loc)
| L'.ERecord xes => (L'.TRecord (L'.CRecord (ktype, map (fn (x, _, t) => (x, t)) xes), loc), loc)
| L'.EField (_, _, {field, ...}) => field
| L'.EFold dom => foldType (dom, loc)
| L'.EError => cerror
fun elabHead (env, denv) (e as (_, loc)) t =
let
fun unravel (t, e) =
let
val (t, gs) = hnormCon (env, denv) t
in
case t of
(L'.TCFun (L'.Implicit, x, k, t'), _) =>
let
val u = cunif (loc, k)
val (e, t, gs') = unravel (subConInCon (0, u) t',
(L'.ECApp (e, u), loc))
in
(e, t, gs @ gs')
end
| _ => (e, t, gs)
end
in
unravel (t, e)
end
fun elabExp (env, denv) (eAll as (e, loc)) =
let
in
(*eprefaces "elabExp" [("eAll", SourcePrint.p_exp eAll)];*)
case e of
L.EAnnot (e, t) =>
let
val (e', et, gs1) = elabExp (env, denv) e
val (t', _, gs2) = elabCon (env, denv) t
val gs3 = checkCon (env, denv) e' et t'
in
(e', t', gs1 @ gs2 @ gs3)
end
| L.EPrim p => ((L'.EPrim p, loc), primType env p, [])
| L.EVar ([], s) =>
(case E.lookupE env s of
E.NotBound =>
(expError env (UnboundExp (loc, s));
(eerror, cerror, []))
| E.Rel (n, t) => ((L'.ERel n, loc), t, [])
| E.Named (n, t) => ((L'.ENamed n, loc), t, []))
| L.EVar (m1 :: ms, s) =>
(case E.lookupStr env m1 of
NONE => (expError env (UnboundStrInExp (loc, m1));
(eerror, cerror, []))
| SOME (n, sgn) =>
let
val (str, sgn) = foldl (fn (m, (str, sgn)) =>
case E.projectStr env {sgn = sgn, str = str, field = m} of
NONE => (conError env (UnboundStrInCon (loc, m));
(strerror, sgnerror))
| SOME sgn => ((L'.StrProj (str, m), loc), sgn))
((L'.StrVar n, loc), sgn) ms
val t = case E.projectVal env {sgn = sgn, str = str, field = s} of
NONE => (expError env (UnboundExp (loc, s));
cerror)
| SOME t => t
in
((L'.EModProj (n, ms, s), loc), t, [])
end)
| L.EApp (arg as ((L.EApp ((L.ECApp ((L.EVar (["Basis"], "join"), _), (L.CWild _, _)), _), xml1), _), xml2)) =>
let
val (xml1', t1, gs1) = elabExp (env, denv) xml1
val (xml2', t2, gs2) = elabExp (env, denv) xml2
val kunit = (L'.KUnit, loc)
val k = (L'.KRecord kunit, loc)
val basis =
case E.lookupStr env "Basis" of
NONE => raise Fail "elabExp: Unbound Basis"
| SOME (n, _) => n
fun xml () =
let
val ns = cunif (loc, k)
in
(ns, (L'.CApp ((L'.CModProj (basis, [], "xml"), loc), ns), loc))
end
val (ns1, c1) = xml ()
val (ns2, c2) = xml ()
val gs3 = checkCon (env, denv) xml1' t1 c1
val gs4 = checkCon (env, denv) xml2' t2 c2
val (ns1, gs5) = hnormCon (env, denv) ns1
val (ns2, gs6) = hnormCon (env, denv) ns2
val cemp = (L'.CRecord (kunit, []), loc)
val (shared, ctx1, ctx2) =
case (#1 ns1, #1 ns2) of
(L'.CRecord (_, ns1), L'.CRecord (_, ns2)) =>
let
val ns = List.filter (fn ((nm, _), _) =>
case nm of
L'.CName s =>
List.exists (fn ((L'.CName s', _), _) => s' = s
| _ => false) ns2
| _ => false) ns1
in
((L'.CRecord (kunit, ns), loc), cunif (loc, k), cunif (loc, k))
end
| (_, L'.CRecord _) => (ns2, cemp, cemp)
| _ => (ns1, cemp, cemp)
val ns1' = (L'.CConcat (shared, ctx1), loc)
val ns2' = (L'.CConcat (shared, ctx2), loc)
val e = (L'.EModProj (basis, [], "join"), loc)
val e = (L'.ECApp (e, shared), loc)
val e = (L'.ECApp (e, ctx1), loc)
val e = (L'.ECApp (e, ctx2), loc)
val e = (L'.EApp (e, xml1'), loc)
val e = (L'.EApp (e, xml2'), loc)
val t = (L'.CApp ((L'.CModProj (basis, [], "xml"), loc), shared), loc)
fun doUnify (ns, ns') =
let
fun setEmpty c =
let
val ((c, _), gs) = hnormCon (env, denv) c
in
case c of
L'.CUnif (_, _, _, r) =>
(r := SOME cemp;
gs)
| L'.CConcat (_, c') => setEmpty c' @ gs
| _ => gs
end
val gs1 = unifyCons (env, denv) ns ns'
val gs2 = setEmpty ns'
val gs3 = unifyCons (env, denv) ns ns'
in
gs1 @ gs2 @ gs3
end handle CUnify _ => (expError env (IncompatibleCons (ns, ns'));
[])
val gs7 = doUnify (ns1, ns1')
val gs8 = doUnify (ns2, ns2')
in
(e, t, (loc, env, denv, shared, ctx1)
:: (loc, env, denv, shared, ctx2)
:: gs1 @ gs2 @ gs3 @ gs4 @ gs5 @ gs6 @ gs7 @ gs8)
end
| L.EApp (e1, e2) =>
let
val (e1', t1, gs1) = elabExp (env, denv) e1
val (e1', t1, gs2) = elabHead (env, denv) e1' t1
val (e2', t2, gs3) = elabExp (env, denv) e2
val dom = cunif (loc, ktype)
val ran = cunif (loc, ktype)
val t = (L'.TFun (dom, ran), dummy)
val gs4 = checkCon (env, denv) e1' t1 t
val gs5 = checkCon (env, denv) e2' t2 dom
in
((L'.EApp (e1', e2'), loc), ran, gs1 @ gs2 @ gs3 @ gs4 @ gs5)
end
| L.EAbs (x, to, e) =>
let
val (t', gs1) = case to of
NONE => (cunif (loc, ktype), [])
| SOME t =>
let
val (t', tk, gs) = elabCon (env, denv) t
in
checkKind env t' tk ktype;
(t', gs)
end
val (e', et, gs2) = elabExp (E.pushERel env x t', denv) e
in
((L'.EAbs (x, t', et, e'), loc),
(L'.TFun (t', et), loc),
gs1 @ gs2)
end
| L.ECApp (e, c) =>
let
val (e', et, gs1) = elabExp (env, denv) e
val (e', et, gs2) = elabHead (env, denv) e' et
val (c', ck, gs3) = elabCon (env, denv) c
val ((et', _), gs4) = hnormCon (env, denv) et
in
case et' of
L'.CError => (eerror, cerror, [])
| L'.TCFun (_, _, k, eb) =>
let
val () = checkKind env c' ck k
val eb' = subConInCon (0, c') eb
handle SynUnif => (expError env (Unif ("substitution", eb));
cerror)
in
((L'.ECApp (e', c'), loc), eb', gs1 @ gs2 @ gs3 @ gs4)
end
| L'.CUnif _ =>
(expError env (Unif ("application", et));
(eerror, cerror, []))
| _ =>
(expError env (WrongForm ("constructor function", e', et));
(eerror, cerror, []))
end
| L.ECAbs (expl, x, k, e) =>
let
val expl' = elabExplicitness expl
val k' = elabKind k
val (e', et, gs) = elabExp (E.pushCRel env x k', D.enter denv) e
in
((L'.ECAbs (expl', x, k', e'), loc),
(L'.TCFun (expl', x, k', et), loc),
gs)
end
| L.EDisjoint (c1, c2, e) =>
let
val (c1', k1, gs1) = elabCon (env, denv) c1
val (c2', k2, gs2) = elabCon (env, denv) c2
val ku1 = kunif loc
val ku2 = kunif loc
val (denv', gs3) = D.assert env denv (c1', c2')
val (e', t, gs4) = elabExp (env, denv') e
in
checkKind env c1' k1 (L'.KRecord ku1, loc);
checkKind env c2' k2 (L'.KRecord ku2, loc);
(e', (L'.TDisjoint (c1', c2', t), loc), gs1 @ gs2 @ gs3 @ gs4)
end
| L.ERecord xes =>
let
val (xes', gs) = ListUtil.foldlMap (fn ((x, e), gs) =>
let
val (x', xk, gs1) = elabCon (env, denv) x
val (e', et, gs2) = elabExp (env, denv) e
in
checkKind env x' xk kname;
((x', e', et), gs1 @ gs2 @ gs)
end)
[] xes
val k = (L'.KType, loc)
fun prove (xets, gs) =
case xets of
[] => gs
| (x, _, t) :: rest =>
let
val xc = (x, t)
val r1 = (L'.CRecord (k, [xc]), loc)
val gs = foldl (fn ((x', _, t'), gs) =>
let
val xc' = (x', t')
val r2 = (L'.CRecord (k, [xc']), loc)
in
D.prove env denv (r1, r2, loc) @ gs
end)
gs rest
in
prove (rest, gs)
end
in
((L'.ERecord xes', loc),
(L'.TRecord (L'.CRecord (ktype, map (fn (x', _, et) => (x', et)) xes'), loc), loc),
prove (xes', gs))
end
| L.EField (e, c) =>
let
val (e', et, gs1) = elabExp (env, denv) e
val (c', ck, gs2) = elabCon (env, denv) c
val ft = cunif (loc, ktype)
val rest = cunif (loc, ktype_record)
val first = (L'.CRecord (ktype, [(c', ft)]), loc)
val gs3 =
checkCon (env, denv) e' et
(L'.TRecord (L'.CConcat (first, rest), loc), loc)
val gs4 = D.prove env denv (first, rest, loc)
in
((L'.EField (e', c', {field = ft, rest = rest}), loc), ft, gs1 @ gs2 @ gs3 @ gs4)
end
| L.EFold =>
let
val dom = kunif loc
in
((L'.EFold dom, loc), foldType (dom, loc), [])
end
end
datatype decl_error =
KunifsRemain of L'.decl list
| CunifsRemain of L'.decl list
fun lspan [] = ErrorMsg.dummySpan
| lspan ((_, loc) :: _) = loc
fun declError env err =
case err of
KunifsRemain ds =>
(ErrorMsg.errorAt (lspan ds) "Some kind unification variables are undetermined in declaration";
eprefaces' [("Decl", p_list_sep PD.newline (p_decl env) ds)])
| CunifsRemain ds =>
(ErrorMsg.errorAt (lspan ds) "Some constructor unification variables are undetermined in declaration";
eprefaces' [("Decl", p_list_sep PD.newline (p_decl env) ds)])
datatype sgn_error =
UnboundSgn of ErrorMsg.span * string
| UnmatchedSgi of L'.sgn_item
| SgiWrongKind of L'.sgn_item * L'.kind * L'.sgn_item * L'.kind * kunify_error
| SgiWrongCon of L'.sgn_item * L'.con * L'.sgn_item * L'.con * cunify_error
| SgnWrongForm of L'.sgn * L'.sgn
| UnWhereable of L'.sgn * string
| WhereWrongKind of L'.kind * L'.kind * kunify_error
| NotIncludable of L'.sgn
| DuplicateCon of ErrorMsg.span * string
| DuplicateVal of ErrorMsg.span * string
| DuplicateSgn of ErrorMsg.span * string
| DuplicateStr of ErrorMsg.span * string
| NotConstraintsable of L'.sgn
fun sgnError env err =
case err of
UnboundSgn (loc, s) =>
ErrorMsg.errorAt loc ("Unbound signature variable " ^ s)
| UnmatchedSgi (sgi as (_, loc)) =>
(ErrorMsg.errorAt loc "Unmatched signature item";
eprefaces' [("Item", p_sgn_item env sgi)])
| SgiWrongKind (sgi1, k1, sgi2, k2, kerr) =>
(ErrorMsg.errorAt (#2 sgi1) "Kind unification failure in signature matching:";
eprefaces' [("Have", p_sgn_item env sgi1),
("Need", p_sgn_item env sgi2),
("Kind 1", p_kind k1),
("Kind 2", p_kind k2)];
kunifyError kerr)
| SgiWrongCon (sgi1, c1, sgi2, c2, cerr) =>
(ErrorMsg.errorAt (#2 sgi1) "Constructor unification failure in signature matching:";
eprefaces' [("Have", p_sgn_item env sgi1),
("Need", p_sgn_item env sgi2),
("Con 1", p_con env c1),
("Con 2", p_con env c2)];
cunifyError env cerr)
| SgnWrongForm (sgn1, sgn2) =>
(ErrorMsg.errorAt (#2 sgn1) "Incompatible signatures:";
eprefaces' [("Sig 1", p_sgn env sgn1),
("Sig 2", p_sgn env sgn2)])
| UnWhereable (sgn, x) =>
(ErrorMsg.errorAt (#2 sgn) "Unavailable field for 'where'";
eprefaces' [("Signature", p_sgn env sgn),
("Field", PD.string x)])
| WhereWrongKind (k1, k2, kerr) =>
(ErrorMsg.errorAt (#2 k1) "Wrong kind for 'where'";
eprefaces' [("Have", p_kind k1),
("Need", p_kind k2)];
kunifyError kerr)
| NotIncludable sgn =>
(ErrorMsg.errorAt (#2 sgn) "Invalid signature to 'include'";
eprefaces' [("Signature", p_sgn env sgn)])
| DuplicateCon (loc, s) =>
ErrorMsg.errorAt loc ("Duplicate constructor " ^ s ^ " in signature")
| DuplicateVal (loc, s) =>
ErrorMsg.errorAt loc ("Duplicate value " ^ s ^ " in signature")
| DuplicateSgn (loc, s) =>
ErrorMsg.errorAt loc ("Duplicate signature " ^ s ^ " in signature")
| DuplicateStr (loc, s) =>
ErrorMsg.errorAt loc ("Duplicate structure " ^ s ^ " in signature")
| NotConstraintsable sgn =>
(ErrorMsg.errorAt (#2 sgn) "Invalid signature for 'open constraints'";
eprefaces' [("Signature", p_sgn env sgn)])
datatype str_error =
UnboundStr of ErrorMsg.span * string
| NotFunctor of L'.sgn
| FunctorRebind of ErrorMsg.span
| UnOpenable of L'.sgn
| NotType of L'.kind * (L'.kind * L'.kind * kunify_error)
fun strError env err =
case err of
UnboundStr (loc, s) =>
ErrorMsg.errorAt loc ("Unbound structure variable " ^ s)
| NotFunctor sgn =>
(ErrorMsg.errorAt (#2 sgn) "Application of non-functor";
eprefaces' [("Signature", p_sgn env sgn)])
| FunctorRebind loc =>
ErrorMsg.errorAt loc "Attempt to rebind functor"
| UnOpenable sgn =>
(ErrorMsg.errorAt (#2 sgn) "Un-openable structure";
eprefaces' [("Signature", p_sgn env sgn)])
| NotType (k, (k1, k2, ue)) =>
(ErrorMsg.errorAt (#2 k) "'val' type kind is not 'Type'";
eprefaces' [("Kind", p_kind k),
("Subkind 1", p_kind k1),
("Subkind 2", p_kind k2)];
kunifyError ue)
val hnormSgn = E.hnormSgn
fun elabSgn_item ((sgi, loc), (env, denv, gs)) =
case sgi of
L.SgiConAbs (x, k) =>
let
val k' = elabKind k
val (env', n) = E.pushCNamed env x k' NONE
in
([(L'.SgiConAbs (x, n, k'), loc)], (env', denv, gs))
end
| L.SgiCon (x, ko, c) =>
let
val k' = case ko of
NONE => kunif loc
| SOME k => elabKind k
val (c', ck, gs') = elabCon (env, denv) c
val (env', n) = E.pushCNamed env x k' (SOME c')
in
checkKind env c' ck k';
([(L'.SgiCon (x, n, k', c'), loc)], (env', denv, gs' @ gs))
end
| L.SgiVal (x, c) =>
let
val (c', ck, gs') = elabCon (env, denv) c
val (env', n) = E.pushENamed env x c'
in
(unifyKinds ck ktype
handle KUnify ue => strError env (NotType (ck, ue)));
([(L'.SgiVal (x, n, c'), loc)], (env', denv, gs' @ gs))
end
| L.SgiStr (x, sgn) =>
let
val (sgn', gs') = elabSgn (env, denv) sgn
val (env', n) = E.pushStrNamed env x sgn'
in
([(L'.SgiStr (x, n, sgn'), loc)], (env', denv, gs' @ gs))
end
| L.SgiSgn (x, sgn) =>
let
val (sgn', gs') = elabSgn (env, denv) sgn
val (env', n) = E.pushSgnNamed env x sgn'
in
([(L'.SgiSgn (x, n, sgn'), loc)], (env', denv, gs' @ gs))
end
| L.SgiInclude sgn =>
let
val (sgn', gs') = elabSgn (env, denv) sgn
in
case #1 (hnormSgn env sgn') of
L'.SgnConst sgis =>
(sgis, (foldl (fn (sgi, env) => E.sgiBinds env sgi) env sgis, denv, gs' @ gs))
| _ => (sgnError env (NotIncludable sgn');
([], (env, denv, [])))
end
| L.SgiConstraint (c1, c2) =>
let
val (c1', k1, gs1) = elabCon (env, denv) c1
val (c2', k2, gs2) = elabCon (env, denv) c2
val (denv, gs3) = D.assert env denv (c1', c2')
in
checkKind env c1' k1 (L'.KRecord (kunif loc), loc);
checkKind env c2' k2 (L'.KRecord (kunif loc), loc);
([(L'.SgiConstraint (c1', c2'), loc)], (env, denv, gs1 @ gs2 @ gs3))
end
and elabSgn (env, denv) (sgn, loc) =
case sgn of
L.SgnConst sgis =>
let
val (sgis', (_, _, gs)) = ListUtil.foldlMapConcat elabSgn_item (env, denv, []) sgis
val _ = foldl (fn ((sgi, loc), (cons, vals, sgns, strs)) =>
case sgi of
L'.SgiConAbs (x, _, _) =>
(if SS.member (cons, x) then
sgnError env (DuplicateCon (loc, x))
else
();
(SS.add (cons, x), vals, sgns, strs))
| L'.SgiCon (x, _, _, _) =>
(if SS.member (cons, x) then
sgnError env (DuplicateCon (loc, x))
else
();
(SS.add (cons, x), vals, sgns, strs))
| L'.SgiVal (x, _, _) =>
(if SS.member (vals, x) then
sgnError env (DuplicateVal (loc, x))
else
();
(cons, SS.add (vals, x), sgns, strs))
| L'.SgiSgn (x, _, _) =>
(if SS.member (sgns, x) then
sgnError env (DuplicateSgn (loc, x))
else
();
(cons, vals, SS.add (sgns, x), strs))
| L'.SgiStr (x, _, _) =>
(if SS.member (strs, x) then
sgnError env (DuplicateStr (loc, x))
else
();
(cons, vals, sgns, SS.add (strs, x)))
| L'.SgiConstraint _ => (cons, vals, sgns, strs))
(SS.empty, SS.empty, SS.empty, SS.empty) sgis'
in
((L'.SgnConst sgis', loc), gs)
end
| L.SgnVar x =>
(case E.lookupSgn env x of
NONE =>
(sgnError env (UnboundSgn (loc, x));
((L'.SgnError, loc), []))
| SOME (n, sgis) => ((L'.SgnVar n, loc), []))
| L.SgnFun (m, dom, ran) =>
let
val (dom', gs1) = elabSgn (env, denv) dom
val (env', n) = E.pushStrNamed env m dom'
val (ran', gs2) = elabSgn (env', denv) ran
in
((L'.SgnFun (m, n, dom', ran'), loc), gs1 @ gs2)
end
| L.SgnWhere (sgn, x, c) =>
let
val (sgn', ds1) = elabSgn (env, denv) sgn
val (c', ck, ds2) = elabCon (env, denv) c
in
case #1 (hnormSgn env sgn') of
L'.SgnError => (sgnerror, [])
| L'.SgnConst sgis =>
if List.exists (fn (L'.SgiConAbs (x', _, k), _) =>
x' = x andalso
(unifyKinds k ck
handle KUnify x => sgnError env (WhereWrongKind x);
true)
| _ => false) sgis then
((L'.SgnWhere (sgn', x, c'), loc), ds1 @ ds2)
else
(sgnError env (UnWhereable (sgn', x));
(sgnerror, []))
| _ => (sgnError env (UnWhereable (sgn', x));
(sgnerror, []))
end
| L.SgnProj (m, ms, x) =>
(case E.lookupStr env m of
NONE => (strError env (UnboundStr (loc, m));
(sgnerror, []))
| SOME (n, sgn) =>
let
val (str, sgn) = foldl (fn (m, (str, sgn)) =>
case E.projectStr env {sgn = sgn, str = str, field = m} of
NONE => (strError env (UnboundStr (loc, m));
(strerror, sgnerror))
| SOME sgn => ((L'.StrProj (str, m), loc), sgn))
((L'.StrVar n, loc), sgn) ms
in
case E.projectSgn env {sgn = sgn, str = str, field = x} of
NONE => (sgnError env (UnboundSgn (loc, x));
(sgnerror, []))
| SOME _ => ((L'.SgnProj (n, ms, x), loc), [])
end)
fun selfify env {str, strs, sgn} =
case #1 (hnormSgn env sgn) of
L'.SgnError => sgn
| L'.SgnVar _ => sgn
| L'.SgnConst sgis =>
(L'.SgnConst (map (fn (L'.SgiConAbs (x, n, k), loc) =>
(L'.SgiCon (x, n, k, (L'.CModProj (str, strs, x), loc)), loc)
| (L'.SgiStr (x, n, sgn), loc) =>
(L'.SgiStr (x, n, selfify env {str = str, strs = strs @ [x], sgn = sgn}), loc)
| x => x) sgis), #2 sgn)
| L'.SgnFun _ => sgn
| L'.SgnWhere _ => sgn
| L'.SgnProj (m, ms, x) =>
case E.projectSgn env {str = foldl (fn (m, str) => (L'.StrProj (str, m), #2 sgn))
(L'.StrVar m, #2 sgn) ms,
sgn = #2 (E.lookupStrNamed env m),
field = x} of
NONE => raise Fail "Elaborate.selfify: projectSgn returns NONE"
| SOME sgn => selfify env {str = str, strs = strs, sgn = sgn}
fun selfifyAt env {str, sgn} =
let
fun self (str, _) =
case str of
L'.StrVar x => SOME (x, [])
| L'.StrProj (str, x) =>
(case self str of
NONE => NONE
| SOME (m, ms) => SOME (m, ms @ [x]))
| _ => NONE
in
case self str of
NONE => sgn
| SOME (str, strs) => selfify env {sgn = sgn, str = str, strs = strs}
end
fun dopen (env, denv) {str, strs, sgn} =
let
val m = foldl (fn (m, str) => (L'.StrProj (str, m), #2 sgn))
(L'.StrVar str, #2 sgn) strs
in
case #1 (hnormSgn env sgn) of
L'.SgnConst sgis =>
ListUtil.foldlMap (fn ((sgi, loc), (env', denv')) =>
case sgi of
L'.SgiConAbs (x, n, k) =>
let
val c = (L'.CModProj (str, strs, x), loc)
in
((L'.DCon (x, n, k, c), loc),
(E.pushCNamedAs env' x n k (SOME c), denv'))
end
| L'.SgiCon (x, n, k, c) =>
((L'.DCon (x, n, k, (L'.CModProj (str, strs, x), loc)), loc),
(E.pushCNamedAs env' x n k (SOME c), denv'))
| L'.SgiVal (x, n, t) =>
((L'.DVal (x, n, t, (L'.EModProj (str, strs, x), loc)), loc),
(E.pushENamedAs env' x n t, denv'))
| L'.SgiStr (x, n, sgn) =>
((L'.DStr (x, n, sgn, (L'.StrProj (m, x), loc)), loc),
(E.pushStrNamedAs env' x n sgn, denv'))
| L'.SgiSgn (x, n, sgn) =>
((L'.DSgn (x, n, (L'.SgnProj (str, strs, x), loc)), loc),
(E.pushSgnNamedAs env' x n sgn, denv'))
| L'.SgiConstraint (c1, c2) =>
((L'.DConstraint (c1, c2), loc),
(env', denv (* D.assert env denv (c1, c2) *) )))
(env, denv) sgis
| _ => (strError env (UnOpenable sgn);
([], (env, denv)))
end
fun dopenConstraints (loc, env, denv) {str, strs} =
case E.lookupStr env str of
NONE => (strError env (UnboundStr (loc, str));
denv)
| SOME (n, sgn) =>
let
val (st, sgn) = foldl (fn (m, (str, sgn)) =>
case E.projectStr env {str = str, sgn = sgn, field = m} of
NONE => (strError env (UnboundStr (loc, m));
(strerror, sgnerror))
| SOME sgn => ((L'.StrProj (str, m), loc), sgn))
((L'.StrVar n, loc), sgn) strs
val cso = E.projectConstraints env {sgn = sgn, str = st}
val denv = case cso of
NONE => (strError env (UnboundStr (loc, str));
denv)
| SOME cs => foldl (fn ((c1, c2), denv) =>
let
val (denv, gs) = D.assert env denv (c1, c2)
in
case gs of
[] => ()
| _ => raise Fail "dopenConstraints: Sub-constraints remain";
denv
end) denv cs
in
denv
end
fun sgiOfDecl (d, loc) =
case d of
L'.DCon (x, n, k, c) => (L'.SgiCon (x, n, k, c), loc)
| L'.DVal (x, n, t, _) => (L'.SgiVal (x, n, t), loc)
| L'.DSgn (x, n, sgn) => (L'.SgiSgn (x, n, sgn), loc)
| L'.DStr (x, n, sgn, _) => (L'.SgiStr (x, n, sgn), loc)
| L'.DFfiStr (x, n, sgn) => (L'.SgiStr (x, n, sgn), loc)
| L'.DConstraint cs => (L'.SgiConstraint cs, loc)
fun sgiBindsD (env, denv) (sgi, _) =
case sgi of
L'.SgiConstraint (c1, c2) =>
(case D.assert env denv (c1, c2) of
(denv, []) => denv
| _ => raise Fail "sgiBindsD: Sub-constraints remain")
| _ => denv
fun subSgn (env, denv) sgn1 (sgn2 as (_, loc2)) =
case (#1 (hnormSgn env sgn1), #1 (hnormSgn env sgn2)) of
(L'.SgnError, _) => ()
| (_, L'.SgnError) => ()
| (L'.SgnConst sgis1, L'.SgnConst sgis2) =>
let
fun folder (sgi2All as (sgi, _), (env, denv)) =
let
fun seek p =
let
fun seek (env, denv) ls =
case ls of
[] => (sgnError env (UnmatchedSgi sgi2All);
(env, denv))
| h :: t =>
case p h of
NONE => seek (E.sgiBinds env h, sgiBindsD (env, denv) h) t
| SOME envs => envs
in
seek (env, denv) sgis1
end
in
case sgi of
L'.SgiConAbs (x, n2, k2) =>
seek (fn sgi1All as (sgi1, _) =>
let
fun found (x', n1, k1, co1) =
if x = x' then
let
val () = unifyKinds k1 k2
handle KUnify (k1, k2, err) =>
sgnError env (SgiWrongKind (sgi1All, k1, sgi2All, k2, err))
val env = E.pushCNamedAs env x n1 k1 co1
in
SOME (if n1 = n2 then
env
else
E.pushCNamedAs env x n2 k2 (SOME (L'.CNamed n1, loc2)),
denv)
end
else
NONE
in
case sgi1 of
L'.SgiConAbs (x', n1, k1) => found (x', n1, k1, NONE)
| L'.SgiCon (x', n1, k1, c1) => found (x', n1, k1, SOME c1)
| _ => NONE
end)
| L'.SgiCon (x, n2, k2, c2) =>
seek (fn sgi1All as (sgi1, _) =>
case sgi1 of
L'.SgiCon (x', n1, k1, c1) =>
if x = x' then
let
fun good () = SOME (E.pushCNamedAs env x n2 k2 (SOME c2), denv)
in
(case unifyCons (env, denv) c1 c2 of
[] => good ()
| _ => NONE)
handle CUnify (c1, c2, err) =>
(sgnError env (SgiWrongCon (sgi1All, c1, sgi2All, c2, err));
good ())
end
else
NONE
| _ => NONE)
| L'.SgiVal (x, n2, c2) =>
seek (fn sgi1All as (sgi1, _) =>
case sgi1 of
L'.SgiVal (x', n1, c1) =>
if x = x' then
(case unifyCons (env, denv) c1 c2 of
[] => SOME (env, denv)
| _ => NONE)
handle CUnify (c1, c2, err) =>
(sgnError env (SgiWrongCon (sgi1All, c1, sgi2All, c2, err));
SOME (env, denv))
else
NONE
| _ => NONE)
| L'.SgiStr (x, n2, sgn2) =>
seek (fn sgi1All as (sgi1, _) =>
case sgi1 of
L'.SgiStr (x', n1, sgn1) =>
if x = x' then
let
val () = subSgn (env, denv) sgn1 sgn2
val env = E.pushStrNamedAs env x n1 sgn1
val env = if n1 = n2 then
env
else
E.pushStrNamedAs env x n2
(selfifyAt env {str = (L'.StrVar n1, #2 sgn2),
sgn = sgn2})
in
SOME (env, denv)
end
else
NONE
| _ => NONE)
| L'.SgiSgn (x, n2, sgn2) =>
seek (fn sgi1All as (sgi1, _) =>
case sgi1 of
L'.SgiSgn (x', n1, sgn1) =>
if x = x' then
let
val () = subSgn (env, denv) sgn1 sgn2
val () = subSgn (env, denv) sgn2 sgn1
val env = E.pushSgnNamedAs env x n2 sgn2
val env = if n1 = n2 then
env
else
E.pushSgnNamedAs env x n1 sgn2
in
SOME (env, denv)
end
else
NONE
| _ => NONE)
| L'.SgiConstraint (c2, d2) =>
seek (fn sgi1All as (sgi1, _) =>
case sgi1 of
L'.SgiConstraint (c1, d1) =>
if consEq (env, denv) (c1, c2) andalso consEq (env, denv) (d1, d2) then
let
val (denv, gs) = D.assert env denv (c2, d2)
in
case gs of
[] => ()
| _ => raise Fail "subSgn: Sub-constraints remain";
SOME (env, denv)
end
else
NONE
| _ => NONE)
end
in
ignore (foldl folder (env, denv) sgis2)
end
| (L'.SgnFun (m1, n1, dom1, ran1), L'.SgnFun (m2, n2, dom2, ran2)) =>
let
val ran1 =
if n1 = n2 then
ran1
else
subStrInSgn (n1, n2) ran1
in
subSgn (env, denv) dom2 dom1;
subSgn (E.pushStrNamedAs env m2 n2 dom2, denv) ran1 ran2
end
| _ => sgnError env (SgnWrongForm (sgn1, sgn2))
fun elabDecl ((d, loc), (env, denv, gs)) =
case d of
L.DCon (x, ko, c) =>
let
val k' = case ko of
NONE => kunif loc
| SOME k => elabKind k
val (c', ck, gs') = elabCon (env, denv) c
val (env', n) = E.pushCNamed env x k' (SOME c')
in
checkKind env c' ck k';
([(L'.DCon (x, n, k', c'), loc)], (env', denv, gs' @ gs))
end
| L.DVal (x, co, e) =>
let
val (c', ck, gs1) = case co of
NONE => (cunif (loc, ktype), ktype, [])
| SOME c => elabCon (env, denv) c
val (e', et, gs2) = elabExp (env, denv) e
val (env', n) = E.pushENamed env x c'
val gs3 = checkCon (env, denv) e' et c'
in
([(L'.DVal (x, n, c', e'), loc)], (env', denv, gs1 @ gs2 @ gs3 @ gs))
end
| L.DSgn (x, sgn) =>
let
val (sgn', gs') = elabSgn (env, denv) sgn
val (env', n) = E.pushSgnNamed env x sgn'
in
([(L'.DSgn (x, n, sgn'), loc)], (env', denv, gs' @ gs))
end
| L.DStr (x, sgno, str) =>
let
val () = if x = "Basis" then
raise Fail "Not allowed to redefine structure 'Basis'"
else
()
val formal = Option.map (elabSgn (env, denv)) sgno
val (str', sgn', gs') =
case formal of
NONE =>
let
val (str', actual, ds) = elabStr (env, denv) str
in
(str', selfifyAt env {str = str', sgn = actual}, ds)
end
| SOME (formal, gs1) =>
let
val str =
case #1 (hnormSgn env formal) of
L'.SgnConst sgis =>
(case #1 str of
L.StrConst ds =>
let
val needed = foldl (fn ((sgi, _), needed) =>
case sgi of
L'.SgiConAbs (x, _, _) => SS.add (needed, x)
| _ => needed)
SS.empty sgis
val needed = foldl (fn ((d, _), needed) =>
case d of
L.DCon (x, _, _) => (SS.delete (needed, x)
handle NotFound => needed)
| L.DOpen _ => SS.empty
| _ => needed)
needed ds
in
case SS.listItems needed of
[] => str
| xs =>
let
val kwild = (L.KWild, #2 str)
val cwild = (L.CWild kwild, #2 str)
val ds' = map (fn x => (L.DCon (x, NONE, cwild), #2 str)) xs
in
(L.StrConst (ds @ ds'), #2 str)
end
end
| _ => str)
| _ => str
val (str', actual, gs2) = elabStr (env, denv) str
in
subSgn (env, denv) actual formal;
(str', formal, gs1 @ gs2)
end
val (env', n) = E.pushStrNamed env x sgn'
in
case #1 (hnormSgn env sgn') of
L'.SgnFun _ =>
(case #1 str' of
L'.StrFun _ => ()
| _ => strError env (FunctorRebind loc))
| _ => ();
([(L'.DStr (x, n, sgn', str'), loc)], (env', denv, gs' @ gs))
end
| L.DFfiStr (x, sgn) =>
let
val (sgn', gs') = elabSgn (env, denv) sgn
val (env', n) = E.pushStrNamed env x sgn'
in
([(L'.DFfiStr (x, n, sgn'), loc)], (env', denv, gs' @ gs))
end
| L.DOpen (m, ms) =>
(case E.lookupStr env m of
NONE => (strError env (UnboundStr (loc, m));
([], (env, denv, [])))
| SOME (n, sgn) =>
let
val (_, sgn) = foldl (fn (m, (str, sgn)) =>
case E.projectStr env {str = str, sgn = sgn, field = m} of
NONE => (strError env (UnboundStr (loc, m));
(strerror, sgnerror))
| SOME sgn => ((L'.StrProj (str, m), loc), sgn))
((L'.StrVar n, loc), sgn) ms
val (ds, (env', denv')) = dopen (env, denv) {str = n, strs = ms, sgn = sgn}
val denv' = dopenConstraints (loc, env', denv') {str = m, strs = ms}
in
(ds, (env', denv', []))
end)
| L.DConstraint (c1, c2) =>
let
val (c1', k1, gs1) = elabCon (env, denv) c1
val (c2', k2, gs2) = elabCon (env, denv) c2
val gs3 = D.prove env denv (c1', c2', loc)
val (denv', gs4) = D.assert env denv (c1', c2')
in
checkKind env c1' k1 (L'.KRecord (kunif loc), loc);
checkKind env c2' k2 (L'.KRecord (kunif loc), loc);
([(L'.DConstraint (c1', c2'), loc)], (env, denv', gs1 @ gs2 @ gs3 @ gs4))
end
| L.DOpenConstraints (m, ms) =>
let
val denv = dopenConstraints (loc, env, denv) {str = m, strs = ms}
in
([], (env, denv, []))
end
and elabStr (env, denv) (str, loc) =
case str of
L.StrConst ds =>
let
val (ds', (_, _, gs)) = ListUtil.foldlMapConcat elabDecl (env, denv, []) ds
val sgis = map sgiOfDecl ds'
val (sgis, _, _, _, _) =
foldr (fn ((sgi, loc), (sgis, cons, vals, sgns, strs)) =>
case sgi of
L'.SgiConAbs (x, n, k) =>
let
val (cons, x) =
if SS.member (cons, x) then
(cons, "?" ^ x)
else
(SS.add (cons, x), x)
in
((L'.SgiConAbs (x, n, k), loc) :: sgis, cons, vals, sgns, strs)
end
| L'.SgiCon (x, n, k, c) =>
let
val (cons, x) =
if SS.member (cons, x) then
(cons, "?" ^ x)
else
(SS.add (cons, x), x)
in
((L'.SgiCon (x, n, k, c), loc) :: sgis, cons, vals, sgns, strs)
end
| L'.SgiVal (x, n, c) =>
let
val (vals, x) =
if SS.member (vals, x) then
(vals, "?" ^ x)
else
(SS.add (vals, x), x)
in
((L'.SgiVal (x, n, c), loc) :: sgis, cons, vals, sgns, strs)
end
| L'.SgiSgn (x, n, sgn) =>
let
val (sgns, x) =
if SS.member (sgns, x) then
(sgns, "?" ^ x)
else
(SS.add (sgns, x), x)
in
((L'.SgiSgn (x, n, sgn), loc) :: sgis, cons, vals, sgns, strs)
end
| L'.SgiStr (x, n, sgn) =>
let
val (strs, x) =
if SS.member (strs, x) then
(strs, "?" ^ x)
else
(SS.add (strs, x), x)
in
((L'.SgiStr (x, n, sgn), loc) :: sgis, cons, vals, sgns, strs)
end
| L'.SgiConstraint _ => ((sgi, loc) :: sgis, cons, vals, sgns, strs))
([], SS.empty, SS.empty, SS.empty, SS.empty) sgis
in
((L'.StrConst ds', loc), (L'.SgnConst sgis, loc), gs)
end
| L.StrVar x =>
(case E.lookupStr env x of
NONE =>
(strError env (UnboundStr (loc, x));
(strerror, sgnerror, []))
| SOME (n, sgn) => ((L'.StrVar n, loc), sgn, []))
| L.StrProj (str, x) =>
let
val (str', sgn, gs) = elabStr (env, denv) str
in
case E.projectStr env {str = str', sgn = sgn, field = x} of
NONE => (strError env (UnboundStr (loc, x));
(strerror, sgnerror, []))
| SOME sgn => ((L'.StrProj (str', x), loc), sgn, gs)
end
| L.StrFun (m, dom, ranO, str) =>
let
val (dom', gs1) = elabSgn (env, denv) dom
val (env', n) = E.pushStrNamed env m dom'
val (str', actual, gs2) = elabStr (env', denv) str
val (formal, gs3) =
case ranO of
NONE => (actual, [])
| SOME ran =>
let
val (ran', gs) = elabSgn (env', denv) ran
in
subSgn (env', denv) actual ran';
(ran', gs)
end
in
((L'.StrFun (m, n, dom', formal, str'), loc),
(L'.SgnFun (m, n, dom', formal), loc),
gs1 @ gs2 @ gs3)
end
| L.StrApp (str1, str2) =>
let
val (str1', sgn1, gs1) = elabStr (env, denv) str1
val (str2', sgn2, gs2) = elabStr (env, denv) str2
in
case #1 (hnormSgn env sgn1) of
L'.SgnError => (strerror, sgnerror, [])
| L'.SgnFun (m, n, dom, ran) =>
(subSgn (env, denv) sgn2 dom;
case #1 (hnormSgn env ran) of
L'.SgnError => (strerror, sgnerror, [])
| L'.SgnConst sgis =>
((L'.StrApp (str1', str2'), loc),
(L'.SgnConst ((L'.SgiStr (m, n, selfifyAt env {str = str2', sgn = sgn2}), loc) :: sgis), loc),
gs1 @ gs2)
| _ => raise Fail "Unable to hnormSgn in functor application")
| _ => (strError env (NotFunctor sgn1);
(strerror, sgnerror, []))
end
fun elabFile basis env file =
let
val (sgn, gs) = elabSgn (env, D.empty) (L.SgnConst basis, ErrorMsg.dummySpan)
val () = case gs of
[] => ()
| _ => raise Fail "Unresolved disjointness constraints in Basis"
val (env', basis_n) = E.pushStrNamed env "Basis" sgn
val (ds, (env', _)) = dopen (env', D.empty) {str = basis_n, strs = [], sgn = sgn}
fun discoverC r x =
case E.lookupC env' x of
E.NotBound => raise Fail ("Constructor " ^ x ^ " unbound in Basis")
| E.Rel _ => raise Fail ("Constructor " ^ x ^ " bound relatively in Basis")
| E.Named (n, (_, loc)) => r := (L'.CNamed n, loc)
val () = discoverC int "int"
val () = discoverC float "float"
val () = discoverC string "string"
fun elabDecl' (d, (env, gs)) =
let
val () = resetKunif ()
val () = resetCunif ()
val (ds, (env, _, gs)) = elabDecl (d, (env, D.empty, gs))
in
if ErrorMsg.anyErrors () then
()
else (
if List.exists kunifsInDecl ds then
declError env (KunifsRemain ds)
else
();
case ListUtil.search cunifsInDecl ds of
NONE => ()
| SOME loc =>
declError env (CunifsRemain ds)
);
(ds, (env, gs))
end
val (file, (_, gs)) = ListUtil.foldlMapConcat elabDecl' (env', []) file
in
if ErrorMsg.anyErrors () then
()
else
app (fn (loc, env, denv, c1, c2) =>
case D.prove env denv (c1, c2, loc) of
[] => ()
| _ =>
(ErrorMsg.errorAt loc "Couldn't prove field name disjointness";
eprefaces' [("Con 1", p_con env c1),
("Con 2", p_con env c2),
("Hnormed 1", p_con env (ElabOps.hnormCon env c1)),
("Hnormed 2", p_con env (ElabOps.hnormCon env c2))])) gs;
(L'.DFfiStr ("Basis", basis_n, sgn), ErrorMsg.dummySpan) :: ds @ file
end
end
|